
Supplements to “Targeting Underrepresented Populations in

Precision Medicine: A Federated Transfer Learning Approach”

This supplementary file contains alternative algorithms (Sections A and B), conditions,

proofs to theorems, corollaries and additional lemmas (Sections C and D), additional sim-

ulation results (Section E) and data processing details (Section F).

A Federated learning algorithm to obtain the target-only

estimator

In this section, we present the federated algorithm we use to obtain population-specific

estimator.

Algorithm A.1: Federated algorithm for population-specific learning

Input : Data from the k-th population{X(m,k),y(m,k)}Mm=1.

Initial value ŵ
(k)
0 . Note that if k = 0, ŵ

(k)
0 = β̂0.

Output: ŵ
(k)
T

for t = 1, . . . , T do

Threshold w̌
(k)
t−1 = H√

N(k)(ŵ
(k)
t−1).

for m = 1, . . . ,M do

Transmit ∇L(m,k)(w̌
(k)
t−1) and ∇2L(m,k)(w̌

(k)
t−1) to the leading site.

end

Compute the combined first-order information ∇L(0)(β̌t−1), ∇L(k)(w̌
(k)
t−1)

according to (2.4).

ŵt = argmin
b∈Rp

{
R̂(k)(b; β̌t−1) + λβ∥b∥1

}
.

end

The algorithm is used to obtain the target-only, source-only estimators. To obtain the

combined estimator which is fitted using all data, we also apply this algorithm treating data
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from the source and target population indistinctly.

B Leveraging local Hessian under design homogeneity

When the distribution of x in the k-th population is the same across sites, we introduce a

modified version of Algorithm 1 in the main paper which only requires each participating

site sharing only the gradients. This method generalizes the surrogate likelihood approach

proposed by Wang et al. (2017); Jordan et al. (2018) to the transfer learning framework

and it enjoys communication efficiency. The idea of this algorithm is to use the local data

to approximate the Hessian matrices across multiple sites. We require that the leading

site (the m∗-th site) has data from all the (K + 1) populations. We will use the empirical

Hessian matrix obtained at the leading site to the approximate of the global Hessian in

each population. For k = 0, . . . ,K, denote

R(local,k)(b; b̊) =
1

2
(b− b̊)⊺Ĥ(m∗,k)(̊b)(b− b̊) + ⟨b− b̊,∇L(k)(̊b)⟩, where

where

Ĥ(m∗,k)(̊b) =
1

n(m∗,k)
∇2L(m∗,k)(̊b)

is the empirical Hessian for the k-th population at b′ based on the samples in the leading

site.

Algorithm B.1: Federated transfer learning leveraging local Hessian

Input : Target population{X(m,0),y(m,0)}Mm=1 and source populations

{{X(m,k),y(m,k)}Mm=1}Kk=1.

Initial values β̂0, {ŵ(k)
0 }Kk=1.

Output: β̂T

for t = 1, . . . , T do

Threshold w̌
(k)
t−1 = Hcn(ŵ

(k)
t−1) and β̌t−1 = Hcn(β̂t−1).

for m = 1, . . . ,M do

Transmit ∇L(m,0)(β̌t−1) and {∇L(m,k)(w̌
(k)
t−1)}Kk=1 to the leading site.

end

Compute the combined first-order information ∇L(0)(β̌t−1), ∇L(k)(w̌
(k)
t−1)

according to (2.4).

In (2.5), (2.6), and (2.7) of Algorithm 1, we replace R̂(k)(b; b′) with

R̂(local,k)(b; b′) and replace λ(k), λδ, λβ with λ
(k)
t , λ

(k)
δ,t , λβ,t, respectively.

end

Without sharing the Hessian matrices, Algorithm B.1 largely reduces the communication

cost. However, one limitation is that it requires the distribution f(xi) in the k-th population
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are homogeneous across sites for any fixed k. Second, its reliable performance requires the

existence of a single site that has relatively large samples from all K + 1 populations.

Otherwise, the local Hessian approximation can be inaccurate and lead to large estimation

errors. In practice, however, such a desirable local site may not always exist. We provide

a theoretical comparison in Section 3 showing that larger T might be needed in Algorithm

B.1 to achieve the same estimation accuracy compared to 1.

B.1 Convergence rate of Algorithm B.1

In this section, we provide theoretical guarantees for Algorithm B.1, which leverages local

Hessian and only transmits first-order information across sites. As we discussed before, it

relies on the homogeneity assumption on the distribution of x(m,k) for m = 1, . . . ,M at

each given k. In the next theorem, we analyze the error contraction behavior of Algorithm

B.1.

Theorem B.1 (Error contraction of Algorithm B.1). Assume Conditions 1, 2, Condition

D.1 and true parameters are in Θ(s, h). Assume that h ≤ s, min1≤k≤K n(m
∗,k) ≥ n(m

∗,0),

max0≤k≤K s2 log p/n(m
∗,k) = o(1). Suppose that event E′

0 in (D.1) holds and tuning param-

eters satisfy (D.2). Then with probability at least 1− exp(−c1 log p), it holds that

∥β̂T − β∥22 ≲
s log p

N
+
h log p

N (0)
+
(

max
1≤k≤K

s(λ
(k)
0 )2 + ∥β̂(0)

0 − β∥22
)
(
s2 log p

n(m∗,0)
)T .

Theorem B.1 provides the error contraction analysis of Algorithm B.1. The event E′
0

in (D.1) assumes the consistency of initial estimators and specifies the tuning parameters.

In fact, the tuning parameters of Algorithm B.1 depend on the convergence rates of initial

estimators and hence depend on the unknown s and h. In the single-task first-order method

with ℓ1-regularization (Section 3.2 in Jordan et al. (2018)), the tuning parameters also

depend on unknown parameters. In practice, specifying these tuning parameters can be

challenging and the practical performance can be less accurate without proper tuning.

In the following two corollaries, we provide convergence rate analysis of Algorithm B.1

under two initializations proposed in Section 2.3.

Corollary B.1 (Convergence rate of Algorithm B.1 with single-site initialization). Assume

Conditions 1, 2, and Condition D.1. Assume that h ≤ s, min1≤k≤K n(m
∗,k) ≥ n(m

∗,0),

max0≤k≤K s2 log p/n(m
∗,k) = o(1). Suppose that tuning parameters satisfy (D.2). Then

with probability at least 1− exp(−c1 log p), it holds that for any finite T ≥ 1,

∥β̂T − β∥22 ≲
s log p

N
+
h log p

N (0)
+

(
s log p

min1≤k≤K n(m∗,k)
+
h log p

n(m∗,0)

)
(
s2 log p

n(m∗,0)
)T .
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For β̂T obtained from Algorithm B.1, we see that it requires O(lnN/ lnn(m
∗,0)) itera-

tions to achieve the minimax optimal rate. We now compare the theoretical performance

of Algorithm 1 and Algorithm B.1 with single-site initialization. In comparison to the

upper bound derived in Corollary 1, we see that the convergence rate of Algorithm 1 is

always no worse than the rate of Algorithm B.1 for any given T . Hence, to reach com-

parable performance, the local Hessian algorithm requires more iterations and hence more

rounds of communication. This implies that transmitting Hessian matrices not only allows

heterogeneous covariates but can accelerate the convergence of federated estimators.

Corollary B.2 (Convergence rate of Algorithm B.1 with multi-site initialization). Assume

Conditions 1, 2, and Condition D.1. Assume that h ≤ s, min1≤k≤K n(m
∗,k) ≥ n(m

∗,0),

max0≤k≤K s2 log p/n(m
∗,k) = o(1). Suppose that tuning parameters satisfy (D.2). Then

with probability at least 1− exp(−c1 log p), it holds that

∥β̂T − β∥22 ≲
s log p

N
+
h log p

N (0)
+

s log p

min0≤k≤K n(Ik,k)
(
s2 log p

n(m∗,0)
)T .

