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S1.  Narrow-sense heritability estimates are inflated by higher-order genetic interactions to 

a greater degree in close than distant relatives 

For a relative pair with trait values 𝑌1 and 𝑌2, the covariance between 𝑌1 and 𝑌2 follows:1 

𝐶𝑜𝑣(𝑌1, 𝑌2) = 𝑟𝑉𝐴 + 𝑘2𝑉𝐷 + 𝑟2𝑉𝐴𝐴 + 𝑟𝑘2𝑉𝐴𝐷 + (𝑘2)2𝑉𝐷𝐷 + 𝑟3𝑉𝐴𝐴𝐴 + ⋯   (Eq. S1) 

where 𝑟 is the coefficient of relatedness (genome fraction of the pair shared identical by descent 

(IBD)) and 𝑘2 is the Cotterman coefficient (genome fraction where the pair share both alleles by 

IBD). 𝑉𝐴 and 𝑉𝐷 are the additive and dominance genetic variance of the trait, respectively. 𝑉𝐴𝐴 

and 𝑉𝐴𝐴𝐴 represent the two-way and three-way additive interaction variance of the traits, while 

𝑉𝐴𝐷 and 𝑉𝐷𝐷 represent the two-way additive-dominance and dominance-dominance variance of 

the traits. Note that additional higher order multi-way additive, additive-dominance, and 

dominance-dominance variance effects also exist but are not explicitly stated in (Eq. S1) for 

brevity.  

Estimation of narrow-sense heritability requires estimation of the additive genetic 

variance 𝑉𝐴 shown in Eq. S1. Suppose we estimate this quantity using parent-offspring pairs 

(close relatives), such that 𝑟 = 0.5 and 𝑘2 = 0. In this situation, studies often ignore interaction 

terms and estimate the additive genetic variance as twice the estimated covariance between the 

trait value of a parent 𝑌𝑃 and its offspring 𝑌𝑂, that is �̂�𝐴=𝐶𝑜�̂�(𝑌𝑃 , 𝑌𝑂). Comparing this quantity to 

the formula in (Eq. S1), we observe that �̂�𝐴 inflates the true 𝑉𝐴 by 
1

2
𝑉𝐴𝐴 +

1

4
𝑉𝐴𝐴𝐴 +

1

8
𝑉𝐴𝐴𝐴𝐴 + ⋯. 

Now, suppose we instead estimate 𝑉𝐴 using GWAS data from ‘distant’ relatives (using GCTA or 

analogous method). In this situation, the samples are putatively unrelated such that 𝑟 is likely on 

the order of approximately 
1

100
 and 𝑘2 is nearly 0. In this case, based on (Eq. S1),  �̂�𝐴 inflates the 

true 𝑉𝐴 by approximately 
1

100
𝑉𝐴𝐴 + (

1

100
)

2
𝑉𝐴𝐴 + (

1

100
)

3
𝑉𝐴𝐴𝐴 + (

1

100
)

4
𝑉𝐴𝐴𝐴𝐴 ….. .  
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By comparing the �̂�𝐴 inflation for parent-offspring pairs (close relatives) to that using 

GCTA (distant relatives), it becomes apparent that the inflation among the former group will be 

substantially greater than the latter group when two-way, three-way, and higher-order additive 

interaction variance exist. This will also lead to greater inflation in narrow-sense heritability 

estimates when using close relatives for inference compared to distant relatives. Thus, this result 

suggests that the empirical discrepancy in narrow-sense heritability estimates using close 

relatives versus distant relatives can possibly be due to interaction effects.   
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S2. Detailed derivation of Eq. (1) 

Given  

𝑌𝑖,1 = 𝛼1 + 𝛽1𝐺𝑖 + 𝛾1𝑊𝑖 + 𝛿1𝐺𝑖𝑊𝑖 + 𝜖𝑖,1 

and 

𝑌𝑖,2 = 𝛼2 + 𝛽2𝐺𝑖 + 𝛾2𝑊𝑖 + 𝛿2𝐺𝑖𝑊𝑖 + 𝜖𝑖,2. 

