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Appendix A. Nemours EHR

Nemours Children’s Health, is a large network of pediatric health in the US, primarily
spanning the states of Delaware, Florida, New Jersey, and Pennsylvania. The dataset is
a portion of the larger PEDSnet dataset, containing EHR data from several major US
Pediatric Health Systems [1]. It contains direct clinical data from nearly all clinical and
healthcare interactions. Our data is extracted from over two million distinct patients from
the Nemours EHR system with patient records dating from 2002 to 2019. The analysis
dataset was further screened for inconsistencies particularly those related to birthdates
and measurement dates, dropping records with missing or implausible dates. The dataset
was anonymized. All of the dates were skewed randomly per patient by +/- 180 days.
The data access and processing steps were approved by the Nemours institutional review
board. Each record in our dataset relates to one visit and captures the visit start and
end time and all the condition, procedure, medication, and measurement features recorded
for that visit. It also contains demographic data for each patient. The medical codes
are standardized terminologies of SNOMED-CT, RxNorm, CPT, and LOINC [2] for both
clinical and demographic facts.

From 68,029 children EHR data from Nemours, 65,725 children had weight and length
measurements during at least 2 routine infant checkups before age 2, which are generally
scheduled at ages 1, 3, 6, 9, 12, 18, and 24 months. Of them, 37,844 children had at
least one weight and height measurement between 2 to age 10. We excluded 1,653 children
whose year of birth could not be verified, leaving 36,191 patients for the construction of a
prediction model for childhood obesity. Figure 1 shows the steps we took to extract our
cohort of 36,191 patients for the model construction.



68,029 Children born between 2002
to 2015 with available EHR data
between 0 to 10 years of age and
no evidence of type 1 diabetes,
cancer, and sickle cell disease

2,304 Children with less than 2
different recorded weight, height
before 2 years of age are excluded

65,725 Children have at least 2
different recorded weight, height
before 2 years of age

27,881 Children with no recorded
f——————  weight, height between 3 to 10
years of age are excluded

37,844 Children have at least 1
recorded weight, height
between 3 to 10 years of age

1,653 Children whose year of birth

could not be matched are excluded

36,191 Children cohort selected
and further divided into

temporal and geographic
validation cohorts
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Geographical | Validation

32,848 Children seen in 3,343 Children seen in the
Delaware valley state of Florida

Figure S 1: The cohort selection steps. Temporal and geographic validation regimes are
shown in gray.

Table S 1: Demographic analysis of excluded patients.

All
(n=28,532)
Sex:
Female Count(%) 12,479(43.74)
Male Count(%) 16,052(56.26)
Ethnicity:
Hispanic Count(%) 3,606(12.64)
Non-Hispanic  Count(%) 24,925(87.36)
Race:
Asian Count(%) 485(1.70)
Black Count(%) 12,879(45.14)
White Count(%) 12,633(44.27)
Other Count(%) 3,053(10.70)
Payer:
Private Count(%) 12,706(44.53)
Public Count(%)  15,826(55.47)




The cohort was further divided according to date of birth for temporal validation: data
of 26,786 children who were born between January 1, 2002, and December 31, 2009, were
included as a training set, and data of 9,405 children who were born between January 1,
2010, and December 31, 2015, were included in the temporal test set, respectively. For
geographic validation cohort was divided according to the location of the facility visited:
data of 32,848 children seen in Delaware Valley located in the northeastern US, were included
as a training set, and data of 3,343 children seen at different facilities across Florida, located
in the southeastern US, were included in the geographic test set, respectively.

Appendix B. Feature Generation Methods

The original dataset consisted of 20,298 diagnoses, 6,077 medications, and 7,693 measure-
ments (lab-results) features. On average, 22 diagnoses, 15 medications, and 49 measurement
features were recorded per patient in the data. To identify a subset of clinically-relevant
features to childhood obesity, we have used a data-driven approach coupled with input from
a panel of childhood obesity experts from the PEDSnet Healthy Weight Network [3].

A total of 506 features were constructed from the dataset. We selected 71 clinical diagnoses
codes that fall under broader categories of obesity-related comorbidities: cardiovascular,
gastrointestinal, genetic, metabolic, neuropsychological, orthopedic, and pulmonary. We
also selected 67 family history diagnoses available in our dataset recorded in the patient’s
EHR. We grouped all medication codes in our dataset into 84 ATC-3 groups. Measure-
ments features were first arranged in the decreasing order of their availability in our dataset
and then with the help of clinical experts, we selected 51 measurements from the top 70
measurements with the help of clinical experts. All these steps taken to select the list of
features were verified by clinical experts on our team. The following sections describe the
feature selection and generation mechanism for each data type.

B.1 Demographic Features

Gender, race, ethnicity, and payer information were extracted from EHR data. Each of these
features is divided into categories: Gender - Male and Female, race - Black, White, Asian,
and Other, ethnicity - Hispanic, and Non-Hispanic, and payer - Public and Private. We also
included the Child Opportunity Index (COI) value for each patient by geolocating the last
address of each patient before age 2 and mapping it to the neighborhood COI score. We used
the Census Geocoder tool! for geolocating. COI combines indicators of educational (e.g.,
early childhood education enrollment, high school graduation rate), health and environment
(e.g., access to healthy food, health insurance coverage), and socioeconomic opportunity
(e.g., employment rate, median household income) for all US neighborhoods. We divided
the COI score into deciles (10 percentile bins) to generate 10 categorical features for the
COI score. In total, we get 20 demographic features.