In Corollary B.2, we provide the convergence rate of Algorithm B.1 with multi-site

initialization. In comparison to Corollary 2, the local Hessian algorithm has slower conver-

gence rate at any given T . It requires O(lnN/ lnn(m
∗,0)) iterations to achieve the minimax

optimal rate.

C Proofs of theorems and lemmas in Section 3

We then prove the theorems and lemmas in the main paper.

Notations. Let w(0) = β and ŵ
(0)
t = β̂t. Let û

(k)
t = ŵ

(k)
t −w(k), v̂

(k)
t = δ̂

(k)
t − δ(k).

For a, b ∈ Rp, define

∆(m,k)(a, b) = L(m,k)(a)− L(m,k)(b)− ⟨a− b,∇L(m,k)(b)⟩.

We say that the restricted strong convexity (RSC) holds for ∆(k) at b if

∆(k)(a, b) ≥ nkc1∥a− b∥22 − log p∥a− b∥21. (C.1)

For simplicity, let Ĥ
(k)
t = Ĥ(k)(w̌

(k)
t−1) and Ĥ

(0)
t = Ĥ(0)(β̌t−1).

C.1 Proof of Lemma 1

Proof of Lemma 1. Step (i). Under the conditions of Lemma 1, it is easy to show that

∥ŵ(k) −w∥22 ≤
(s+ h) log p

N (k)
, ∥ŵ(k) −w∥1 ≤ (s+ h)

√
log p

N (k)
, k = 1, . . . ,K (C.2)
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with probability at least 1− exp(−c1 log p).
Step (ii). Next, we show that for k = 1, . . . ,K,

∥δ̌(k) − δ(k)∥22 ≲
h log p

N (0)
. (C.3)

The oracle inequality for δ̂(k) is

1

N (0)
L(0)(ŵ(k) + δ̂(k))− 1

N (0)
L(0)(ŵ(k) + δ(k))− 1

N (0)
|⟨v̂(k),∇L(0)(β)⟩|

≤ 1

N (0)
|⟨v̂(k),∇L(0)(β)⟩|+ λδ∥δ(k)∥1 − λδ∥δ̂(k)∥1. (C.4)

Notice that

LHS of (C.4) =
1

N (0)
∆(0)(w(k) + δ̂(k),β) +Q(ŵ(k))−Q(w(k)),

where

Q(b) =
1

N (0)
L(0)(b+ δ̂(k))− 1

N (0)
L(0)(b+ δ(k)).

By Taylor’s expansion and the boundedness of ψ̈(·), for some constant ρ1 ∈ [0, 1],

|Q(ŵ(k))−Q(w(k))| = |⟨û(k),∇Q(w(k) + ρ1û
(k))⟩|

= |⟨û(k),
1

N (0)
∇L(0)(w(k) + ρ1û

(k) + δ̂(k))− 1

N (0)
∇L(0)(w(k) + ρ1û

(k) + δ(k))⟩|

≤ C

N (0)

∑
i∈N (0)

|x⊺
i û

(k)||x⊺
i v̂

(k)| ≤ C∥v̂(k)∥1∥X(0)∥∞,∞
1

N (0)

∑
i∈N (0)

|x⊺
i û

(k)|.

As û(k) is independent of X(0), conditioning on û(k), x⊺
i û

(k) are independent sub-Gaussian

with sub-Gaussian norm no larger than ∥û(k)∥2. Hence, with probability at least 1 −
exp(−c1N (0)),

|Q(ŵ(k))−Q(w(k))| ≤ C∥v̂(k)∥1

√
∥û(k)∥22
N (0)

= o(1)∥v̂(k)∥1λδ.

given that max1≤k≤K ∥û(k)∥2 = O(1).

We arrive at the following oracle inequality

1

N (0)
∆(0)(w(k) + δ̂(k),β) ≤ λδ

2
∥v̂(k)∥1 + λδ∥δ(k)∥1 − λδ∥δ̂(k)∥1.

Standard analysis gives that with probability at least 1− exp(−c1 log p),

∥δ̂(k) − δ(k)∥22 ≲
h log p

N (0)
.
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By Lemma 17 in Yuan et al. (2018) and the condition h ≲
√
N (0)/ log p, the proof for (C.3)

is complete.

Step (iii). To ease our notation, define δ̌(0) = δ(0) = 0. Finally, the oracle inequality for

β̂ is

1

N

K∑
k=0

∆(k)(β̂ + δ̌(k),β + δ̌(k)) ≤ 1

N
|⟨û(0),

K∑
k=0

∇L(k)(w(k) + v̌(k))⟩|+ λβ∥β∥1 − λβ∥β̂∥1.

(C.5)

Under the RSC of ∆(k)(β̂ + δ̌(k),β + δ̌(k)), we have

LHS of (C.5) ≥ c1∥β̂ − β∥22 − c2∥β̂ − β∥21
K log p

N
.

For RHS of (C.5),

1

N
|⟨û(0),

K∑
k=0

∇L(k)(w(k) + v̌(k))⟩| ≤ 1

N
|⟨û(0),

K∑
k=0

∇L(k)(w(k))⟩|

+
1

N
|⟨û(0),

K∑
k=0

∇L(k)(w(k) + v̌(k))−
K∑
k=0

∇L(k)(w(k))⟩|

≤ ∥û(0)∥1
1

N
∥

K∑
k=0

∇L(k)(w(k))∥∞ +
1

N
|⟨û(0),

K∑
k=0

∇2L(k)(w(k))v̌(k)⟩|

+
C

N

K∑
k=1

∑
i∈N (k)

ψ̈(x⊺
iw

(k))|x⊺
i v̌

(k)|2|x⊺
i û

(0)|,

where the last step is due to max1≤k≤K maxi∈N (k) |x⊺
i v̌

(k)| = O(h
√
log p/N (0)) = o(1) and

Condition 2.

For the second term, using the sub-exponential property of Ĥ(k)(w(k)), we have

1

N
|⟨û(0),

K∑
k=1

∇2L(k)(w(k))v̌(k)⟩| ≤ 1

N
|⟨û(0),

K∑
k=1

N (k)

N
H(k)(w(k))v̌(k)⟩|

+
1

N
|⟨û(0),

K∑
k=1

N (k)

N
{Ĥ(k)(w(k))−H(k)(w(k))}v̌(k)⟩|

≤ c1∥û(0)∥22 +
1

c1

K∑
k=1

N (k)

N
∥v̌(k)∥22 + ∥û(0)∥1

K∑
k=1

√
N (k) log p

N
∥v̌(k)∥1

≤ ∥û(0)∥22 +
1

c1

K∑
k=1

N (k)

N
∥v̌(k)∥22 + c2∥û(0)∥1

√
log p

N
,
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where the last step is due to max1≤k≤K ∥v̌(k)∥1 = o(1) and K is finite.

For the last term, using the upper restricted eigenvalue condition on
∑

i∈N(k) xix
⊺
i /N

(k)

and max1≤k≤K ∥v̌(k)∥0 ≤ C
√
N (0)/ log p, we have for

√
N (0) log p = o(min1≤k≤K N (k)),

1

N

K∑
k=1

∑
i∈N (k)

ψ̈(x⊺
iw

(k))|x⊺
i v̌

(k)|2|x⊺
i û

(0)| ≤ ∥û(0)∥1
K∑
i=1

N (k)

N
∥v̌(k)∥22.

To summarize, for

λβ ≥ C1

√
log p

N
+ C2

K∑
i=1

N (k)

N
∥v̌(k)∥22,

we have

c1∥β̂ − β∥22 ≤
3λβ
2

∥û(0)
S ∥1 −

λβ
2
∥û(0)

Sc ∥1 +
K∑
k=0

N (k)

N
∥v̌(k)∥22.

