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Brain states information:
While there are several ways to identify recurring brain states, we replicated our prior work here

(1,2). In brief, we applied nonlinear manifold learning and 2-step Diffusion Mapping to project task-based

fMRI data from the Human Connectome Project S500 release (3) into a lower-dimensional space. Data

from the minimal HCP preprocessing pipeline was used here. We included six tasks (motor, working

memory, social, emotional, relational, and gambling) from 390 participants for state identification after

quality control (1). As this dataset covers a range of paradigms, it has the potential to uncover brain states

underlying different cognitive processes. Identifying brain states in an external dataset also helps mitigate

potential overfitting concerns.

After fMRI data was reduced and projected into a lower-dimensional space, time points showing

similar activation patterns were closer. K-means clustering was then used to identify 4 recurring brain

states with distinct activation patterns. The number of brain states was determined using the

Calinski-Harabasz criterion (4). Based on the dominant task conditions in each brain state, we

characterized them as fixation, high-cognition, low-cognition, and cue/transition (Supplementary Table
1). We identified the centroid of each state cluster to serve as its representative time point for later

analyses.

Our previous work also investigated the brain networks involved in these brain states. For each

representative time point, we first identified the activated and deactivated brain regions in a set of

canonical brain networks (defined as having activation above or below 0, respectively). The activation or

deactivation percentage was computed by dividing the number of activated or deactivated brain regions

by the total number of brain regions in a network.

We found that different brain networks were activated differently in each brain state

(Supplementary Table 2). For instance, the visual networks showed high activation percentages in the
high-cognition brain state but low activation during fixation. This may be partly due to participants being

shown more complex visual stimuli during tasks than fixation. The activation of different brain networks

also followed what cognitive processes were associated with each state. For example, the entire motor

network was activated for the low-cognition state, which was strongly associated with the motor task.

https://www.zotero.org/google-docs/?V9Dcjr
https://www.zotero.org/google-docs/?ZTDYUj
https://www.zotero.org/google-docs/?cYAua5
https://www.zotero.org/google-docs/?M7oWHJ


Supplementary Table 1. Number of volumes associated with each task condition for the four recurring
brain states

Fixation High-cognition Low-cognition Cue/Transition

Fixation 635 0 20 65

Cue 41 3 6 158

Working memory (0 back) 10 56 99 123

Working memory (2 back) 1 201 10 76

Emotion (Fear) 10 42 0 48

Emotion (Neutral) 23 12 99 16

Gambling (Win) 0 100 25 35

Gambling (Loss) 0 101 10 49

Motor (Tongue) 0 1 52 12

Motor (Left foot) 8 5 41 13

Motor (Left hand) 7 0 45 15

Motor (Right foot) 0 0 55 12

Motor (Right hand) 0 1 50 15

Social (Mental) 0 113 0 47

Social (Random) 0 111 0 109

Relational (Match) 3 9 17 40

Relational (Relation) 3 90 5 9



Supplementary Table 2. Networks showing the highest activation and deactivation percentages for each
state

Fixation High-cognition Low-cognition Cue/transition

Activation
percentages

DMN
(88.89%)

VAs
(100%)

Motor network
(100%)

Visual I (100%)

Motor network
(85.71%)

Visual II
(88.87%)

MF
(86.21%)

VAs (72.22%)

MF
(82.76%)

FP
(82.35%)

Cerebellum
(84%)

Visual II (66.67%)

Deactivation
percentages

VAs
(94.44%)

Motor network
(87.76%)

Visual I
(100%)

MF (89.66%)

Visual I
(66.67%)

DMN
(83.33%)

Visual II, VAs, and
DMN

(66.67%)

DMN (88.87%)

Visual II
(66.67%)

Subcortical
(79.31%)

Motor (83.67%)

This table shows the canonical functional networks with the three highest activation and deactivation
percentages for each brain state. The actual activation and deactivation percentage values were included
in parentheses. DMN, default mode network; MF, medial frontal network; VAs, visual association network;
FP, frontoparietal network.



Functional magnetic resonance imaging preprocessing and quality control:
For the PNC rest cohort, we retained 1441 participants after excluding individuals failing

preprocessing benchmarks (i.e., missing resting-state fMRI data, issues with skull stripping, nonlinear or

linear registration). All participants had the same number of volumes (N=124). We removed individuals if

they were missing brain coverage (N=27), had over 20% of their volumes scrubbed due to motion (N=72),

or were missing age information (N=17). To ensure that no one time point showed a significantly worse fit

than the others during non-negative least squares regression, we removed participants if any of their time

points showed a significant outlier residual (N=1).

For the HBN rest cohort, 1588 participants remained after excluding individuals who did not pass

the preprocessing benchmarks or had missing resting-state data. We also removed individuals with an

incomplete scan (fewer than 375 volumes; N=48). Similar to the PNC rest cohort, individuals with missing

brain coverage (N=148), over 20% of their volumes scrubbed due to motion (N=38), and missing age

information (N=79) were excluded from further analysis. No participant showed a significant outlier

residual in the model.