𝑐𝑜𝑣(𝑌𝑖,1, 𝑌𝑖,2|𝐺𝑖 = 𝑔𝑖)

= 𝑐𝑜𝑣(𝛼1 + 𝛽1𝑔𝑖 + 𝛾1𝑊𝑖 + 𝛿1𝑔𝑖𝑊𝑖 + 𝜖𝑖,1, 𝛼2 + 𝛽2𝑔𝑖 + 𝛾2𝑊𝑖 + 𝛿2𝑔𝑖𝑊𝑖 + 𝜖𝑖,2)

= 𝑐𝑜𝑣(𝛼1, 𝛼2) + 𝑐𝑜𝑣(𝛼1, 𝛽2𝑔𝑖) + 𝑐𝑜𝑣(𝛼1, 𝛾2𝑊𝑖) + 𝑐𝑜𝑣(𝛼1, 𝛿2𝑔𝑖𝑊𝑖)

+ 𝑐𝑜𝑣(𝛼1, 𝜖𝑖,2) + 𝑐𝑜𝑣(𝛽1𝑔𝑖 , 𝛼2) + 𝑐𝑜𝑣(𝛽1𝑔𝑖 , 𝛽2𝑔𝑖) + 𝑐𝑜𝑣(𝛽1𝑔𝑖 , 𝛾2𝑊𝑖)

+ 𝑐𝑜𝑣(𝛽1𝑔𝑖 , 𝛿2𝑔𝑖𝑊𝑖) + 𝑐𝑜𝑣(𝛽1𝑔𝑖 , 𝜖𝑖,2) + 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝛼2) + 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝛽2𝑔𝑖)

+ 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝛾2𝑊𝑖) + 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝛿2𝑔𝑖𝑊𝑖) + 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝜖𝑖,2) + 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝛼2)

+ 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝛽2𝑔𝑖) + 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝛾2𝑊𝑖) + 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝛿2𝑔𝑖𝑊𝑖)

+ 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝜖𝑖,2) + 𝑐𝑜𝑣(𝜖𝑖,1, 𝛼2) + 𝑐𝑜𝑣(𝜖𝑖,1, 𝛽2𝑔𝑖) + 𝑐𝑜𝑣(𝜖𝑖,1, 𝛾2𝑊𝑖)

+ 𝑐𝑜𝑣(𝜖𝑖,1, 𝛿2𝑔𝑖𝑊𝑖) + 𝑐𝑜𝑣(𝜖𝑖,1, 𝜖𝑖,2)

= 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝛾2𝑊𝑖) + 𝑐𝑜𝑣(𝛾1𝑊𝑖 , 𝛿2𝑔𝑖𝑊𝑖) + 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝛾2𝑊𝑖)

+ 𝑐𝑜𝑣(𝛿1𝑔𝑖𝑊𝑖 , 𝛿2𝑔𝑖𝑊𝑖)

= 𝛾1𝛾2𝑐𝑜𝑣(𝑊𝑖 , 𝑊𝑖) + 𝛾1𝛿2𝑔𝑖𝑐𝑜𝑣(𝑊𝑖 , 𝑊𝑖) + 𝛾2𝛿1𝑔𝑖𝑐𝑜𝑣(𝑊𝑖 , 𝑊𝑖)

+ 𝛿1𝛿2𝑔𝑖
2𝑐𝑜𝑣(𝑊𝑖 , 𝑊𝑖) 

= 𝛾1𝛾2 + (𝛾1𝛿2 + 𝛾2𝛿1)𝑔𝑖 + 𝛿1𝛿2𝑔𝑖
2 

 

and  
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𝑣𝑎𝑟(𝑌𝑖,1|𝐺𝑖 = 𝑔𝑖) = 𝑣𝑎𝑟(𝛼1 + 𝛽1𝑔𝑖 + 𝛾1𝑊𝑖 + 𝛿1𝑔𝑖𝑊𝑖 + 𝜖𝑖,1)