As ∥v̌(k)∥0 = O(
√
N (0)/ log p), we have ∥v̌(k)∥0 log p/N (k) = o(1) and 1

N

∑K
k=0 ∥X(k)v̌(k)∥22 ≤

C
∑K

k=1
N(k)

N ∥v̌(k)∥22. Standard analysis lead to

∥β̂ − β∥22 ≤ sλ2β + C

K∑
k=1

N (k)

N
∥v̌(k)∥22

with probability at least 1− exp(−c1 log p). Notice that it suffices to take

λβ ≥ c1

√
log p

N
+
h log p

N (0)
.

We arrive at

∥β̂ − β∥22 ≤
s log p

N
+
h log p

N (0)
(1 +

sh log p

N (0)
).

As we assume sh log p = O(N (0)), the upper bound is established.

We are left to prove the RSC of ∆(k)(β̂ + δ̌(k),β + δ̌(k)), k = 1, . . . ,K. Notice that

∆(k)(β̂ + δ̌(k),β + δ̌(k))−∆(k)(β̂ + δ(k),w(k))

=
1

N (k)

∫ 1

0
û⊺[Ĥ(k)(β + δ̌(k) + tû)− Ĥ(k)(w(k) + tû)]û(1− t)2dt.

As max1≤k≤K maxi∈N (k) |x⊺
i v̌

(k)| = oP (1), it is easy to show that

∆(k)(β̂ + δ̌(k),β + δ̌(k)) ≥ ∆(k)(β̂ + δ(k),w(k))− oP (1)

and the RSC for the RHS follows from standard arguments.
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C.2 Proof of Theorem 3.1

Lemma C.1. Assume that xi ∈ Rp, i = 1, . . . , N are independent sub-Gaussian random

vectors with mean zero. Given that ∥u∥0 ≤ sn for some (sn ∨ log p)2 ≤ cN ,

P

(
N∑
i=1

(x⊺
iu)

4 ≤ CN∥u∥42

)
≥ 1− exp{−c log p}.

Proof of Lemma C.1. We use the concentration inequalities in Kuchibhotla and Chakrabortty

(2018). By the sub-Gaussian property of xi, (x
⊺
iu)

4 is sub-Weibull(α) with 1/2. Let T be

a fixed set with cardinality sn. There are at most

(
p

sn

)
≤ C exp{

√
sn log p} possible sets.

Hence,

P

(
sup

∥u∥2=1,∥u∥0≤sn

N∑
i=1

(xiu)
4 ≥ t

)
≤ exp{

√
sn log p}max

T
P

(
sup

∥u∥2=1,supp(u)=T

N∑
i=1

(xiu)
4 ≥ t

)
.

(C.6)

For a fixed T , we consider an ϵ-net of {∥u∥2 = 1, supp(u) = T } such that for any

u ∈ {∥u∥2 = 1, supp(u) = T }, there is a vector v ∈ N (T , ϵ) with ∥u − v∥2 ≤ ϵ for some

constant ϵ > 0. Hence,

|
N∑
i=1

(x⊺
iu)

4 −
N∑
i=1

(x⊺
i v)

4|

≤ |
N∑
i=1

{xi(u− v)}4|+ 4|
N∑
i=1

{xi(u− v)}3{xiv}|+ 6|
N∑
i=1

{xi(u− v)}2{xiv}2|

+ 4|
N∑
i=1

{xi(u− v)}{xiv}3|.

Notice that (u− v)/ϵ ∈ {b : ∥b∥2 = 1, supp(b) = T } and hence,

|
N∑
i=1

(x⊺
iu)

4 −
N∑
i=1

(x⊺
i v)

4| ≤ (4ϵ+ 6ϵ2 + 4ϵ3 + ϵ4) sup
∥u∥2=1,supp(u)=T

N∑
i=1

(x⊺
iu)

4.

For small enough constant ϵ, we have

sup
∥u∥2=1,supp(u)=T

N∑
i=1

(x⊺
iu)

4 ≤ max
v∈N (T ,ϵ)

N∑
i=1

(x⊺
i v)

4 +
1

2
sup

∥u∥2=1,supp(u)=T

N∑
i=1

(x⊺
iu)

4.
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Hence,

max
T

P

(
sup

∥u∥2=1,supp(u)=T

N∑
i=1

((xiu)
4 ≥ t

)
≤ max

T
P

(
max

v∈N (T ,ϵ)

N∑
i=1

((x⊺
i v)

4 ≥ t

)

≤ |N (T , ϵ)|max
T

max
v∈N (T ,ϵ)

P

(
N∑
i=1

((x⊺
i v)

4 ≥ t

)
.

As (x⊺
i v)

4 are sub-Weibull (α) with α = 1/2,

P

(
N∑
i=1

((x⊺
i v)

4 ≥ N +
√
Nt+ t2

)
≤ exp{−t}.

Using the fact that |N (T , ϵ)| ≤ exp{sn} and (C.6), we have

P

 sup

∥u∥2=1,∥u∥0≤
√

N
(0)
1 / log p

N∑
i=1

(x⊺
iu)

4 ≥ N +
√
Nt+ t2

 ≤ exp{
√
sn log p+ sn − t}. (C.7)

Taking t = sn ∨ log p, we arrive at desired results.

For t = 1, . . . , T , define

Et =

{
max

1≤k≤K
∥ǔ(k)

t−1∥1 = o(1), λ(k) ≥ 2

N (k)
∥∇L(k)(w(k))∥∞, k = 1, . . . ,K,

RSC holds for Ĥ
(k)
t

}
∩ {events in Lemma C.1 hold}, (C.8)

Lemma C.2 (Convergence rate of ŵ
(k)
t ). Assume Conditions 1 and 2 holds and s log p/N (k) =

o(1) for k = 1, . . . ,K. We take λ(k) = c
√

log p/N (k). Then (i) in event Et,

∥û(k)
t ∥22 ≲ (s+ h)(λ(k))2 + ∥û(k)

t−1∥
4
2.

(ii) In event E0 defined in (C.16), then with probability at least 1− exp(−c1 log p) that

∥û(k)
t ∥22 ≲ (s+ h)(λ(k))2 + ∥û(k)

0 ∥4t2 , k = 1, . . . ,K.

Proof of Lemma C.2. The oracle inequality for ŵ
(k)
t is

R̂(k)(ŵ
(k)
t ; w̌

(k)
t−1) + λ(k)∥ŵ(k)

t ∥1 ≤ R̂(k)(w(k); w̌
(k)
t−1) + λ(k)∥w(k)∥1.

It implies that

1

2
⟨û(k)

t , Ĥ
(k)
t û

(k)
t ⟩ ≤ 1

N (k)
|⟨û(k)

t ,∇L(w̌(k)
t−1)− Ĥ

(k)
t ǔ

(k)
t−1⟩|+ λ(k)∥w(k)∥1 − λ(k)∥ŵ(k)

t ∥1

≤ λ(k)

2
∥û(k)

t ∥1 + λ(k)∥w(k)∥1 − λ(k)∥ŵ(k)
t ∥1 + |⟨û(k)

t ,
1

N (k)
(∇L(w̌(k)

t−1)−∇L(w(k)))− Ĥ
(k)
t ǔ

(k)
t−1⟩|,

(C.9)
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where the last step is due to the second statement in Et.

For the RHS of (C.9), note that supp(w(k)) ⊆ S ∪Hk.

RHS of (C.9) ≤ 3λ(k)

2
∥{û(k)

t }S∪Hk
∥1 −

λ(k)

2
∥{û(k)

t }{S∪Hk}c∥1

+ ⟨û(k)
t , {Ĥ(k)(w(k) + ρ1ǔ

(k)
t−1)− Ĥ(w(k))}ǔ(k)

t−1⟩

≤ 3λ(k)

2
∥{û(k)

t }S∪Hk
∥1 −

λ(k)

2
∥{û(k)

t }{S∪Hk}c∥1 +
1

N (k)

∑
i∈N (k)

ψ̈(x⊺
i w̌

(k)
t−1)|x

⊺
i û

(k)
t |{x⊺

i ǔ
(k)
t−1}

2,

where the last line is due to Condition 2 and ∥X(k)∥∞,∞∥ǔ(k)
t−1∥1 = o(1) in Et.

