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S1 Childhood Cancer Survivor Study

The Childhood Cancer Survivor Study (CCSS), a retrospectively constructed cohort study with
longitudinal, prospective follow-up of 25,735 5-year survivors of childhood cancer treated at 31 pe-
diatric oncology institutions between 1970-1999 in the United States and Canada, provides a unique
opportunity to study the late effects in pediatric cancer survivors. The study methods and design
details have previously been described (Robison et al., 2009; Leisenring et al., 2009). The CCSS
provides a wealth of information on the incidence and predictors of adverse health outcomes, in par-
ticular, survivor’s self-reported chronic health conditions (CHCs) in a series of longitudinal surveys
(https://ccss.stjude.org/tools-documents/questionnaires.html). In the CCSS, survivors
are asked to recall the onset age of the CHC event if experienced. Some respondents report their
ages at onset, while others leave it blank even when they indicated experiencing the CHC, which
causes missing event onset age in the context of time-to-event analysis. The missingness occurs only
among individuals who experienced the event, suggesting that the data is not missing data in the
usual sense, and it is not certainly missing at random. Since the survivor reported the occurrence
of the event at the time of the survey, the missing onset age is interval-censored, i.e., it is not just
missing, but it is known to fall within the interval starting five years after diagnosis and extending
to the last survey time, but its exact time is not known.

∗To whom correspondence should be addressed.
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S2 Missing onset age

A complete dataset without apparent bias cannot be created by simply eliminating the observations
with missing data, which is tenable when the missingness is completely at random because the
observations with a missing onset age had the event, and this missingness is not completely at
random.

Various imputation methods, from non-statistically accurate single imputations to statistically valid
multiple imputations, can address missing data issues, such as those involving missing onset ages,
ultimately creating complete and analyzable datasets. Multiple imputation involves observed non-
missing data to impute multiple values of missing data under certain assumptions on missing pat-
terns and variable relationships. For the missing onset age problem, Taylor et al. (2002) proposed
a non-parametric multiple-imputation method, further discussed by others (e.g., Gurney et al.
(2003); Zhao et al. (2014).) Their multiple-imputation approach is effective under the specific
assumptions of missing patterns and relationships among the variables used for imputation. As
with any multiple imputation, their approach involves repeating the association analysis of inter-
est for each imputed dataset and pooling multiple results using a special formula accounting for
imputation-induced variability. Despite its effectiveness under assumptions made by researchers,
the computational intensity and challenges in evaluating the tenability of assumptions limit its
applicability in epidemiological research. Since the missing onset age is not at random, the existing
statistical software’s packages/procedures can not be used directly to address the missing onset age.

S3 Likelihood and method

The proportional hazards regression model (Cox, 1972) introduced flexibility in the analysis of time-
to-event data, with its gain in popularity being attributed to its interpretability and ability to model
right-censored data. Developing techniques that allow for the analysis of interval-censored data
under semiparametric variants of this model can be challenging. These difficulties are encountered
because of the underlying structure of interval-censored data, i.e., the event times of interest are
never observed. In particular, data of this form typically consist of left-, right-, and interval-
censored observations corresponding to the situation in which the event times occur before the first,
after the last, or between two observation times, respectively. Interval-censored data is ubiquitous
among social, behavioral, epidemiological, and medical studies Sun (2006), and therefore, modeling
techniques that allow for the valid analysis of interval-censored data need to be developed, along with
the necessary statistical software to carry out these analyses. The regression analysis of interval-
censored data under the PH model is a well-studied problem. This problem was first addressed by
Finkelstein (1986), who proposed a method of jointly estimating the regression parameters and the
baseline hazard function using a Newton-Raphson-based algorithm. Subsequent developments in
the interval-censored regression model include works by Groeneboom and Wellner (1992); Satten
(1996); Goggins et al. (1998); Cai and Betensky (2003); Li and Ma (2013); Shao et al. (2014)
among others. The Cox PH model simplifies the handling of right-censored data because it directly
accommodates right-censored observations through the concept of risk sets, avoids the need to
specify or estimate the baseline hazard function and benefits from broad support and availability
in statistical software. The model and likelihood in these models are as follows.