1. https://www.census.gov/programs-surveys/geography /technical-documentation/complete-technical-
documentation/census-geocoder.html



B.2 Diagnoses

First, we used the MedDRA (MedDRA) hierarchy to group diagnoses. By grouping diag-
noses, we reduced the number of diagnoses from a total of 20,298 to 1,457. We grouped
condition codes with a patient count above 107 (mean patient count per condition code) us-
ing pt level grouping in MedDRA and condition codes with a patient count below 107 using
hlt level groupings in MedDRA. Out of 1,457 diagnoses, 71 clinical diagnoses and 67 family
history diagnoses were included in the study based on input from clinical experts.

B.3 Medications

We used the ATC-3 codes to group 6,077 medications into 613 codes. Out of 613 ATC
codes, 530 were excluded to include only medication codes that were present in more than
1% of the cohort population. The remaining 84 ATC codes were used as input features for
model training.

B.4 Measurements

Anthropometrics measurements: Weight and height measurements were used for Weight-
for-Length (WFL) and BMI% calculations for ages below 2 years and above respectively.
Weight-for-Length (WFL) values were segmented into 5 windows corresponding to ages
0—4 months, 4-8 months, 812 months, 12-18 months, and 1824 months. If multiple
measurements were recorded for a patient within a window, the most latest value was used.
Weight and height values were treated as MCAR. and imputed with a carry forward of the
most recent value over the 5 windows. All other measurement values before age 2 were
transformed into categorical features by dividing each value into five equal percentile bins.
We also converted the change in WFL% values over 0—4 months, 4-8 months, 812 months,
12-18 months, and 18-24 months to 5-centile bins to generate 5 categorical features. We also
used the last WFL% status (underweight, normal, overweight, or obesity) at age 2 for model
input. BMI% values after age 2 were categorized into - obesity, overweight, underweight,
and normal categories which generated 4 features. BMI% categories (underweight, normal,
overweight, or obesity) at every age after the of 2 were used as input to predict the risk at
future age points.

Laboratory Measurements: We selected 51 other measurements from EHR data and seg-
mented them into 5 windows similar to anthropometric measurements. We then converted
each measurement value into 5 equal percentile bins to convert each value into 5 categories
corresponding to each percentile bin. This segmentation lead to the generation of 255
measurement features per individual.

B.5 Feature Representation

All the height, weight, lab measurements, medications, and diagnoses after age 2 were
segmented into 1-year time windows. Medications, diagnoses, and percentile-binned mea-
surements are transformed into categorical values with 1 indicating the presence of that
variable and 0 otherwise. These features were marked as not MCAR and the “missing”
value was indicated by a dummy category.



All features generated from EHR data between 0 to age 2 were arranged chronologically
based on the visit timestamps. There is no fixed order between features with the same
timestamp. All data between 2 to age 10 which is binned into 1-year time intervals were
represented as a binary vector with 1 if the value is observed in the 1-year time interval and
0 otherwise.

Appendix C. Model Architecture

We adopted the recurrent neural network encoder-decoder architecture presented in our
previous work [4]. Encoder is the neural network consisting of embedding layers (256-
dimension) for diagnoses, medications, procedures, and measurements, two layers of LSTM
cells (512-dimension). As shown in Figure S1, the LSTM encoder takes 0-2 years of EHR
data as input and outputs its representation vector. All the features in 0-2 years of EHR data
are arranged chronologically, where the order of events occurring at the same timestamps is
random. The output representation vector obtained from the LSTM encoder is concatenated
with demographic data representation. Demographic data is embedded into latent space
using an embedding layer (256-dimension). This concatenated vector is given to the decoder
as input. The decoder concatenates this vector with the EHR data from 3 to 7 years as
applicable. The decoder can learn from different lengths of medical data. For example,
if a patient had EHR data from 0 to 3 years of age, their EHR data vector for the third
year is combined with the vector representation derived from the encoder. This combined
vector is then used by the decoder network to predict the risk of obesity for the next 1,
2, and 3 years. the Decoder architecture in our previous work [4] is modified to contain
three separate feed-forward networks with two fully-connected layers (512-dimension with
leakyRelu of 0.1, 256-dimension, 0.2 dropout) for every future age-point for the next three
years. There is a third sigmoid layer at the end of two fully-connected layers to give the
final output. Each of these three separate feed-forward networks is used to simultaneously
provide the risk of obesity for every future age-point in the next three years.

Attention is applied to the output of encoder LSTM to rank features in it [5]. Attention
layers are non-linear feed-forward layers that give softmax scores to input features in the
vector representation. This will help evaluate the model’s interpretation by analyzing the
ranking of softmax scores given to the features.

Appendix D. More on experiments
D.1 Attentions scores

Bahdanau et al. [5] proposed this attention mechanism to automatically (soft-)search for
parts of the input data that are relevant to predicting the output and assign an attention
score to the predictors in the input data. Attention scores have been used in various clinical
prediction models ([6, 7, 8, 9]) to provide interpretation into what predictors are more
important in predicting the output of the model. A predictor’s attention score represents
the weightage given to that predictor to predict the final output. These attention scores are
used to obtain the weighted sum of all predictor latent representations to obtain the final
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Figure S 2: Model Architecture. The dotted block is optional and is required for data after
age 2.

representation of the patient which is then used to predict the risk of obesity. This method
enables us to capture the nonlinear relation between a predictor’s impact on the prediction.
We can therefore analyze predictor attributions at the individual level, by examining the
attention score of the predictors. An analysis of predictor attribution was performed using
attention scores from attention layers in the LSTM model [5].
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