Using the Cauchy-Schwartz on the last term and combining with the LHS of (C.9), we

have for some small enough positive constant c1,

c1⟨û(k)
t , Ĥ

(k)
t û

(k)
t ⟩ ≤ 3λ(k)

2
∥{û(k)

t }S∪Hk
∥1 −

λ(k)

2
∥{û(k)

t }{S∪Hk}c∥1 +
c2

N (k)

∑
i∈N (k)

ψ̈(x⊺
i w̌

(k)
t−1){x

⊺
i ǔ

(k)
t−1}

4.

(i) If 3λ(k)

2 ∥{û(k)
t }S∪Hk

∥1 ≥ c2/N
(k)
∑

i∈N (k) ψ̈(x
⊺
i w̌

(k)
t−1){x

⊺
i ǔ

(k)
t−1}4, then we arrive at

c1⟨û(k)
t , Ĥ

(k)
t û

(k)
t ⟩ ≤ 3λ(k)∥{û(k)

t }S∪Hk
∥1 −

λ(k)

2
∥{û(k)

t }{S∪Hk}c∥1.

Under the RSC condition of Ĥ
(k)
t in Et, we arrive at for (s+ h)(λ(k))2 = o(1),

⟨û(k)
t , Ĥ

(k)
t û

(k)
t ⟩ ∨ ∥û(k)

t ∥22 ≤ C(s+ h)(λ(k))2. (C.10)

(ii) If 3λ(k)

2 ∥{û(k)
t }S∪Hk

∥1 ≤ c2/N
(k)
∑

i∈N (k) ψ̈(x
⊺
i w̌

(k)
t−1){x

⊺
i ǔ

(k)
t−1}4, we leverage Lemma

C.1 and the sparsity of ǔ
(k)
t−1. Specifically,

∥ǔ(k)
t−1∥0 ≤ cn + (s+ h) ≪

√
N (k).

Hence, we arrive at

1

N (k)

∑
i∈N (k)

ψ̈(x⊺
i w̌

(k)
t−1)|{x

⊺
i ǔ

(k)
t−1}

4 ≤ ∥ǔ(k)
t−1∥

4
2.

As ∥ǔ(k)
t−1∥42 = o(1), we have

⟨û(k)
t , Ĥ

(k)
t û

(k)
t ⟩ ∨ ∥û(k)

t ∥22 ≲ ∥ǔ(k)
t−1∥

4
2. (C.11)

Combining the arguments in (i) and (ii), we have in Et,

∥û(k)
t ∥22 ≲ (s+ h)(λ(k))2 + ∥ǔ(k)

t−1∥
4
2.

10



Since cn ≥ s+ h, by Lemma 17 in Yuan et al. (2018), we have

∥ǔ(k)
t ∥22 ≲ ∥û(k)

t ∥22.

Hence the result in (i) is proved.

It is left to verify that P(∩⊺
t=1Et) ≥ P(E0)− exp(−c0 log p) for any finite T with E0 de-

fined in (C.16). By our assumptions, it is easy to verify that P(E1) ≥ P(E0)−exp(−c0 log p).

P(E1 ∩ E2) ≥ P(E1)− P(∥ǔ(k)
1 ∥1 > c1|E1)

≥ P(E1)− exp(−c1 log p)

given that

sλ(k) +
√
s2(λ(k))2 + s∥ǔ0∥42 ≤ c1.

As sλ(k) = O(1), it is easy to show that P(E1 ∩ E2) ≥ P (E0)− exp(−c0 log p). The rest of

proofs follow by induction.

For t = 1, . . . , T , define

Gt =

{
max

0≤k≤K
∥ǔ(k)

t−1∥1 = o(1), λ(k) ≥ 2

N (k)
∥∇L(k)(w(k))∥∞, k = 1, . . . ,K, λδ ≥

2

N (0)
∥∇L(0)(β)∥∞,

λβ ≥ 2

N
∥∇L(0)(β) +

K∑
k=1

∇L(k)(w(k))∥∞,

RSC holds for Ĥ
(k)
t and Ĥ

(0)
t

}
∩ {events in Lemma C.1 hold}, (C.12)

Lemma C.3 (Convergence rate of δ̂
(k)
t ). Assume Conditions 1 and 2 holds. We take

λδ = c
√
log p/N (0). Then in event Gt,

∥v̌(k)
t ∥22 ≲ hλ2δ + ∥û(0)

t−1∥
4
2.

Proof of Lemma C.3. By the optimality of δ̂
(k)
t ,

1

2
(v̂

(k)
t )⊺Ĥ

(0)
t v̂

(k)
t ≤ |⟨v̂(k)

t ,
1

N (0)
∇L(0)(β̌t−1)− Ĥ(0)(β̌t−1)(ŵ

(k)
t − δ(k) − β̌t−1)⟩|

+ λδ∥δ(k)∥1 − λδ∥δ̂
(k)
t ∥1

=⇒ 1

2
⟨v̂(k)

t , Ĥ
(0)
t v̂

(k)
t ⟩ ≤ |⟨v̂(k)

t ,
1

N (0)
∇L(0)(β)⟩|+ λδ∥δ(k)∥1 − λδ∥δ̂

(k)
t ∥1

+ |(v̂(k)
t )⊺{∇L(0)(β̌t−1)−∇L(0)(β)− Ĥ

(0)
t (ŵ

(k)
t − δ(k) − β̌t−1)}|︸ ︷︷ ︸

Ft

. (C.13)

In event Gt,

RHS of (C.13) ≤ Ft +
λδ
4
∥v̂(k)

t ∥1 + λδ∥δ(k)∥1 − λδ∥δ̂
(k)
t ∥1,

11



where for some ρ ∈ [0, 1],

Ft ≤ |(v̂(k)
t )⊺{Ĥ(0)(ρβ̌t−1 + (1− ρ)β)(β̌t−1 − β)− Ĥ(0)(β̌t−1)(ŵ

(k)
t − δ(k) − β̌t−1)}|

≤ |(v̂(k)
t )⊺Ĥ(0)(β̌t−1)û

(k)
t |︸ ︷︷ ︸

F1,t

+ |(v̂(k)
t )⊺{Ĥ(0)(ρβ̌t−1 + (1− ρ)β)− Ĥ(0)(β̌t−1)}(β̌t−1 − β)|︸ ︷︷ ︸

F2,t

.

For F1,t, we use the independence of û
(k)
t and X(0) to arrive at

F1,t ≤ ∥v̂(k)
t ∥1

1

N (0)

∑
i∈N (0)

|x⊺
i û

(k)| ≤ C

√
∥û(k)

t ∥22
N0

= o(1)∥v̂(k)
t ∥1λδ

with probability at least 1− exp(−c1N0) as long as ∥û(k)
t ∥2 = o(1).

For F2,t, we use the Lipschitz property of ψ̈ and maxi∈N (0) |x⊺
i ǔ

(0)
t−1| ≤ C in Gt such that

F2,t ≤
1

N (0)

∑
i∈N (0)

ψ̈(x⊺
i β̌t−1)|x⊺

i v̂
(k)
t |{x⊺

i ǔ
(0)
t−1}

2

≤ ⟨v̌(k)
t , Ĥ

(0)
t v̌

(k)
t ⟩1/2

√
1

N (0)
∥X(0)ǔ

(0)
t−1∥44.

Notice that

∥ǔ(0)
t−1∥0 ≤ cn + s ≤ Cs≪

√
N (0).