Let F (.|x) denote the cumulative distribution function (CDF) of the time-to-event of interest given
the covariate vector X. Under the PH model, the time-to-event distribution for individuals with
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covariatesXi is given by , whereXi = (xi1, . . . , xip)
′ is a p×1 vector of time-independent covariates,

β = (β1, . . . , βp)
′ is the corresponding vector of regression parameters, and Λ0(.) is the cumulative

baseline hazard function. It is assumed throughout that, conditional on the covariates, the time-
to-event is independent of the observational process. This assumption is common in the survival
literature; see, e.g., Sun (2006) among others. Under this assumption, the likelihood given the
observed data A = {(Li, Ri|xi)}, is

Lobs =

n∏
i=1

{F (R+
i |xi)− F (L−

i |xi)}

where n is the sample size, Li and Ri denote the left and right bounds of the observed interval
for the ith individual, respectively, with Li < Ri. Note, Li = 0 (Ri = ∞) indicates that the ith
individual’s event time is left (right) censored and Li = Ri when the exact onset time is observed,
Distinguishing between the three types of censoring, one can rewrite the observed data likelihood
in the following form

Lobs =

n∏
i=1

{F (R+
i |xi)}δi1{F (R+

i |xi)− F (L−
i |xi)}δi2{1− F (L−

i |xi)}δi3 (1)

where δi1, δi2, and δi3 are censoring indicators for the ith individual denoting left-, interval-, and
right-censoring, respectively, subject to the constraint δi1+ δi2+ δi3 = 1, when F (L−

i ) and dF (R+
i )

are defined as F (u−) = limh→0 Pr(U < u − h); F (u+) = limh→0 Pr(U < u + h) . Note that
for the exact onset time (i.e., Li = Ri), we define the probability mass at the exact onset time as
pi = F (R+

i )− F (L−
i ).

Under the assumption of proportional hazards, the probability of the individual i, with the covariate
vector Xi and having the event after time t, is

F̄i(t|Xi) = [F̄0(t)]
exp(βT Xi), (2)

where F̄0(t) = Pr(T > t|Xi = 0) is the baseline survival distribution and βT is the vector of
parameters corresponding to the covariate vector under the Cox regression model.

Optimizing likelihood (1) after substituting (2) is computationally intensive or methodologically
complex in practical applications. Wang et al. (2016) proposed a method for analyzing interval-
censored data under the proportional hazards model, considering the following steps:

Step (1) The baseline cumulative hazard function, Λ0(.), was modeled using I-splines as proposed
by Ramsay (1988).

Step (2) To employ an EM algorithm for finding the maximum likelihood estimates of the parame-
ters, a two-stage data augmentation was used. This involved latent Poisson random variables,
leveraging the relationship between the proportional hazards model and a nonhomogeneous
Poisson process.

Step (3) An EM algorithm was used to optimize the augmented likelihood corresponding to the
second stage of data augmentation.

Although not published in the Journal of Statistical Software, Wang et al. (2016) provided the
ICsurv package in R for implementing their method in semiparametric regression analysis of

3



interval-censored data under the proportional hazards model. However, the selection of knots
remains an open question for this package. Subsequently, Anderson-Bergman (2017) introduced a
companion R package, icenReg, to facilitate fitting regression models for interval-censored data. In
this study, to estimate the effects of risk factors for each chronic health condition, we utilized the
‘ic sp’ function from the icenReg package.

S4 Simulation Setup and Method

To assess the performance of methods described in Section 3, we conducted a comparative analysis
of the estimated coefficients for the risk factors through Monte Carlo simulation For clarity, we
introduce some notations used in the simulations.