= 𝛾1
2𝑣𝑎𝑟(𝑊𝑖) + 𝛿1

2𝑔𝑖,𝑗
2 𝑣𝑎𝑟(𝑊𝑖) + 2𝛾1𝛿1𝑔𝑖,𝑗𝑐𝑜𝑣(𝑊𝑖 , 𝑊𝑖) + 1

= 𝛾1
2 + 𝛿1

2𝑔𝑖,𝑗
2 + 2𝛾1𝛿1𝑔𝑖,𝑗 + 1 

= (𝛾1 + 𝛿1𝑔𝑖,𝑗)
2

+ 1 

 

As 𝑐𝑜𝑟(𝑌𝑖,1, 𝑌𝑖,2|𝐺𝑖 = 𝑔𝑖) =
𝑐𝑜𝑣(𝑌𝑖,1, 𝑌𝑖,2|𝐺𝑖 = 𝑔𝑖 )

√𝑣𝑎𝑟(𝑌𝑖,1|𝐺𝑖=𝑔𝑖)√𝑣𝑎𝑟(𝑌𝑖,2|𝐺𝑖=𝑔𝑖)

, we can use our formulas above to 

show that  

𝑐𝑜𝑟(𝑌𝑖,1, 𝑌𝑖,2|𝐺𝑖 = 𝑔𝑖) =
𝛾1𝛾2 + (𝛿1𝛾2 + 𝛿2𝛾1)𝑔𝑖 + 𝛿1𝛿2𝑔𝑖

2

√(𝛾1 + 𝛿1𝑔𝑖)2 + 1 × √(𝛾2 + 𝛿2𝑔𝑖)2 + 1
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S3: Approximating the Pearson correlation coefficient for two variables 

Suppose we have two variables, 𝑽1 and 𝑽2, that are each a column vector with 𝑁 elements. The 

correlation coefficient between 𝑽1 and 𝑽2 can be estimated using the sample Pearson correlation 

formula. Define the row-wise pairs as [𝑽1, 𝑽2] = [(𝑣1,1, 𝑣2,1), … , (𝑣1,𝑛, 𝑣2,𝑛)]
𝑇
. The sample 

Pearson correlation coefficient of 𝑽1 and 𝑽2 is expressed as: 

 

𝑟𝑽𝟏𝑽𝟐
=

∑ (𝑣1𝑖 − �̅�1)(𝑣2𝑖 − �̅�2)𝑛
𝑖=1

√∑ (𝑣1𝑖 − �̅�1)2𝑛
𝑖=1 × √∑ (𝑣2𝑖 − �̅�2)2𝑛

𝑖=1

     (Eq. S2) 

 

Define 𝑠𝑛,𝑽1
and 𝑠𝑛,𝑽2

 as the sample standard deviation of the two variables, i.e.,  𝑠𝑛,𝑽1
=

√
1

𝑛
∑ (𝑣1𝑖 − �̅�1)2𝑛

𝑖=1  and 𝑠𝑛,𝑽2
= √

1

𝑛
∑ (𝑣2𝑖 − �̅�2)2𝑛

𝑖=1 , respectively. We want to point out that the 

standard deviation (SD) of each variable is the average, not the Bessel-corrected average using 

𝑛 − 1. This decision is because the typical sample size is large in biobank-scale data that we 

consider in this work and, as such, the average and Bessel-corrected average are asymptotically 

equivalent. Using the SD formulas, we can rewrite (S2) as 

 

∑ (𝑣1𝑖 − �̅�1)(𝑣2𝑖 − �̅�2)𝑛
𝑖=1

√∑ (𝑣1𝑖 − �̅�1)2𝑛
𝑖=1 × √∑ (𝑣2𝑖 − �̅�2)2𝑛

𝑖=1

=
1

𝑛
∑ (

𝑣1𝑖 − �̅�1

𝑠𝑛,𝑽1

) (
𝑣2𝑖 − �̅�2

𝑠𝑛,𝑽2

)
𝑛

𝑖=1
=

1

𝑛
∑ �̃�1𝑖�̃�2𝑖

𝑛

𝑖=1
 

 