Using Young’s inequality and Lemma C.1, we have

F2,t ≤ c1⟨v̌(k)
t−1, Ĥ

(0)
t ǔ

(k)
t−1⟩+ c2∥ǔ(0)

t−1∥
4
4.

Using the RSC condition of Ĥ
(0)
t in Gt, we have the following oracle inequality

∥v(k)
t ∥22 ≤ c1∥ǔ(0)

t−1∥
4
2 + ∥δ(k)∥λδ − ∥δ̂(k)t ∥λδ. (C.14)

Using the sparsity of δ(k), h log p = o(
√
N (0)), it is easy to show that

∥v̂t∥22 ≤ hλ2δ + c1∥ǔ(0)
t−1∥

4
2.

As β̌t−1 = Hcs(β̂t−1), we arrive at

∥v̌t∥22 ≤ hλ2δ + c1∥û(0)
t−1∥

4
2.
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Proof of Theorem 3.1. Oracle inequality:

R̂(0)(β̂t; β̌t−1) +
K∑
k=1

R̂(k)(β̂t + δ̌
(k)
t ; w̌

(k)
t−1) + λβ∥β̂t∥1

≤ R̂(0)(β; β̌t−1) +

K∑
k=1

R̂(k)(β + δ̌
(k)
t ; w̌

(k)
t−1) + λβ∥β∥1.

Reorganizing the terms, we arrive at

1

2
(β̂t − β)⊺{

K∑
k=0

N (k)

N
Ĥ

(k)
t }(β̂t − β)

≤
∣∣⟨β̂t − β,

1

N

K∑
k=0

∇L(k)(w̌
(k)
t−1)−

K∑
k=1

N (k)

N
Ĥ

(k)
t {β + δ̌

(k)
t − w̌

(k)
t−1}⟩

∣∣
︸ ︷︷ ︸

Ut

+λβ∥β∥1 − λβ∥β̂t∥1.

For Ut, we have

Ut ≤
∣∣⟨β̂t − β,

1

N

K∑
k=0

∇L(k)(w̌
(k)
t−1)−N (k)Ĥ

(k)
t {w(k) − w̌

(k)
t−1}⟩

∣∣+ ∣∣⟨β̂t − β,
K∑
k=1

N (k)

N
Ĥ

(k)
t {δ̌(k)t − δ(k)}⟩

∣∣
≤
∣∣⟨β̂t − β,

1

N

K∑
k=0

∇L(k)(w(k))⟩
∣∣+ ∣∣⟨β̂t − β,

K∑
k=1

N (k)

N
Ĥ

(k)
t {δ̌(k)t − δ(k)}⟩

∣∣
+
∣∣⟨β̂t − β,

1

N

K∑
k=0

∇L(k)(w̌
(k)
t−1)−∇L(k)(w(k))−N (k)Ĥ

(k)
t {w(k) − w̌

(k)
t−1}⟩

∣∣
≤ ∥β̂t − β∥1

λβ
2

+
∣∣⟨β̂t − β,

K∑
k=1

N (k)

N
Ĥ

(k)
t v̌

(k)
t ⟩
∣∣+ 1

N


K∑
k=0

∑
i∈N (k)

ψ̈(x⊺
i w̌

(k)
t−1)|x

⊺
i (β̂t − β)||x⊺

i ǔ
(k)
t−1|

2

 ,

where we use the Lipschitz condition and the first statement of Gt in the last step. Using

Cauchy-Schwartz on the last two terms, we have

c1(β̂t − β)⊺{
K∑
k=0

N (k)

N
Ĥ

(k)
t }(β̂t − β) ≤ ∥β̂t − β∥1

λβ
2

+ λβ∥β∥1 − λβ∥β̂t∥1

+ 4

K∑
k=1

N (k)

N
(v̌

(k)
t )⊺Ĥ

(k)
t v̌

(k)
t + c1

1

N

K∑
k=0

∑
i∈N (k)

ψ̈(x⊺
i w̌

(k)
t−1)|x

⊺
i ǔ

(k)
t−1|

4

By Lemma C.1 and the RSC condition on Ĥ
(k)
t , we have

c1∥β̂t − β∥22 ≤ ∥β̂t − β∥1
λβ
2

+ λβ∥β∥1 − λβ∥β̂t∥1 + C

K∑
k=1

Nk

N
∥v̌(k)

t ∥22

+ C

K∑
k=0

Nk

N
∥ǔ(k)

t−1∥
4
2.

13



By Lemma C.3, we have for N ≥ KN (0),

K∑
k=1

Nk

N
∥v̌(k)

t ∥22 ≤
K∑
k=1

Nk

N
{hλ2δ + ∥û(0)

t−1∥
4
2}

≤ h log p

N (0)
+ ∥û(0)

t−1∥
4
2.

Since K is finite, we arrive at

c1∥β̂t − β∥22 ≤ sλ2β +
h log p

N (0)
+ ∥β̂t−1 − β∥42. (C.15)

By Lemma 17 in Yuan et al. (2018), since cn ≥ s,

∥β̌t − β∥22 ≤ (1 + o(1))∥β̂t − β∥22.

This shows that in event Gt, the results of Theorem 3.1 holds.

Finally, we show that P(∩⊺
t=1Gt) ≥ P(E0)− exp(−c1 log p) for any fixed T . First notice

that RSC conditions in each Gt is guaranteed by the first statement in Gt with probability

at least 1− exp(−c1 log p). Specifically, for T = 1,

P(G1) ≥ 1− exp(−c1 log p)− P( max
0≤k≤K

∥ǔ(k)
0 ∥1 ≥ c1) ≥ P(E0)− exp(−c1 log p)

by assumption. For T = 2,

P(G1 ∩G2) ≥ P(G1)− P( max
0≤k≤K

∥ǔ(k)
1 ∥1 ≥ c1|G1).

By the thresholding step, we have

∥ǔ(k)
t ∥1 ≤ ∥ǔ(k)

t ∥1/20 ∥ǔ(k)
t ∥2 ≤ ∥ǔ(k)

t ∥1/20 ∥û(k)
t ∥2.

For t = 1,

max
1≤k≤K

∥ǔ(k)
1 ∥1 ≤ max

1≤k≤K
∥ǔ(k)

1 ∥1/20 ∥û(k)
1 ∥2

≤ max
1≤k≤K

√
{s+ h+ cn}{

(s+ h) log p

N (k)
+ ∥ǔ(k)

0 ∥42} = o(1)

given that cn ≥ s+ h and

(s+ h)
√

log p/N (k) = o(1) and max
1≤k≤K

{s+ cn}∥ǔ(k)
0 ∥42 = o(1).

For t = 1 and k = 0,

∥ǔ(0)
1 ∥1 ≤

√
{s+ cn}{

s log p

N
+ h

log p

N (0)
+ max

0≤k≤K
∥ǔ(k)

0 ∥42} = o(1)

14



given that

sh log p = o(N (0)) and {s+ cn}∥ǔ(0)
0 ∥42 = o(1).

To summarize, we define an event

E0 =

{
max

0≤k≤K
s∥û(k)

0 ∥22 ≤ c1, max
0≤k≤K

s∥û(k)
0 ∥42 = o(1)

}
. (C.16)

The proof is complete when event E0 holds.

C.3 Proofs of Corollaries 1 and 2

Let w̌
(k)
0 = Hcn(ŵ

(k)
0 ) for ŵ0 defined via (3.2).

Proof of Corollary 1. Under the conditions of Corollary 1, it is easy to show that

∥û(0)
0 ∥22 ≲

s log p

N (m∗)
+
h log p

n(m∗,0)

∥û(k)
0 ∥22 ≲ max

1≤k≤K

s log p

n(m∗,k)
.

Hence, E0 holds as long as

max
1≤k≤K

s2 log p

n(m∗,k)
+
h log p

n(m∗,0)
= o(1).