Notation Description

β Regression coefficient (here we consider coefficients for two risk factors β1, β2 )
j = 1, 2, ..., 500 Indexes the repetitions of the simulation

n Sample size of a simulated dataset (here, n = 300, 1000, and 5000)
F0(t) Baseline distribution function

β̂ The estimator of β
β̄ The mean of β across repetitions

Bias Difference between the true and estimated values of the regression coefficient

bias(β̂) = (β̂ − β)
Stdev Standard deviation of the estimated regression coefficient

(e.g. for β1, it is defined as

√
V ar(β̂1) =

√∑500
j=1(

ˆβj1−β̄1)

500
)

MSE The mean square error of the estimated regression coefficient

(e.g. for β1, MSE (β1) = var (β̂1)+ (bias (β̂1))
2)

S4.1 Aims

This simulation study compares the performance of different methods introduced in Section 3
by comparing the bias, standard deviation, and MSE. Irrespective of the sample size, for the best
method, bias, Stdev, and MSE should be as small as possible for the estimated regression coefficient
β.

The assessment considered estimates from the ‘observation-deletion,’ ‘event-deletion,’ ‘Simple re-
placement,’ and the interval-censored regression (‘Interval-censored’). Note that the ‘coxph’ func-
tion in R or any Cox regression implementation in standard statistical software can be used for the
first three approaches. The ‘Interval-censored’ approach used the ‘ic sp’ function in icenReg pack-
age of R. The ‘ic sp’ function fits a semi-parametric model for interval-censored data. We chose
to fit a Cox proportional model. The covariance matrix for the regression coefficients is estimated
via bootstrap; we used 50 bootstrap iterations. Note that this function has an option of parallel
processing to take advantage of multiple cores for large datasets.

Based on the data described in Section 2, for the proportion of those who had the event, we consider
two cases of a) 10% and b) 30%, using Binomial distributions with success probabilities 0.1 and
0.3. Among those who had the event, we consider three scenarios that could arise in our data
regarding the missingness of onset age. 1) Equal Reporting/Non-reporting: Among those
who had the event, roughly 50% report the onset age, and approximately 50% do not report it.
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2) Reporting Dominance: Among those who had the event, about 80% report their onset age,
while approximately 20% do not report it. 3) Non-Reporting Dominance: Among those who
had the event, around 20% report the onset age, while the majority (80%) do not report it.

S4.2 Data-generation

In this simulation, we generate samples of time-to-event from a proportional hazards model with a

survival function S(t) = S0(t)
exp{β

′
Z}, where the baseline distribution function F0(t) = 1−S0(t) is

Weibull with shape and scale parameters k = 10 and λ = 20, respectively. This distribution has a
median of about 20, aligned with a median time in years to experience some CHCs among childhood
cancer survivors. We consider two independent covariates associated with the hazard rates of
the CHC event: a binary variable, taking values 1 and 0 with probabilities 0.20 and 0.80, and a
continuous variable with a uniform distribution over [−5, 5]. We choose the true vector of regression
coefficients for the two covariates as β = (β1, β2) = (1.5, 0.2). The ‘time of survey/interview’ is
generated from the discrete uniform distribution over the set of integers {1, 2, . . . , 35}. These choices
align with the follow-up time in the CCSS data. Note that we consider the possible interval from
the starting time to the survey time for the ‘Interval-censored’ approach.

S5 Simulation Results
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Figure S1: Plots of observed bias in the left column, and standard deviation (Stdev) in the right col-
umn of the estimated risk factor’s coefficient using the Cox regression models ‘observation-deletion,’
‘event-deletion,’ ‘simple replacement,’ and ‘Interval-censored,’ for a) ‘Equal Reporting/Non-
reporting’ (the top panel), b) ‘Reporting Dominance’ (the middle panel), and c) ‘Non-Reporting
Dominance’ (the bottom panel), for n=300 in 500 simulations when about 10% of individuals have
experienced the event by the time of survey.
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Figure S2: Plots of observed bias in the left column, and standard deviation (Stdev) in the right col-
umn of the estimated risk factor’s coefficient using the Cox regression models ‘observation-deletion,’
‘event-deletion,’ ‘simple replacement,’ and ‘Interval-censored,’ for a) ‘Equal Reporting/Non-
reporting’ (the top panel), b) ‘Reporting Dominance’ (the middle panel), and c) ‘Non-Reporting
Dominance’ (the bottom panel), for n=1000 in 500 simulations when about 10% of individuals have
experienced the event by the time of survey.
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Figure S3: Plots of observed bias in the left column, and standard deviation (Stdev) in the right col-
umn of the estimated risk factor’s coefficient using the Cox regression models ‘observation-deletion,’
‘event-deletion,’ ‘simple replacement,’ and ‘Interval-censored,’ for a) ‘Equal Reporting/Non-
reporting’ (the top panel), b) ‘Reporting Dominance’ (the middle panel), and c) ‘Non-Reporting
Dominance’ (the bottom panel), for n=300 in 500 simulations when about 30% of individuals have
experienced the event by the time of survey.
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Figure S4: Plots of observed bias in the left column, and standard deviation (Stdev) in the right col-
umn of the estimated risk factor’s coefficient using the Cox regression models ‘observation-deletion’,
‘event-deletion’, ‘simple replacement’, and ‘Interval-censored’, for a) ‘Equal Reporting/Non-
reporting’ (the top panel), b) ‘Reporting Dominance’ (the middle panel), and c) ‘Non-Reporting
Dominance’ (the bottom panel), for n=1000 in 500 simulations when about 30% of individuals have
experienced the event by the time of survey.
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Table S1: Bias, Stdev, MSE, and mean of standard error (SE) of the estimated coefficients for
n = 300 and three scenarios in case (a)when about 10% of individuals have experienced the event
by the time of survey.

