
Supplementary Document S2: Discussion of machine 
learning results predicting detectability of ncORFs. 
 
To better understand and estimate the differences between non-coding ORFs (ncORFs) that we 
detect and those that we do not detect and the differences between HLA-I peptides that we 
detect and those that we do not detect by Mass Spectrometry (MS), we have trained two 
models based on the properties of the detected and undetected ncORFs and HLA-I peptides. 
Inferences from these model results do not necessarily represent causality, yet they estimate 
how several amino acid sequence-based features may influence detectability by MS. Section 1 
below describes the ncORF classification model, and Section 2 describes the HLA-I peptide 
classification model. 
 

1.  ncORFs microproteins classification model  
 
To discern potential distinctions between detected and undetected ncORF microproteins, we 
curated a dataset encompassing both categories and applied a Statistical Learning model for 
analysis. 
 
Our analysis focused on a cohort of 7264 ncORFs, comprising 1785 that were detected and 
5479 that remained undetected. Utilising the amino acid sequences corresponding to all ncORF 
microproteins, we computed a comprehensive set of 35 attributes. This process involved 
leveraging the Bio.SeqUtils.ProtParam module from BioPython and the Amino Acid Indices 
version 9.2 (https://www.genome.jp/). Subsequently, we employed the Boruta algorithm 
(https://gitlab.com/mbq/Boruta/) to select the most relevant features from the pool of 35 
attributes. 
 



 
Figure 1. Boruta selected attributes. The Boruta algorithm tries to capture all the important 
features with respect to the outcome variable represented by ncORF peptide detectability. The 
Z-score, also known as the standard score, is a statistical measurement that describes a value's 
relationship to the mean of a group of values. The Boruta algorithm iteratively assesses the 
importance of each feature by comparing the Z-scores of actual features against those of 
randomly permuted shadow features. Features that consistently have higher Z-scores than the 
shadow features are considered important, while those with lower Z-scores are considered 
unimportant and are removed from the model. Blue box plots correspond to minimal, average 
and maximum Z score of a shadow attribute. Red and green box plots represent Z scores of 
respectively rejected and confirmed, and yellow boxplots are considered tentative attributes. 
 
Boruta confirmed 36 attributes (Figure 1, green) and no attributes were deemed unimportant. 
Since orf_biotype is a 'categorical feature' with 7 different types, we replaced orf_biotype with 7 
features representing each category. We added the Instability Index attribute, and altogether, 
we used 43 attributes to test a cost-sensitive binary classification TensorFlow-Keras model. 

 
1. ElectrIonInteracPotentialVal - Electron-ion interaction potential (Veljkovic et al., 

1985) 
2. log10RelMutab - Relative mutability (Dayhoff et al., 1978b) 
3. ratioAvrgComputedComp - Ratio of average and computed composition 

(Nakashima et al., 1990) 
4. AmphiphilicityIndex - Amphiphilicity index (Mitaku et al., 2002) 
5. percent_disorder - Bio.SeqUtils.ProtParam 



6. netCharge - Net charge (Klein et al., 1984) 
7. FreeESol_inWater - Free energy of solution in water, kcal/mole (Charton-

Charton, 1982) 
8. percentage_amino_acids_in_Sheet - Bio.SeqUtils.ProtParam 
9. AvrgVolResidues - Average volumes of residues (Pontius et al., 1996) 
10. AlphaHelix_Propensity - Alpha-helix propensity derived from designed 

sequences (Koehl-Levitt, 1999) 
11. pI - Isoelectric point (Zimmerman et al., 1968) 
12. SideChainContrib_ProtStab - Side-chain contribution to protein stability (kJ/mol) 

(Takano-Yutani, 2001) 
13. percentage_amino_acids_in_Turn - Bio.SeqUtils.ProtParam 
14. NormFreqAlphaHelixUnweight - Normalised frequency of alpha-helix (Maxfield-

Scheraga, 1976) 
15. PhyloCSF - Phylogenetic Codon Substitution Frequencies 
16. Percentage_basic_amino_acids - Bio.SeqUtils.ProtParam 
17. PositiveCharge - Positive charge (Fauchere et al., 1988) 
18. aa_length - length of ncORFs expressed as the corresponding number of amino 

acids 
19. RatioAccesBuriedMolfrac - Ratio of buried and accessible molar fractions (Janin, 

1979) 
20. PercExposedResidues - Percentage of exposed residues (Janin et al., 1978) 
21. RelStabilScale - The relative stability scale extracted from mutation experiments 

(Zhou-Zhou,  2004) 
22. NEIGIndex - NNEIG index (Cornette et al., 1987) 
23. NormFreqAlphaHelix - Normalised frequency of alpha-helix (Maxfield-Scheraga, 

1976) 
24. MeanPolarity- Mean polarity (Radzicka-Wolfenden, 1988) 
25. Flexibility - Bio.SeqUtils.ProtParam 
26. 8AcontactNumber - 8 A contact number (Nishikawa-Ooi, 1980) 
27. AliphaticIndex - Bio.SeqUtils.ProtParam 
28. NormFreqBetaSheetUnweight - Normalised frequency of beta-sheet, unweighted 

(Levitt, 1978) 
29. SolubilityIndex - Bio.SeqUtils.ProtParam 
30. MolWeight_div_aaLength - ratio Molecular Weight (Molecular weight Fasman, 

1976) to the corresponding length in number of amino acids 
31. SignalSeqHelicalPotential - Signal sequence helical potential (Argos et al., 1982) 
32. Avrg_FlexibilityIndices - Average flexibility indices (Bhaskaran-Ponnuswamy, 