For prediction error, note that

Ex∗ [{x⊺∗(β̌t − β)}2] ≤ Λmax(E[x∗x⊺∗])∥β̌t − β∥22.

As Λmax(E[x∗x⊺∗]) is upper bounded by a constant, the proof is complete now.

Proof of Corollary 2. Under the conditions of Corollary 2, it is easy to show that

max
0≤k≤K

∥ǔ(k)
0 ∥22 ≲ max

0≤k≤K

s log p

n(Ik,k)
.

Hence, E0 holds as long as

max
0≤k≤K

s2 log p

n(Ik,k)
= o(1).
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Proof of Remark 4.

P(sgn(x⊺∗β̂T ) ̸= sgn(x⊺∗β
∗)) ≤ P(|x⊺∗β| ≤ ϵ) + P(|x⊺∗β| ≥ ϵ, sgn(x⊺∗β̂T ) ̸= sgn(x⊺∗β))

≤ P(|x⊺∗β| ≤ ϵ) + P(|x⊺∗(β̂T − β)| ≥ ϵ).

Conditioning on β̂T , x
⊺
∗(β̂T−β) is sub-Gaussian with sub-Gaussian norm C∥β̂T−β∥2.Taking

ϵ = C1

√
s log p

N
+
h log p

N (0)
+

{
s log p

N (m∗)
+
h log p

n(m∗,0)

}2T

for large enough constant C1, we arrive at desired results.

D Proofs of convergence rate of algorithm B.1

Condition D.1 (Homogeneous covariates). Assume that {xi}i∈N (m,k) and {xi}i∈N (m′,k)

are identically distributed for any 0 ≤ k ≤ K and 1 ≤ m,m′ ≤M .

D.1 Convergence rate analysis

Define an event

E′
0 =

{
max

0≤k≤K
∥ǔ(k)

0 ∥1 = o(1), ∥ǔ(k)
0 ∥2 ≤ c

√
sλ

(k)
0 = o(1), k = 1, . . . ,K, ∥β̂0 − β∥2 = o(1)

}
.

(D.1)

For the tuning parameters in Algorithm B.1, we take

λ
(k)
t ≥

√
log p

N (k)
+ st(

log p

n(m∗,k)
)t/2λ

(k)
0 , λ

(k)
δ,t ≥

√
log p

N (0)
+ ∥ǔ(0)

t−1∥2

√
s log p

n(m∗,0)
+

√
∥û(k)

t ∥22
n(m∗,0)

,

λβ,t ≥
√

log p

N
+ max

0≤k≤K

√
s log p

n(m∗,k)
∥ǔ(k)

t−1∥2. (D.2)

Theorem D.1 (Convergence rate of Algorithm B.1). Assume Conditions 1, 2, and Condi-

tion D.1. Assume that n(m
∗,1) ≥ n(m

∗,0) and N (1) ≥ N (0), s2 log p/N (m∗)+hs log p/n(m
∗,0) =

o(1). If event E′
0 in (D.1) holds, then with probability at least 1 − exp(−c1 log p), it holds

that

∥û(0)
t ∥22 ≲

s log p

N
+
h log p

N (0)
+ s2t+1(

log p

N (m∗)
)t(λ

(1)
0 )2 + s(

s log p

N (m∗)
+
h log p

n(m∗,0)
)∥û(0)

t−1∥
2
2.

By induction, we have

∥β̂T − β∥22 ≲
s log p

N
+
h log p

N (0)
+max{s(λ(1)0 )2, ∥û(0)

0 ∥22}sT (
s log p

N (m∗)
+
h log p

n(m∗,0)
)T .
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D.2 Proof of Theorem B.1

Under the conditions of Theorem B.1, with probability at least 1−exp(−c1 log p), the initial
values satisfy

∥ǔ(k)
0 ∥22 ≲

s log p

n(m∗,k)
, ∥ǔ(k)

0 ∥1 ≲ s

√
log p

n(m∗,k)
, k = 1, . . . ,K

∥ǔ(0)
0 ∥22 ≲

s log p

N (m∗)
+
h log p

n(m∗,0)
, ∥ǔ(0)

0 ∥1 ≲ s

√
log p

N (m∗)
+

√
sh log p

n(m∗,0)
.

For t = 1, . . . , T , define

Lemma D.1. Assume Conditions 1, 2, and Condition D.1. We take

λ
(k)
t ≥

√
log p

N (k)
+ (s+ h)λ

(k)
t−1

√
log p

n(m∗,k)
, k = 1, . . . ,K.

If s
√

log p/n(m∗,k) = o(1), then with

λ
(k)
t ≥

√
log p

N (k)
+ st(

log p

n(m∗,k)
)t/2λ

(k)
0 ,

it holds that

∥û(k)∥22 ∨ ∥ǔ(k)
t ∥22 ≲ (s+ h)(λ

(k)
t )2, ∥û(k)∥1 ∨ ∥ǔ(k)

t ∥1 ≲ (s+ h)λ
(k)
t

with probability at least 1− exp(−c1 log p).

Proof of Lemma D.1. It follows from (C.9) in Lemma C.2 that

1

2
⟨û(k)

t , Ĥ
(m∗,k)
t û

(k)
t ⟩ ≤ λ

(k)
t

4
∥û(k)

t ∥1 + λ
(k)
t ∥w(k)∥1 − λ

(k)
t ∥ŵ(k)

t ∥1

+ |⟨û(k)
t ,∇L(k)(w̌

(k)
t−1)−∇L(k)(w(k))− Ĥ

(m∗,k)
t ǔ

(k)
t−1⟩|. (D.3)

The last term on the RHS of (D.3) can be upper bounded by ∥û(k)
t ∥1λ(k)t for λ

(k)
t ≥

∥∇L(k)(w̌
(k)
t−1)−∇L(k)(w(k))− Ĥ

(m∗,k)
t ǔ

(k)
t−1∥∞. By (D.3), we have

1

2
⟨û(k)

t , Ĥ
(m∗,k)
t û

(k)
t ⟩ ≤ λ

(k)
t

2
∥û(k)

t ∥1 + λ
(k)
t ∥w(k)∥1 − λ

(k)
t ∥ŵ(k)

t ∥1.

We now verify the RSC for Ĥ
(m∗,k)
t given that (s+ h) log p = o(n(m

∗,k)), k = 1, . . . ,K. For

any u ∈ Rp,

u⊺Ĥ
(m∗,k)
t u ≥ u⊺Ĥ(m∗,k)(w(k))u− |u⊺{Ĥ(m∗,k)(w̌

(k)
t−1)− Ĥ(m∗,k)(w(k))}u|.
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For ǔ
(k)
t−1 such that maxi∈N (m∗,k) |x⊺

i ǔ
(k)
t−1| ≲ ∥ǔ(k)

t−1∥1 = o(1),

u⊺Ĥ
(m∗,k)
t u ≥ u⊺Ĥ(m∗,k)(w(k))u(1− o(1)).

Using the sub-Gaussian property of xi and the positive definiteness of H(k)(w(k)), it is easy

to show that with probability at least 1− exp(−c1 log p),

sup
∥uS∪Hk

∥1≥3∥u(S∪Hk)c∥1
u⊺Ĥ(m∗,k)(w(k))u ≥ C∥u∥22

given that (s+ h) log p = o(n(m
∗,k)). Standard analysis lead to

∥û(k)
t ∥22 ≤ C(s+ h)(λ

(k)
t )2 and ∥û(k)

t ∥1 ≤ C(s+ h)λ
(k)
t . (D.4)

It is left to find λ
(k)
t .