Scenario Method Covariates True value Bias Stdev MSE Mean SE

E
q
u
a
l
R
e
p
o
r
ti
n
g
/
N
o
n
-r
e
p
o
r
ti
n
g Observation-deletion Binary covariate 1.5 0.257 0.631 0.464 0.605

Uniform covariate 0.2 0.029 0.304 0.093 0.271

Event-deletion Binary covariate 1.5 –0.413 0.663 0.610 0.561
Uniform covariate 0.2 –0.050 0.288 0.085 0.262

Simple replacement Binary covariate 1.5 –0.234 0.502 0.307 0.444
Uniform covariate 0.2 –0.030 0.224 0.051 0.212

Interval-censored Binary covariate 1.5 0.075 0.524 0.280 0.765
Uniform covariate 0.2 0.010 0.229 0.053 0.253

R
e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.086 0.406 0.172 0.381
Uniform covariate 0.2 0.014 0.180 0.033 0.163

Event-deletion Binary covariate 1.5 –0.264 0.487 0.306 0.363
Uniform covariate 0.2 –0.023 0.187 0.035 0.162

Simple replacement Binary covariate 1.5 –0.226 0.467 0.269 0.351
Uniform covariate 0.2 –0.017 0.178 0.032 0.157

Interval-censored Binary covariate 1.5 0.024 0.407 0.166 0.420
Uniform covariate 0.2 0.005 0.171 0.029 0.174

N
o
n
-R

e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Delete no recall Binary covariate 1.5 0.354 0.650 0.546 0.622
Uniform covariate 0.2 0.043 0.269 0.074 0.252

Event-deletion Binary covariate 1.5 –1.001 0.598 1.359 0.537
Uniform covariate 0.2 –0.122 0.242 0.073 0.233

Simple replacement Binary covariate 1.5 –0.810 0.379 0.800 0.334
Uniform covariate 0.2 –0.092 0.162 0.034 0.155

Interval-censored Binary covariate 1.5 0.015 0.404 0.164 0.415
Uniform covariate 0.2 0.001 0.170 0.029 0.183
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Table S2: Bias, Stdev, MSE, and mean of standard error (SE) of the estimated coefficients for
n = 1000 and three scenarios in case (a)when about 10% of individuals have experienced the event
by the time of survey.

Scenario Method Covariates True value Bias Stdev MSE Mean SE

E
q
u
a
l
R
e
p
o
r
ti
n
g
/
N
o
n
-r
e
p
o
r
ti
n
g Observation-deletion Binary covariate 1.5 0.164 0.298 0.116 0.299

Uniform covariate 0.2 0.023 0.135 0.019 0.138

Event-deletion Binary covariate 1.5 –0.464 0.317 0.316 0.284
Uniform covariate 0.2 –0.055 0.142 0.023 0.136

Simple replacement Binary covariate 1.5 –0.305 0.241 0.151 0.226
Uniform covariate 0.2 –0.037 0.111 0.014 0.110