where we can interpret �̃�1𝑖 =
𝑣1𝑖−�̅�1

𝑠𝑛,𝑽1

 and �̃�2𝑖 =
𝑣2𝑖−�̅�2

𝑠𝑛,𝑽2

 as the standardized samples of 𝑣1𝑖 and 𝑣2𝑖 

from 𝑽1 and  𝑽2, respectively. This step transforms 𝑽1 and 𝑽2 into �̃�1 and �̃�2, such that each has 

a mean of zero and a standard deviation of one. We can then approximate the sample Pearson 

correlation coefficient, 𝑟𝑽𝟏𝑽𝟐
 in (S2) as the average of these pairwise products: 
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𝑟𝑽𝟏𝑽𝟐
=

1

𝑛
∑ (

𝑣1𝑖 − �̅�1

𝑠𝑛,𝑽1

) (
𝑣2𝑖 − �̅�2

𝑠𝑛,𝑽2

)
𝑛

𝑖=1
=

1

𝑛
∑ �̃�1𝑖�̃�2𝑖

𝑛

𝑖=1
 

 

We note that the pairwise products of these standardized variables can also be 

conveniently denoted as �̃�1 ⊙ �̃�2, which is a N×1 dimensional column vector. Then, we can 

express the sample average of �̃�1 ⊙ �̃�2 as 
1

𝑁
𝐽1

𝑛(�̃�1 ⊙ �̃�2), where 𝐽1
𝑛 is a 1 × 𝑛 vector with all 

elements equal to 1. Using (S2), it then follows that we can express the sample Pearson 

correlation coefficient as  

 

𝑟𝑽𝟏𝑽𝟐
=

1

𝑁
𝐽1

𝑛(�̃�1 ⊙ �̃�2). 

 

To determine if the correlation coefficient differs by genotype category, 𝑮 ∈ {0, 1, 2}, we can 

examine whether 𝑟𝑽𝟏𝑽𝟐
 varies across genotype category by comparing 𝑟𝑽𝟏𝑽𝟐,𝑮=𝟎, 𝑟𝑽𝟏𝑽𝟐,𝑮=𝟏 and 

𝑟𝑽𝟏𝑽𝟐,𝑮=𝟐, which can help to evaluate the presence of interaction effects in at least one of the two 

variables under study. 

 

 

 

 

 

 

 

 



 7 

S4: Derivation of Levene’s test for a single trait 

Assume a sample of size N divided into k subgroups, where 𝑁𝑖 is the sample size of the ith 

subgroup. To test whether variance of a trait Y differs by subgroup, we define the Levene’s test 

statistic as:  

𝑊 =
(𝑁 − 𝑘) ∑ 𝑁𝑖(�̅�𝑖∙ − �̅�∙∙)

2𝑘
𝑖=1

(𝑘 − 1) ∑ ∑ (𝑍𝑖𝑗 − �̅�𝑖∙)
𝑁𝑖

𝑗=1
𝑘
𝑖=1

2 

• 𝑍𝑖𝑗 = |𝑌𝑖𝑗 − �̅�𝑖∙|: 𝑌𝑖𝑗 the value of 𝑌 for the 𝑗th observation of the 𝑖th subgroup  

• �̅�𝑖∙: the mean of the 𝑖th subgroup  

• �̅�𝑖∙: the subgroup means of the 𝑍𝑖𝑗  

• �̅�∙∙: overall means of the 𝑍𝑖𝑗  

The Levene test rejects the hypothesis that the variances are equal if 𝑊 > 𝐹(𝛼,𝑘−1,𝑁−𝑘) where 

𝐹(𝛼,𝑘−1,𝑁−𝑘) is the upper critical value of the F distribution with 𝑘 − 1 and 𝑁 − 𝑘 degrees of 

freedom at a significance level of 𝛼. 
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S5: Significance threshold for evaluating type-I error 

To explain why 𝛼 = 0.001 is an adequate choice for our nominal type 1 error 𝛼 level when there 

are 100,000 replicates, we are given 𝑋1, … , 𝑋𝑚~𝑖.𝑖.𝑑𝐵𝑖𝑛𝑜𝑚(𝑛, 𝛼) by C.L.T, then √𝑚(�̅�𝑚 − 𝛼)

𝑑
→ ℕ(0, 𝛼(1 − 𝛼)), equivalently, 

�̅�𝑚−𝛼

√𝛼(1−𝛼)

𝑚

𝑑
→ ℕ(0,1). Thus, the asymptotic mean (𝜇) and 

asymptotic variance (𝜎2) of �̅�𝑚 are 𝛼 and 
𝛼(1−𝛼)

𝑚
. 