∥{Ĥ(k)(cw̌
(k)
t−1 + (1− c)w(k))− Ĥ(m∗,k)(w̌

(k)
t−1)}ǔ

(k)
t−1∥∞

≤ ∥X(k)∥∞,∞
1

n(m∗,k)

∑
i∈N (m∗,k)

ψ̈(x⊺
i w̌

(k)
t−1){x

⊺
i ǔ

(k)
t−1}

2 + ∥X(k)∥∞,∞
1

N (k)

∑
i∈N (k)

ψ̈(x⊺
i w̌

(k)
t−1){x

⊺
i ǔ

(k)
t−1}

2

+ ∥{Ĥ(k)(w(k))− Ĥ(m∗,k)(w(k))}ǔ(k)
t−1∥∞

≲ ∥ǔ(k)
t−1∥

2
2 + ∥ǔ(k)

t−1∥1

√
log p

n(m∗,k)

≲ (s+ h)(λ
(k)
t−1)

2 + (s+ h)λ
(k)
t−1

√
log p

n(m∗,k)
,

where the last step is due to ∥ǔ(k)
t−1∥0 ≍ s+h and the upper restricted eigenvalue condition

holds.

Hence, if (s+ h)
√

log p
n(m∗,k) = o(1), then it suffices to take

λ
(k)
t ≳

√
log p

N (k)
+ (s+ h)λ

(k)
t−1

√
log p

n(m∗,k)
.

Lemma D.2. Assume Conditions 1, 2, and D.1. We take

λ
(k)
δ,t ≥

√
log p

N (0)
+ ∥ǔ(0)

t−1∥2

√
s log p

n(m∗,0)
+

√
∥û(k)

t ∥22
n(m∗,0)

.

If s log p/n(m
∗,k) + h log p/n(m

∗,0) = o(1), then with probability at least 1− exp(−c1 log p),

∥v̌(k)
t ∥22 ≲ h(λ

(k)
δ,t )

2.
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Proof of Lemma D.2. Oracle inequality: By the optimality of δ̂
(k)
t ,

1

2
(v̂

(k)
t )⊺Ĥ

(m∗,0)
t v̂

(k)
t ≤ |⟨v̂(k)

t , (∇L(0)(β̌t−1)− Ĥ(m∗,0)(β̌t−1)(ŵ
(k)
t − δ(k) − β̌t−1)⟩|

+ λ
(k)
δ,t ∥δ

(k)∥1 − λ
(k)
δ,t ∥δ̂

(k)
t ∥1

=⇒ 1

2
⟨v̂(k)

t , Ĥ
(m∗,0)
t v̂

(k)
t ⟩ ≤ |⟨v̂(k)

t ,∇L(0)(β)⟩|+ λ
(k)
δ,t ∥δ

(k)∥1 − λ
(k)
δ,t ∥δ̂

(k)
t ∥1

+ |(v̂(k)
t )⊺{∇L(0)(β̌t−1)−∇L(0)(β)− Ĥ

(m∗,0)
t (ŵ

(k)
t − δ(k) − β̌t−1)}|︸ ︷︷ ︸

Ft

. (D.5)

In event Gt,

RHS of (C.13) ≤ Ft +
λ
(k)
δ,t

4
∥v̂(k)

t ∥1 + λδ,t∥δ(k)∥1 − λ
(k)
δ,t ∥δ̂

(k)
t ∥1,

where

Ft ≤ |(v̂(k)
t )⊺{Ĥ(0)(ρβ̌t−1 + (1− ρ)β)(β̌t−1 − β)− Ĥ(m∗,0)(β̌t−1)(ŵ

(k)
t − δ(k) − β̌t−1)}|

≤ |(v̂(k)
t )⊺Ĥ(m∗,0)(β̌t−1)û

(k)
t |︸ ︷︷ ︸

F1,t

+ |(v̂(k)
t )⊺{Ĥ(0)(ρβ̌t−1 + (1− ρ)β)− Ĥ(m∗,0)(β̌t−1)}(β̌t−1 − β)|︸ ︷︷ ︸

F2,t

.

Similar analysis of F1,t as in Lemma C.3,

F1,t ≲ c1∥v̂(k)
t ∥1

√
∥û(k)

t ∥22
n(m∗,0)

.

For F2,t, we have

F2,t ≤ ∥v̂(k)
t ∥1∥{Ĥ(0)(ρβ̂t−1 + (1− ρ)β)− Ĥ(m∗,0)(β̌t−1)}ǔ(0)

t−1∥∞

≤ ∥v̂(k)
t ∥1

{
∥ǔ(0)

t−1∥1

√
log p

n(m∗,0)
+

1

n(m∗,0)
∥X(m∗,0)ǔ

(0)
t−1∥

2
2 +

1

N (0)
∥X(0)ǔ

(0)
t−1∥

2
2

}
.

Using the sparsity of β̌
(0)
t−1, we have for

λ
(k)
δ,t ≥

√
log p

N (0)
+ ∥ǔ(0)

t−1∥1

√
log p

n(m∗,0)
+ ∥ǔ(0)

t−1∥
2
2 +

√
∥û(k)

t ∥22
n(m∗,0)

≥
√

log p

N (0)
+ ∥ǔ(0)

t−1∥2

√
s log p

n(m∗,0)
+

√
∥û(k)

t ∥22
n(m∗,0)

,

1

2
(v̂

(k)
t )⊺Ĥ

(m,0)
t v̂

(k)
t ≤

λδ,t
2

∥v̂(k)
t ∥1 + λδ,t∥δ

(k)
t ∥1 − λδ,t∥δ̂

(k)
t ∥1 + ∥û(k)

t ∥22.

Standard analysis leads to

∥v̂(k)
t ∥22 ≲ (hλ

(k)
δ,t )

2.
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For the thresholded v̌
(k)
t , since

√
n(m∗,0) ≥ h, by Lemma 17 of Yuan et al. (2018) we have

∥v̌(k)
t ∥22 ≲ h(λ

(k)
δ,t )

2.

Proof of Theorem B.1. Oracle inequality:

N (0)

N
R̂(0,local)(β̂t; β̌t−1) +

K∑
k=1

N (k)

N
R̂(k,local)(β̂t + δ̌

(k)
t ; w̌

(k)
t−1) + λβ,t∥β̂t∥1

≤ N (0)

N
R̂(0,local)(β; β̌t−1) +

K∑
k=1

N (k)

N
R̂(k,local)(β + δ̌

(k)
t ; w̌

(k)
t−1) + λβ,t∥β∥1.

Reorganizing the terms, we arrive at

1

2
(β̂t − β)⊺{

K∑
k=0

N (k)

N
Ĥ

(m∗,k)
t }(β̂t − β)

≤ |⟨β̂t − β,
1

N

K∑
k=0

∇L(k)(w(k))⟩|

+
∣∣⟨β̂t − β,

1

N

K∑
k=0

{∇L(k)(w̌
(k)
t−1)−∇L(k)(w(k))−N (k)Ĥ

(m∗,k)
t (β + δ̌

(k)
t − w̌

(k)
t−1)}

∣∣
︸ ︷︷ ︸

Jt

+ λβ,t∥β∥1 − λβ,t∥β̂t∥1,

where

Jt ≤ |⟨β̂t − β,
K∑
k=0

N (k)

N
Ĥ(k)(w(k) + ρǔ

(k)
t−1)ǔ

(k)
t−1⟩ − ⟨β̂t − β,

K∑
k=0

N (k)

N
Ĥ

(m∗,k)
t (ǔ

(k)
t−1 + v̌

(k)
t )⟩|

≤
K∑
k=1

N (k)

N
|⟨β̂t − β, Ĥ

(m∗,k)
t v̌

(k)
t ⟩|+ ∥û(0)

t ∥1 max
0≤k≤K

∥ǔ(k)
t−1∥

2
2

+ ∥û(0)
t ∥1∥

K∑
k=0

N (k)

N
(Ĥ(k) − Ĥ(m∗,k))ǔ

(k)
t−1∥∞

Hence, for

λβ,t ≥
√

log p

N
+ max

0≤k≤K

√
s log p

n(m∗,k)
∥ǔ(k)

t−1∥2

≥ 2

N
∥

K∑
k=0

∇L(k)(w(k))∥∞ +K max
0≤k≤K

√
log p

n(m∗,k)
∥ǔ(k)

t−1∥1 + max
0≤k≤K

∥ǔ(k)
t−1∥

2
2,
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we have

∥β̂t − β∥22 ≲ s(λβ,t)
2 +

K∑
k=1

N (k)

N
∥v̌(1)

t ∥22

≲ s(λβ,t)
2 +

K∑
k=1

N (k)

N
h(λ

(k)
δ,t )

2

≲ s(λβ,t)
2 +

h log p

N (0)
+ ∥ǔ(0)

t−1∥
2
2

hs log p

n(m∗,0)
+

h

n(m∗,0)

K∑
k=1

N (k)

N
∥û(k)

t ∥22

≲ s(λβ,t)
2 +

h log p

N (0)
+ ∥ǔ(0)

t−1∥
2
2

hs log p

n(m∗,0)
+

h

n(m∗,0)
(
s log p

N
+ max

1≤k≤K
∥ǔ(k)

t−1∥
2
2

s log p

n(m∗,k)
).