Interval-censored Binary covariate 1.5 –0.035 0.239 0.058 0.254
Uniform covariate 0.2 –0.003 0.109 0.012 0.115

R
e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.061 0.195 0.042 0.197
Uniform covariate 0.2 0.003 0.085 0.007 0.085

Event-deletion Binary covariate 1.5 –0.345 0.235 0.174 0.186
Uniform covariate 0.2 –0.048 0.092 0.011 0.084

Simple replacement Binary covariate 1.5 –0.307 0.225 0.144 0.179
Uniform covariate 0.2 –0.040 0.086 0.009 0.081

Interval-censored Binary covariate 1.5 0.0003 0.198 0.039 0.199
Uniform covariate 0.2 –0.007 0.082 0.007 0.083

N
o
n
-R

e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.308 0.307 0.189 0.306
Uniform covariate 0.2 0.039 0.130 0.018 0.128

Event-deletion Binary covariate 1.5 –0.964 0.311 1.026 0.277
Uniform covariate 0.2 –0.111 0.127 0.028 0.124

Simple replacement Binary covariate 1.5 –0.822 0.191 0.711 0.175
Uniform covariate 0.2 –0.089 0.082 0.015 0.081

Interval-censored Binary covariate 1.5 –0.032 0.203 0.042 0.220
Uniform covariate 0.2 –0.010 0.089 0.008 0.089
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Table S3: Bias, Stdev, MSE, and mean of standard error (SE) of the estimated coefficients for
n = 5000 and three scenarios in case (a)when about 10% of individuals have experienced the event
by the time of survey.

Scenario Method Covariates True value Bias Stdev MSE Mean SE

E
q
u
a
l
R
e
p
o
r
ti
n
g
/
N
o
n
-r
e
p
o
r
ti
n
g Observation-deletion Binary covariate 1.5 0.146 0.125 0.037 0.131

Uniform covariate 0.2 0.018 0.060 0.004 0.060

Event-deletion Binary covariate 1.5 –0.481 0.130 0.248 0.124
Uniform covariate 0.2 –0.057 0.059 0.007 0.059

Simple replacement Binary covariate 1.5 –0.316 0.102 0.110 0.100
Uniform covariate 0.2 –0.039 0.050 0.005 0.047

Interval-censored Binary covariate 1.5 –0.056 0.101 0.013 0.102
Uniform covariate 0.2 –0.005 0.050 0.002 0.48

R
e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.036 0.086 0.009 0.087
Uniform covariate 0.2 0.006 0.038 0.001 0.037

Event-deletion Binary covariate 1.5 –0.373 0.108 0.151 0.082
Uniform covariate 0.2 –0.044 0.040 0.004 0.037

Simple replacement Binary covariate 1.5 –0.334 0.103 0.122 0.078
Uniform covariate 0.2 –0.036 0.039 0.003 0.035

Interval-censored Binary covariate 1.5 –0.033 0.086 0.008 0.086
Uniform covariate 0.2 –0.003 0.037 0.001 0.036

N
o
n
-R

e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e Observation-deletion Binary covariate 1.5 0.271 0.136 0.092 0.132

Uniform covariate 0.2 0.040 0.056 0.005 0.055

Event-deletion Binary covariate 1.5 –0.967 0.130 0.952 0.122
Uniform covariate 0.2 –0.107 0.055 0.014 0.055

Simple replacement Binary covariate 1.5 –0.831 0.096 0.699 0.077
Uniform covariate 0.2 –0.083 0.044 0.009 0.036

Interval-censored Binary covariate 1.5 –0.080 0.097 0.016 0.096
Uniform covariate 0.2 –0.006 0.038 0.002 0.038

12



Table S4: Bias, Stdev, MSE, and mean of standard error (SE) of the estimated coefficients for
n = 300 and three scenarios in case (b) when about 30% of individuals have experienced the event
by the time of survey.