In our simulation setting, we have fixed the number of simulated replicates as 𝑀 =

100,000, and we let 𝛼 be the pre-specified threshold. This table provides the corresponding pre-

specified significance level (col “𝛼”), asymptotic mean (col “𝜇 = 𝛼”), asymptotic standard error 

(col “𝜎 = √
𝛼(1−𝛼)

𝑀
 ”), and 95% single-side CI bandwidth (col “95% CI bandwidth 1.96* 

𝑆𝐸(�̅�𝑛)”) when the pre-specified thresholds vary at the given fixed 𝑀 = 100,000.   

In general, the bandwidth of the 95% CI for a proportion such as 𝛼 should not overlap but 

be at least one order of magnitude smaller than the asymptotic mean.2 In this table, when 𝛼 =

0.01 or 𝛼 = 0.001, their 95% CI bandwidths are smaller than their corresponding asymptotic 

mean at least at one order of magnitude. When 𝛼 = 0.0001 or smaller, their asymptotic mean 

and 95% CI bandwidth are very close in value and do not differ by an order of magnitude. 

𝑴 𝜶 𝝁 = 𝜶 𝝈 = √
𝜶(𝟏 − 𝜶)

𝑴
 

95% CI bandwidth 

1.96* 𝑺𝑬(�̅�𝒏) 

1E5 

1E-2 1E-2 3.15E-4 6.17E-4 

1E-3 1E-3 9.99E-5 1.96E-4 

1E-4 1E-4 3.16E-5 6.20E-5 

1E-5 1E-5 1.00E-5 1.96E-5 
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Figure S1 

(a)                                                                                        (b) 

             

(c)                                                                                        (d) 

            

Figure S1. Interaction effect induce variance heteroscedasticity in a phenotypic trait. 

Sub-figures (a) and (c) depict simulations of one phenotypic trait samples from 𝑌𝑖 = 𝛼1 +

𝛽1𝐺𝑖 + 𝛾1𝑊𝑖 + 𝜖𝑖  (without interaction effect) and 𝑌𝑖 = 𝛼1 + 𝛽1𝐺𝑖 + 𝛾1𝑊𝑖 + 𝛿1𝐺𝑖𝑊𝑖 + 𝜖𝑖 (with 

interaction effect), respectively. In these figures, the interacting covariate 𝑊𝑖 is simplified as a 
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−1

1

3

5

7

9

11

0 1 2

G

Y

Var(Y) = 1.09 Var(Y) = 1.7 Var(Y) = 3.4

−1

1

3

5

7

9

11

0 1 2

G

Y



 10 

binary factor for clarity. The genotype categories are plotted on the x-axis, and the simulated 

outcomes 𝒀 are on the y-axis, with variances for each genotype category annotated. The 

distributions of 𝒀 differ across the three genotype categories as shown in the sub-figure (c), but 

not observed in the sub-figure (a). The sub-figures (b) and (d) mirror (a) and (c), respectively, 

with the addition of labels by 𝑾 using the color orange (𝑊𝑖 = 0) and blue (𝑊𝑖 = 1). By 

comparing the sub-figures (b) and (d), the variation in 𝒀 distributions across genotype categories, 

as observed in sub-figure (c), highlights the variance heterogeneity driven by the interacting 

effect, 𝑮𝑾. 
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Figure S2. 

(a)                                                                                        (b) 

     

Figure S2. Interaction effect induces both variance and covariance heteroscedasticity in 

two phenotypic traits. 