To summarize,

∥û(0)
t ∥22 ≲

s log p

N
+ max

0≤k≤K

s2 log p

n(m∗,k)
∥ǔ(k)

t−1∥
2
2 +

h log p

N (0)
+ ∥ǔ(0)

t−1∥
2
2

hs log p

n(m∗,0)

+
h

n(m∗,0)
(
s log p

N
+ max

1≤k≤K
∥ǔ(k)

t−1∥
2
2

s log p

n(m∗,k)
).

≤ s log p

N
+
h log p

N (0)
+
s2 log p

n(m∗,0)
∥ǔ(0)

t−1∥
2
2 + max

1≤k≤K

s2 log p

n(m∗,k)
∥ǔ(k)

t−1∥
2
2.

By Lemma D.1, we arrive at

∥û(0)
t ∥22 ≲

s log p

N
+
h log p

N (0)
+ max

1≤k≤K
s2t+1(

log p

n(m∗,k)
)t(λ

(k)
0 )2 +

s2 log p

n(m∗,0)
∥ǔ(0)

t−1∥
2
2.

Let bn = s2 log p
n(m∗,0) . Given the results of Theorem B.1, it is easy to show

∥û(0)
T ∥22 ≲ (

s log p

N
+
h log p

N (0)
)

⊺∑
t=1

bT−t
n + max

1≤k≤K
(λ

(k)
0 )2

⊺∑
t=1

s2t+1(
log p

n(m∗,k)
)tbT−t

n + b⊺n∥ǔ
(0)
0 ∥22

≲
s log p

N
+
h log p

N (0)
+ max

1≤k≤K
s(λ

(k)
0 )2Tb⊺n + b⊺n∥ǔ

(0)
0 ∥22

≲
s log p

N
+
h log p

N (0)
+ ( max

1≤k≤K
s(λ

(k)
0 )2 + ∥ǔ(0)

0 ∥22)(
s2 log p

n(m∗,0)
)T

D.3 Proofs of Corollary B.1 and Corollary B.2

Proof of Corollary B.1. Notice that λ
(k)
0 ≍

√
log p/n(m∗,k) for k = 1, . . . ,K. and ∥ǔ(0)

0 ∥22 =
OP (s log p/N

(m∗) + h log p/n(m
∗,0)). It is easy to show

∥û(0)
T ∥22 ≲

s log p

N
+
h log p

N (0)
+ (

s log p

min1≤k≤K n(m∗,k)
+
h log p

n(m∗,0)
)(
s2 log p

n(m∗,0)
)T .
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Proof of Corollary B.2. Notice that λ
(k)
0 ≍

√
log p/n(Ik,k) and ∥ǔ(0)

0 ∥22 = OP (s log p/n
(I0,0)).

Given the results of Theorem B.1, it is easy to show

∥û(0)
T ∥22 ≲

s log p

N
+
h log p

N (0)
+

s log p

min0≤k≤K n(Ik,k)
(
s2 log p

n(m∗,0)
)T .

E Additional simulation results

To generate genotypes for data in the source population, we first generate p-dimensional

multivariate Gaussian vector zi with mean 0 and covariance matrix Σ1. We choose Σ1 to

be a block-wise matrix with 20 blocks each has dimension 100× 100. We set the all the 20

blocks to be the same, denoted by B1, where B1,ij = 0.5|i−j|. We then randomly generate

minor allele frequencies for the p genetic variants from U(0, 0.5). Then we obtain xi by

categorize each zi into 0, 1 and 2 based on the corresponding minor allele frequencies. For

the target data, we follow the same procedure with Σ1 replaced by Σ0, which has 100 blocks

each with dimension 50× 50. We set the block to be B0,ij = 0.3|i−j|.

In this section, we include more simulation results. In addition to methods compared

in the main paper, we added three methods, which are (1) the proposed approach with

T = 1 without aggregation (FETA (T = 1, no agg)); (5) the proposed approach with T = 3

without aggregation (FETA (T = 3, no agg)); (6) the pooled transfer learning method

without aggregation (pooled (no.agg)).

Compared with the proposed methods considered in the main paper, these three meth-

ods are performed without the aggregation step. The methods are evaluated based on their

mean squared error (MSE) and the out-sample area under the receiver operating char-

acteristic curve (AUC) based on a randomly generated testing sample with sample size

n = 1000. In this simulation, we used 10% of the total sample size of the target population

in the leading site as a validation dataset to learn the weights introduced in equation (2.9)

in the main paper. From Figures (E.1) - (E.2), we observed that FETA with aggregation

perform no worse than the corresponding methods without aggregation. When the level

of heterogeneity is low, FETA without aggregation has comparable performance as FETA

with aggregation. However, as we expected, as the level of heterogeneity increases, the

robustness of the proposed methods is shown to be better than FETA without aggrega-

tion. When the heterogeneity is large, the proposed federated transfer learning algorithms

without aggregation have much poor performance and a large variation than the pooled

transfer learning methods without aggregation. The variability reduces when the number

of iteration increases.
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Figure E.1: Comparison of AUC over 200 replications.

In sum, the additional simulation results demonstrated that the aggregation step is

necessary unless there is strong prior knowledge supporting that the level of heterogeneity

is low.

F Additional details in the eMERGE data application

F.1 Data processing

The data used in this application was applied is public available upon request from the

database of Genotypes and Phenotypes (dbGaP) with accession phs000888.v1.p1. Here we

introduce more details in selecting the genetic variations used in this paper:

1. We performed standard quality controls to remove SNPs with minor allele frequencies

less than 0.05, and missing rates higher than 0.05. Missing SNPs are imputed by 0.

2. We then perform a GWAS study controlling for age, gender and top principal com-

ponents.

3. GWAS p-values are used to clump the SNPs with a p-value threshold 5 × 10−5 and

R2 threshold 0.5, and physical distance threshold for clumping to be 1000 kb. Af-
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Figure E.2: Comparison of MSE over 200 replications.

ter clumping, we obtain 2048 selected SNPsm which can be found in attached files

“obesity SNPs.txt”.

F.2 Sensitivity analysis

We conducted sensitivity analysis by only including patients who are White (source) and

Black or African Americans (target). The evaluation of performance of our method com-

pared with other benchmark methods can be found in the following Figure F.1, where the

definitions of training and testing datasets are the same as described in the main paper.

As we can see from Figure F.1, the proposed methods reach higher AUC than the target-

only, source-only, and combined approaches, and are comparable with the pooled transfer

learning method. However, by comparing with Figure 5 in the main paper, we see that the

source-only model has decreased performance, which might be due to that the Unknown

race group are more similar to the target population. So when excluding Unknown race

from source, the performance of the all the approaches that involve source data drops.
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Figure F.1: Sensitivity Study excluding participants who are not White, Black or African

Americans.
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