Scenario Method Covariates True value Bias Stdev MSE Mean SE

E
q
u
a
l
R
e
p
o
r
ti
n
g
/
N
o
n
-r
e
p
o
r
ti
n
g Observation-deletion Binary covariate 1.5 0.324 0.518 0.372 0.511

Uniform covariate 0.2 0.020 0.202 0.041 0.190

Event-deletion Binary covariate 1.5 –1.443 0.522 2.354 0.434
Uniform covariate 0.2 –0.178 0.175 0.062 0.172

Simple replacement Binary covariate 1.5 –1.276 0.429 1.812 0.263
Uniform covariate 0.2 –0.164 0.171 0.05 0.114

Interval-censored Binary covariate 1.5 0.172 0.470 0.251 0.604
Uniform covariate 0.2 0.007 0.172 0.030 0.180

R
e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.102 0.309 0.105 0.309
Uniform covariate 0.2 0.002 0.130 0.017 0.122

Event-deletion Binary covariate 1.5 –0.756 0.427 0.754 0.280
Uniform covariate 0.2 –0.111 0.127 0.028 0.120

Simple replacement Binary covariate 1.5 –0.787 0.417 0.793 0.261
Uniform covariate 0.2 –0.112 0.119 0.027 0.112

Interval-censored Binary covariate 1.5 0.072 0.312 0.102 0.331
Uniform covariate 0.2 –0.002 0.129 0.017 0.129

N
o
n
-R

e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e Observation-deletion Binary covariate 1.5 0.415 0.605 0.537 0.609

Uniform covariate 0.2 0.039 0.228 0.053 0.224

Event-deletion Binary covariate 1.5 –1.455 0.577 2.449 0.507
Uniform covariate 0.2 –0.179 0.210 0.076 0.199

Simple replacement Binary covariate 1.5 –1.256 0.428 1.761 0.253
Uniform covariate 0.2 –0.160 0.170 0.054 0.110

Interval-censored Binary covariate 1.5 0.123 0.477 0.242 0.600
Uniform covariate 0.2 0.006 0.167 0.028 0.180
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Table S5: Bias, Stdev, MSE, and mean of standard error (SE) of the estimated coefficients for
n = 1000 and three scenarios in case (b) when about 30% of individuals have experienced the event
by the time of survey.

Scenario Method Covariates True value Bias Stdev MSE Mean SE

E
q
u
a
l
R
e
p
o
r
ti
n
g
/
N
o
n
-r
e
p
o
r
ti
n
g Observation-deletion Binary covariate 1.5 0.258 0.265 0.137 0.260

Uniform covariate 0.2 0.033 0.096 0.010 0.096

Event-deletion Binary covariate 1.5 –1.431 0.261 2.117 0.229
Uniform covariate 0.2 –0.176 0.090 0.039 .092

Simple replacement Binary covariate 1.5 –1.290 0.216 1.711 0.140
Uniform covariate 0.2 –0.162 0.086 0.034 0.061

Interval-censored Binary covariate 1.5 0.070 0.241 0.063 0.236
Uniform covariate 0.2 0.007 0.082 0.007 0.083

R
e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.068 0.167 0.033 0.164
Uniform covariate 0.2 0.006 0.065 0.004 0.064

Event-deletion Binary covariate 1.5 –0.827 0.199 0.724 0.149
Uniform covariate 0.2 –0.109 0.068 0.016 0.063

Simple replacement Binary covariate 1.5 –0.868 0.194 0.791 0.138
Uniform covariate 0.2 –0.111 0.064 0.016 0.060

Interval-censored Binary covariate 1.5 0.023 0.172 0.030 0.167
Uniform covariate 0.2 –0.001 0.064 0.004 0.064

N
o
n
-R

e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e Observation-deletion Binary covariate 1.5 0.345 0.324 0.224 0.0305

Uniform covariate 0.2 0.044 0.114 0.015 0.112

Event-deletion Binary covariate 1.5 –1.455 0.311 2.212 0.268
Uniform covariate 0.2 –0.180 0.107 0.044 0.107

Simple replacement Binary covariate 1.5 –1.274 0.254 1.686 0.135
Uniform covariate 0.2 –0.161 0.078 0.032 0.060

Interval-censored Binary covariate 1.5 0.038 0.253 0.065 0.243
Uniform covariate 0.2 0.002 0.084 0.007 0.084
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Table S6: Bias, Stdev, MSE, and mean of standard error (SE) of the estimated coefficients for
n = 5000 and three scenarios in case (b) when about 30% of individuals have experienced the event
by the time of survey.