For the HBN movie cohort, we had 1718 participants after excluding people who did not meet

preprocessing benchmarks. To preserve the continuous nature of the naturalistic paradigm, we did not

censor volumes based on motion here. Instead, individuals with mean framewise displacement (MFD)

over 0.25mm were excluded (N=195). We additionally removed participants with an incomplete scan

(fewer than 750 volumes; N=49), missing brain nodes (N=80), or behavioral information (N=82). No

participant in this cohort had an outlier residual for any of their time points.

Preprocessing for the MLS longitudinal data was performed slightly differently. Exclusion criteria

were first applied to each visit. We retained 493 cohort 1 visits and 669 cohort 2 visits after selecting ones

that passed all preprocessing benchmarks and had a MFD less than 0.2mm for the first Go/No-Go task

run. Every task run had 93 volumes. To retain as many visits as possible for longitudinal analysis, we

removed brain nodes with incomplete coverage from all participants (instead of runs with missing brain

coverage, 16 and 18 brain nodes were removed from cohorts 1 and 2, respectively). Four visits from

cohort 2 were excluded due to having an outlier residual during regression. The last exclusion criterion

was at the participant level. We removed participants with only 1 available visit (final N: cohort 1: 479

visits, 103 unique participants; cohort 2: 639 visits, 150 unique participants; see Supplementary Figure 1
for further visit breakdown).

To visualize the longitudinal trajectories and explore potential sex differences, we combined both

MLS cohorts together. For consistency, we re-extracted state engagement variability measures after

removing the same set of brain nodes with missing coverage (N=19) from individuals in both cohorts.

Additionally, one cohort 1 and four cohort 2 participants were excluded due to having outlier residuals

here. The final analysis included 1116 visits and 252 unique participants.

For the IMAGEN dataset, we only analyzed participants with all three available visits. After

preprocessing exclusion criteria were applied, we retained 660 participants. We excluded individuals if



their visits showed MFD over 0.25 (N=116). Almost all participants had the same number of volumes from

visit 1 (444 volumes). Still, the volume numbers varied in visit 2 (most participants had between 300–350

volumes) and 3 (most participants had between 300–370 volumes). For this reason, we decided to

exclude anyone if they had fewer than 444 volumes for visit 1 (N=2) or fewer than 300 volumes for visit 2

and 3 (N=2). We additionally excluded participants with missing brain coverage (N=4). Four additional

participants were removed from all analyses due to having outlier residuals. After all exclusion criteria, we

included 530 participants with both brain and age information for our analysis.

Supplementary Figure 1. Visit number for MLS. The two histograms showed how many participants
were included for each visit number for MLS cohort 1 A) and cohort 2 B).

PNC EF measures
From the PNC CNP, we selected tasks measuring the executive control and complex cognition

domains based on previous work (5). The Penn Conditional Exclusion Test, Penn Continuous

Performance Test, and Penn Letter N-back Test evaluated executive control, whereas the Penn Verbal

Reasoning Test, Penn Matrix Reasoning Test, and Penn Line Orientation Test assessed complex

cognition.

https://www.zotero.org/google-docs/?UjuGqi


Supplementary Table 3. Visit effects on state engagement variability in IMAGEN.

Fixation

Predictor Beta T-value P-value

Age 14 vs. Age 19 2.431e-02 t(1056)=2.451 0.014

Age 14 vs. Age 22 3.736e-02 t(1056)=3.767 <0.001

Age 19 vs. Age 22 1.305e-02 t(1056)=1.316 0.189

High-cognition

Predictor Beta T-value P-value

Age 14 vs. Age 19 1.374e-02 t(1056)=2.101 0.036

Age 14 vs. Age 22 1.507e-02 t(1056)=2.304 0.021

Age 19 vs. Age 22 1.325e-03 t(1056)=0.203 0.840

Low-cognition

Predictor Beta T-value P-value

Age 14 vs. Age 19 -7.699e-04 t(1056)=-0.403 0.687

Age 14 vs. Age 22 -1.190e-03 t(1056)=-0.622 0.534

Age 19 vs. Age 22 -4.203e-04 t(1056)=-0.220 0.826

Cue/transition

Predictor Beta T-value P-value

Age 14 vs. Age 19 1.092e-02 t(1056)=1.767 0.078

Age 14 vs. Age 22 7.844e-03 t(1056)=1.269 0.205

Age 19 vs. Age 22 -3.077e-03 t(1056)=-0.498 0.619



Supplementary Table 4. LME other covariates for MLS cohort 1

Fixation

Predictor Beta T-value P-value

Sex 0.036 0.380 0.704

Age-by-sex -0.004 -0.654 0.513

High-cognition

Predictor Beta T-value P-value

Sex -1.217e-02 -0.199 0.843

Age-by-sex -3.637e-04 -0.083 0.934

Low-cognition

Predictor Beta T-value P-value

Sex -1.360e-02 -0.811 0.418

Age-by-sex 4.314e-04 0.360 0.719

Cue/transition

Predictor Beta T-value P-value

Sex 0.029 0.516 0.606

Age-by-sex -0.003 -0.738 0.461

Supplementary Table 5. LME other covariates for MLS cohort 2

Fixation

Predictor Beta T-value P-value

Sex 0.123 0.801 0.424

Age-by-sex -0.005 -0.745 0.457

High-cognition

Predictor Beta T-value P-value

Sex 4.682e-02 0.483 0.629

Age-by-sex -1.925e-03 -0.453 0.651

Low-cognition



Predictor Beta T-value P-value

Sex -6.277e-03 -0.235 0.814

Age-by-sex 3.064e-04 0.261 0.794

Cue/transition

Predictor Beta T-value P-value

Sex 0.068 0.711 0.477

Age-by-sex -0.002 -0.557 0.577



Supplementary Table 6. MANOVA other covariates (PNC and HBN)