Sub-figures (a) and (b) depict the distribution of three covariance elements on the x-axis, 

including 𝑐𝑜𝑣(𝒀1, 𝒀2), 𝑣𝑎𝑟(𝒀1) and 𝑣𝑎𝑟(𝒀2), across different genotypes, marked by varying 

colors within each covariance element. These measures are plotted using 1,000 datasets, and 

each dataset contains 1,000 samples of 𝒀1 and 1,000 samples of 𝒀2, which were simulated from 

multivariate normal distributions with and without gene-environment interaction terms: 

(𝑌1,𝑖
𝑌2,𝑖

) ~𝑀𝑉𝑁 (𝛼1+𝛽1𝐺𝑖+𝛾1𝑊𝑖
𝛼2+𝛽2𝐺𝑖+𝛾2𝑊𝑖

, Σ = [𝑈𝑛𝑖𝑓(0,1)
𝑈𝑛𝑖𝑓(0,1)

𝑈𝑛𝑖𝑓(0,1)
𝑈𝑛𝑖𝑓(0,1)

]) and 

(𝑌1,𝑖
𝑌2,𝑖

) ~𝑀𝑉𝑁 (𝛼1+𝛽1𝐺𝑖+𝛾1𝑊𝑖+𝛿1𝐺𝑖𝑊𝑖
𝛼2+𝛽2𝐺𝑖+𝛾2𝑊𝑖+𝛿2𝐺𝑖𝑊𝑖

, Σ = [𝑈𝑛𝑖𝑓(0,1)
𝑈𝑛𝑖𝑓(0,1)

𝑈𝑛𝑖𝑓(0,1)
𝑈𝑛𝑖𝑓(0,1)

]) , as shown in sub-figures (a) and 

(b), respectively. We then can calculate the three covariance/variance components, 𝑐𝑜𝑣(𝒀1, 𝒀2), 

𝑣𝑎𝑟(𝒀1) and 𝑣𝑎𝑟(𝒀2), for each dataset. The two sub-figures draw the distribution of the 

covariance/variance components of the 1,000 datasets. Sub-figure (a) shows no visual distinction 

in the distribution of these statistical measures across genotypes when interaction is absent. In 
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contrast, sub-figure (b) demonstrates noticeable differences in 𝑐𝑜𝑣(𝒀1, 𝒀2) , 𝑣𝑎𝑟(𝒀1)  and 

𝑣𝑎𝑟(𝒀2) across genotypes when interaction effects are present.  
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Figure S3.  

(a)                                                                          (b)                                         

 

 

(c)                                                                     (d) 

 

 

Figure S3. Distribution of the four lipids panel-related traits before and post the inverse 

normal transformation (INT) in UKBB analysis 

In our UK Biobank (UKBB) analysis of 288,709 individuals, we investigated four traits: high-

density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), 

triglycerides (TGs), and body mass index (BMI). Grey denotes the distribution prior to 

intervention (INT), and yellow indicates the distribution post-INT. For TGs, we transformed the 
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raw data using the natural logarithm for further analysis, as depicted in sub-figure (d). The 

dashed vertical line marks the mean of each distribution. We observed that the distributions of 

these traits are skewed, as evidenced by the means not aligning with the peaks of the histograms. 
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Figure S4.  

 

Figure S4. Illustration of the multivariate Levene’s test framework. 

Multivariate Levene’s test framework is a three-step process that includes adjustment for 

genotype and confounders, applying univariate Levene’s test for each one of the 𝐽 traits, and then 

combinesthe 𝐽 p-values using Cauchy Combination Test (CCT) to compute the final Multivariate 

Levene’s p-value to determine overall significance. 
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Figure S5.  

 

Figure S5. Power results for UKBB inspired simulations of SCAMPI and Multivariate 

Levene’s test varying proportions of traits with interactions. 