Scenario Method Covariates True value Bias Stdev MSE Mean SE

E
q
u
a
l
R
e
p
o
r
ti
n
g
/
N
o
n
-r
e
p
o
r
ti
n
g Observation-deletion Binary covariate 1.5 0.238 0.107 0.068 0.112

Uniform covariate 0.2 0.032 0.043 0.003 0.042

Event-deletion Binary covariate 1.5 –1.419 0.105 2.023 0.101
Uniform covariate 0.2 –0.178 0.040 0.033 0.041

Simple replacement Binary covariate 1.5 –1.296 0.092 1.688 0.062
Uniform covariate 0.2 –0.164 0.037 0.028 0.027

Interval-censored Binary covariate 1.5 0.046 0.065 0.006 0.090
Uniform covariate 0.2 0.005 0.026 0.001 0.030

R
e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e

Observation-deletion Binary covariate 1.5 0.049 0.067 0.007 0.072
Uniform covariate 0.2 0.007 0.029 0.001 0.028

Event-deletion Binary covariate 1.5 –0.835 0.085 0.704 0.066
Uniform covariate 0.2 –0.105 0.031 0.012 0.028

Simple replacement Binary covariate 1.5 –0.884 0.080 0.787 0.061
Uniform covariate 0.2 –0.109 0.029 0.013 0.026

Interval-censored Binary covariate 1.5 0.002 0.068 0.005 0.073
Uniform covariate 0.2 0.0003 0.028 0.001 0.028

N
o
n
-R

e
p
o
r
ti
n
g

D
o
m

in
a
n
c
e Delete no recall Binary covariate 1.5 0.311 0.127 0.113 0.130

Uniform covariate 0.2 0.044 0.048 0.004 0.048

Event-deletion Binary covariate 1.5 –1.434 0.120 2.070 0.117
Uniform covariate 0.2 –0.181 0.047 0.035 0.047

Simple replacement Binary covariate 1.5 –1.278 0.092 1.643 0.060
Uniform covariate 0.2 –0.163 0.034 0.028 0.026

Interval-censored Binary covariate 1.5 0.0003 0.097 0.009 0.100
Uniform covariate 0.2 0.001 0.035 0.001 0.035
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S6 Two other examples

We utilized data on Myocardial infarction (MI) and osteoporosis/osteopenia from the CCSS as
additional examples.

S6.1 Example S1: Myocardial infarction

In the CCSS dataset, the proportion of survivors who self-reported experiencing an MI is 1.2%.
Among those reporting an MI, 14.5% did not report the age at onset, categorized as missing data.
As indicated by Mulrooney et al. (2020), heart radiation dose, hypertension, and age at diagnosis
were identified previously as risk factors associated with the MI . In our analysis, we used these
predictors, specifying heart radiation dose as a categorical covariate (none, low, medium, and high
dose), hypertension as a binary covariate, and age at primary cancer diagnosis as a continuous
covariate. The results from the four methods in Section 3 of the main manuscript are summarizes
in Table S7.

Table S7: Estimated hazard ratios and their 95% confidence intervals (CIs) of risk factors associated
with the onset of MI

Observation-deletion Event-deletion Simple replacement Interval censored
(N=25613) (n=25656) (n=25656) (n=25656)

Parameter HR 95% CI HR 95% CI HR 95% CI HR 95% CI
No heart radiation Ref. Ref. Ref. Ref.
Heart RT (0,15) Gy 1.12 (0.82, 1.53) 1.12 (0.82, 1.53) 1.11 (0.83, 1.48) 1.13 (0.83, 1.54)
Heart RT [15,35) Gy 2.74 (2.00, 3.75) 2.72 (1.99, 3.73) 2.65 (1.98, 3.54) 2.69 (1.97, 3.67)
Heart RT dose 35+ Gy 3.51 (1.84, 6.67) 3.52 (1.85, 6.68) 3.08 (1.63, 5.81) 3.16 (1.17, 8.50)
No hypertension Ref. Ref. Ref. Ref.
Hypertension 4.21 (3.27, 5.43) 4.19 (3.25, 5.40) 3.84 (3.04, 4.85) 3.99 (3.12, 5.10)
Age at diagnosis 1.65 (1.45, 1.89) 1.66 (1.45, 1.89) 1.58 (1.40, 1.78) 1.57 (1.42, 1.73)