PNC Rest

Predictor F-stat P-value

Sex F(4,1201)=1.133 0.340

HBN Rest

Predictor F-stat P-value

Sex F(4,1268)=1.884 0.111

HBN Movie

Predictor F-stat P-value

Sex F(4,1305)=4.084 0.003



Supplementary Table 7. LME other covariate for IMAGEN

Fixation

Predictor Beta T-value P-value

Sex 1.916e-02 t(1315)=1.422 0.155

(Difference between
Age 14 and 19)-by-sex

2.527e-02 t(1056)=1.607 0.108

(Difference between
Age 19 and 22)-by-sex

2.863e-02 t(1056)=1.821 0.069

High-cognition

Predictor Beta T-value P-value

Sex 1.496e-03 t(1269)=0.164 0.870

(Difference between
Age 14 and 19)-by-sex

2.042e-02 t(1056)=1.970 0.049

(Difference between
Age 19 and 22)-by-sex

1.699e-02 t(1056)=1.639 0.102

Low-cognition

Predictor Beta T-value P-value

Sex -2.606e-04 t(1322)=-0.101 0.920

(Difference between
Age 14 and 19)-by-sex

6.861e-03 t(1056)=2.264 0.024

(Difference between
Age 19 and 22)-by-sex

5.044e-03 t(1056)=1.664 0.096

Cue/transition

Predictor Beta T-value P-value

Sex 2.481e-02 t(1274)=2.890 0.004

(Difference between
Age 14 and 19)-by-sex

8.386e-03 t(1056)=0.856 0.392

(Difference between
Age 19 and 22)-by-sex

2.586e-02 t(1056)=2.640 0.008



Supplementary Figure 2. EF by age in PNC A) and HBN B).



Supplementary Table 8. Model parameters from predicting EF using state engagement variabilities

Brain states/Model coefficients Trained in HBN/Tested in PNC Trained in PNC/Tested in HBN

Fixation -20.203 1.628

High-cognition 83.631 2.671

Low-cognition -5.087 6.675

Cue/transition 6.951 -4.231

Supplementary Table 9. Model parameters from predicting age using state engagement
variabilities

Brain states/Model coefficients Trained in HBN/Tested in PNC Trained in PNC/Tested in HBN

Fixation 0.412 0.518

High-cognition 11.027 10.112

Low-cognition 3.679 8.032

Cue/transition -2.780 -8.733

Note: Models were first trained using all participants with available age and state engagement variability
information before being applied to unseen individuals with available behavior and state engagement
variability data.

Sensitivity analysis revealed consistent results when controlling for clinical diagnosis

As we did not exclude participants diagnosed with psychiatric disorders, we further examined

whether results would remain consistent after controlling for diagnostic status. We mainly focus on the

HBN dataset here, as the majority of HBN participants were diagnosed with psychiatric disorders.

Participants were separated into two groups based on whether they had received a clinical diagnosis or

not. We reran our MANOVA analyses using only participants with available diagnostic information (rest:

69 participants with no diagnosis, 831 participants with at least one diagnosis; movie: 87 participants with

no diagnosis, 850 with at least one diagnosis). As in the primary findings, state engagement variability

increased with age when including clinical diagnosis as a covariate (rest: F(4,892)=31.266, p<0.001;

movie: F(4,926)=47.967, p<0.001). Clinical diagnosis did not show a main effect on state engagement

variability (rest: F(4,892)=0.409, p=0.803; movie: F(4,926)=1.957, p=0.099). Alterations from typical state

engagement variability were linked to worse EF performance when controlling for age and clinical

diagnosis (r=-0.267; p<0.001). These results suggest that the observed developmental patterns remain

robust even after accounting for the diagnostic group.



Reference
1. Gao, S., Mishne, G. & Scheinost, D. Nonlinear manifold learning in functional magnetic resonance

imaging uncovers a low-dimensional space of brain dynamics. Hum. Brain Mapp. 42, 4510–4524
(2021).

2. Ye, J. et al. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task
Switching Revealed by Overlapping Brain States. Biol. Psychiatry 94, 580–590 (2023).

3. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: An overview. NeuroImage 80,
62–79 (2013).

4. Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).
5. Moore, T. M., Reise, S. P., Gur, R. E., Hakonarson, H. & Gur, R. C. Psychometric properties of the

Penn Computerized Neurocognitive Battery. Neuropsychology 29, 235–246 (2015).

https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq
https://www.zotero.org/google-docs/?t7dkyq