The power for UKBB inspired simulation of SCAMPI and Multivariate Levene’s test from two 

scenarios is depicted by overlaying different sparsity levels in two sub-figures. Each sub-figure 

corresponds to the two magnitudes of the main effects from interacting covariates (𝛾 =0.05 for 

mild and 𝛾 =0.25 for strong effects). For each of the two scenarios, we assume a sample size of 

200,000 and the test SNP has a MAF of 0.05. We plot the power of SCAMPI (denoted as color 

yellow) and Multivariate Levene’s test (denoted as color green) with different proportions of 

traits with interactions (25%, 50%, and 100%, denoted as different line types) across values of 

the interaction effect 𝛿. 

 

 

 

 



 17 

Figure S6.  

(a) 
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(b) 
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(c) 
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Figure S6. Additional power results for SCAMPI and Multivariate Levene’s test varying 

proportions of traits with interactions. 

The power of SCAMPI and Multivariate Levene’s test across eighteen scenarios is depicted by 

overlaying different sparsity levels in eighteen sub-figures. Each scenario is defined by a distinct 

combination of variables: number of phenotypes (𝐽 = 4, 6, 8), magnitude of main effects from 

interacting covariates (𝛾 =0.05 for mild and 𝛾 =0.25 for strong effects), and correlation strength 

among traits (σ2 = 0.1 for mild, σ2 = 0.3 for medium, and σ2 = 0.5 for strong). The results are 

organized by number of phenotypes (𝐽 = 4, 6, 8) in sub-figure (a), (b) and (c). For each sub-

figure, we assume 200,000 samples and that the test SNP has a MAF of 0.05. Within each sub-

figure, we plot the power of SCAMPI (denoted as color yellow) and Multivariate Levene’s test 

(denoted as color green) with different proportions of traits with interactions (25%, 50%, and 

100%, denoted as different line types) across values of the interaction effect 𝛿.  
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Figure S7.  

 

Figure S7. Q-Q plot of the genome-wide results on lipid traits in UKBB using SCAMPI  

The corresponding Q-Q plot of the 210 SNPs displayed in the Manhattan plot in figure 3. The 

dash green line indicates the pre-specified study-wide significance (𝛼 = 1.67 × 10−7). 
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Figure S8.  

 

(b) 

 

Figure S8. Conditional SCAMPI analysis adjusting for APOE SNPs 

Plots (a) and (b) are QQ plot and Manhattan plot based on the SCAMPI p-values analyzing 

HDL-C, LDL-C, TGs and BMI in UKBB. The analysis involves 241,167 independent 
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participants. In this analysis, we adjust for the mean and variance effects of five APOE SNPs, 

rs440446, rs769449, rs769450, rs429358, and rs7412. SNPs having more than 10% missing are 

removed from the visualization. The p-value threshold is 1.67 × 10−7 to account for the 

approximately 300,000 tests using Bonferroni correction (solid horizontal line). In the Manhattan 

plot, the rsID of the SNP having the largest p-value within each chromosome is labeled.  
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Figure S9. 

 

 

Figure S9. Computational performance of SCAMPI for analyzing 6,000,000 SNPs 

Number of hours it will take SCAMPI to analyze 6,000,000 SNPs for different sample sizes and 

number of traits assuming 1,000 job instances by using High-Performance Computing (HPC) 

cluster hosted by Emory University Rollins School of Public Health (RSPH). Like Figure 4, the 

computational run time is benchmarked based on the average time of 1,000 simulations for 

different scenarios with varying trait number and sample sizes on RSPH HPC.  
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Figure S10. 

(a) 

 

(b) 
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Figure S10. Computational performance of SCAMPI estimated using Apple M1 chip 

Computational run time of SCAMPI for different sample sizes and number of traits using local 

MacBook Pro with Apple M1 chip. Computational run time is based on average of 1,000 

simulations for different scenarios with varying trait number and sample size. In Figure S10 (a), 

the first y-axis displays the time in seconds to complete SCAMPI for one SNP at different 

configurations. The second y-axis shows hours required to complete analyzing 300,000 SNPs 

assuming 1,000 job instances on a high-performance cluster. Figure S10 (b) displays the hours 

required to complete analyzing 6,000,000 SNPs assuming 1,000 job instances on a high-

performance cluster. 
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