Our data reveals a broad range of post-treatment intervals for MI onset (among those reporting
their onset age, the average onset age was 16.9, with the standard deviation of 9.2.) The incidence
of self-reported MI within the CCSS cohort is relatively low (1.2%), with only 14.5% not report their
onset age. Consequently, the performance of the four methods is quite similar, with the deletion-
based approaches suggesting a slightly higher estimated risk associated with a heart radiation dose
of 35 Gy or more compared to no heart radiation, in contrast to the other two methods.

S6.2 Example S2: Osteoporosis/osteopenia

Survivors of childhood cancer often confront challenges related to diminished bone mineral density
and disrupted bone metabolism, rendering them more susceptible to heightened risks of fractures
and skeletal complications. Within the CCSS data, 7.9% of survivors self-reported experiencing
osteoporosis/osteopenia. Among them, 36.8% didn’t report the age at onset, constituting missing
data. For survivors who provided their onset age, the average onset age was 13.1, with a standard
deviation of 9.5. Previous studies by Gawade et al. (2012); Gurney et al. (2014) identified risk
factors such as brain radiation, any chemotherapy treatment, gender, and age at primary cancer
diagnosis as the risk factors associated with osteoporosis/osteopenia. We used the same predictor in
our analysis with brain radiation dose as a categorical covariate (none, low, medium, and high dose),
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exposure to any chemotherapy treatment and gender as binary covariates, and age at diagnosis of
primary cancer as a continuous covariate. Table S8 summarizes the findings.

Table S8: Estimated hazard ratios and their 95% confidence intervals (CIs) of risk factors associated
with the onset of Osteoporosis/osteopenia

Observation-deletion Event-deletion Simple replacement Interval censored
(N=24912) (n=25656) (n=25656) (n=25656)

Parameter HR 95% CI HR 95% CI HR 95% CI HR 95% CI
No chemotherapy Ref. Ref. Ref. Ref.
Chemotherapy 0.86 (0.77, 0.96) 0.87 (0.78, 0.97) 0.76 (0.69, 0.83) 0.78 (0.72, 0.86)
No brain radiation Ref. Ref. Ref. Ref.
Brain RT (0,30) Gy 1.31 (1.13, 1.51) 1.27 (1.09, 1.47) 1.46 (1.31, 1.64) 1.57 (1.38, 1.78)
Brain RT [30,50) Gy 2.03 (1.52, 2.71) 1.90 (1.42, 2.54) 2.27 (1.83, 2.82) 2.37 (1.75, 3.22)
Brain RT 50+ Gy 2.40 (2.02, 2.85) 2.29 (1.93, 2.72) 2.84 (2.48, 3.24) 2.66 (2.26, 3.14)
Female Ref. Ref. Ref. Ref.
Male 0.42 (0.37, 0.47) 0.43 (0.38, 0.48) 0.53 (0.48, 0.58) 0.52 (0.49, 0.55)
Age at diagnosis 1.24 (1.17, 1.31) 1.22 (1.16, 1.29) 1.24 (1.19, 1.30) 1.25 (1.21, 1.29)

With a high rate of missing onset age, around 40%, variations emerge in estimating hazard ratios
for covariates across the different methods. For both the chemotherapy and brain radiation dose
covariates, the hazard ratio estimates are attenuated towards null in the two deletion-based methods
than the ‘Simple replacement’ and ‘Interval-censored’ methods, where the latter two methods give
similar estimates. In our dataset, there is notable variability in the duration between five years post-
diagnosis and up to 40 years thereafter for the manifestation of the condition among individuals
who reported the onset age of osteoporosis/osteopenia. This variability aligns with the survey time
range among those with the condition who did not report onset age, leading to comparable results
in the ’Simple replacement’ and ’Interval-censored’ methods.
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