1988) 
33. StabilityScale - The stability scale from the knowledge-based atom-atom 

potential (Zhou-Zhou,  2004) 
34. percentage_amino_acids_in_Helix - Bio.SeqUtils.ProtParam 
35. n_predHLAbinders_div_aaLength - ratio of number of predicted HLA-binder 

peptides (this study) to the corresponding length expressed in number of amino 
acids 



36. InstabilityIndex - Bio.SeqUtils.ProtParam 
37. Orf_biotype - uoORF, upstream overlapped open reading frame 
38. Orf_biotype - uORF,  upstream open reading frame 
39. Orf_biotype - intORF,  internal open reading frame 
40. Orf_biotype - lncRNA, long non-coding RNA 
41. Orf_biotype - dORF, downstream open reading frame 
42. Orf_biotype - processed transcript  
43. Orf_biotype - doORF, downstream overlapped open reading frame 

 
As the orf_biotype values represented categorical values and numeric values are required to 
generate and test the statistical model, 1 (as a value) was assigned to each ncORF with the 
corresponding orf_biotype category, and 0 when this did not apply. The ncORF Molecular 
Weight and the number of predicted HLA-binding peptide values were divided by the 
corresponding amino acid length. 
 
Given that 1785 ncORFs were detected while 5479 remain undetected, presenting an 
approximate ratio of 1:3, the dataset exhibits an inherent imbalance. Therefore, we employed a 
balanced weight for imbalanced classification in Keras to address the imbalance, and a neural 
network analysis to build, train, and evaluate a TensorFlow-Keras model (1). The dataset with 
the selected attributes was used to implement this model using Python 3, and pandas, numpy, 
matplotlib, and various components of TensorFlow and Keras for building and evaluating the 
model. Training and testing sets were separated from the target variable, allocating 80% for 
training and 20% for testing, using the train_test_split function from scikit-learn.  
 
Before fitting the model, the features were standardised using the StandardScaler, a 
preprocessing step to verify the features are on the same scale. The model was built as a 
sequential model consisting of multiple layers: the input layer with 16 neurons, ReLU activation, 
and L2 regularisation. Batch normalisation and dropout layers were added after each hidden 
layer to prevent overfitting. The output layer consisted of a single neuron with sigmoid activation 
for binary classification. 
 
The model was compiled using the Adam optimiser with a learning rate of 1e-3, binary cross-
entropy loss function, and accuracy as the metric. It was trained on the training data. The 
training was run for 60 epochs with a batch size of 12. The model was used to predict the target 
variable for the test set, and the predictions were used to calculate the Receiving Operating 
Characteristic Area Under the Curve, ROC AUC score and make binary predictions. 
 
  



Evaluation of the model: 
 
ROC AUC Score: 0.678 
Confusion Matrix: [[620 454] 
                                [119 260]] 
Classification Report:               
              precision  recall  f1-score   support         
0               0.84          0.58      0.68       1074         
1               0.36          0.69      0.48          379  
accuracy                                     0.61        1453   
macro avg            0.60           0.63     0.58          1453 
weighted avg       0.72           0.61     0.63          1453 
 

 
Figure 2. Receiving Operating Characteristic (ROC) Curve. 
 
Figure 2 shows the results of the model on the test set as a ROC plot. The ROC AUC score is 
an indicator of how well the Tensorflow-Keras binary classification model discriminated between 
detected and undetected ncORF peptides. A value of 0.68 indicates that the model exhibits a 
moderate capacity to distinguish between the detected and undetected open ORFs. The ROC 
AUC curve (orange) specifically shows the relationship between the true positive rate 
(sensitivity) and the false positive rate (1-specificity) for this model.  



Considering the confusion matrix results, the model made 260 correct predictions for the 
negative class (undetected) and 620 correct predictions for the positive class. However, it also 
misclassified 119 negative instances as positive and 454 positive instances as negative. 
 

 
Figure 3. Variable Importance scores bar plot. 
 
Supplementary Table S8 provides a complete list of all 7264 ncORFs, including their identifier, 
sequence, the 43 features that the model used for training, and the output probabilities from the 
TensorFlow-Keras model. 
 
The ratio of number of predicted HLA-binding peptides to ORF length (in amino acids) emerged 
as the highest importance attribute. The frequency of ORF detectability along this ratio and the 
proportions of detected and undetected are shown in Figure 4. Histogram distributions for 
detected and undetected ORFs appeared fairly similar, yet the model profits from these small 
differences. Besides, more than 94% of peptides (2,937 out of 3,116; 94.3%) matching ncORFs 
were found to be presented by HLA. 



 
Figure 4. Ratio of the Number of predicted HLA-binding peptides to the ORF amino acid 
length’s frequency represented as a Histogram plot (left side) and the corresponding 
Proportions plot (right side). 
 
The ORF Biotype, specifically ‘lncRNA’, becomes the second more important variable. Figure 5 
represents the number of ORF lncRNA microproteins with all the designated ORF biotypes 
along the ORF detectability (left side) and the corresponding proportions on the right side. 
 

 
Figure 5. ORF Biotype counts versus Biotype. A bar plot (left side) representing the designated 
ORF biotypes along with ORF detectability (left side), and the corresponding Proportions plot 
(right side). 
 
The ORF length expressed as the number of amino acids emerged as the third variable of 
importance. Figure 6 represents the frequency of the detected or undetected ORFs along their 
amino acid length (left side) and the corresponding proportions (right side). 



 

 
 Figure 6. ORF amino acid length. The frequency of ORF detectability and the corresponding 
ORF length in number of amino acids are illustrated as a histogram plot (left side) together with 
the Proportions plot (right side). 
 
While the model showed moderate discriminatory ability (as indicated by the ROC AUC score of 
0.68), a substantial number of instances were misclassified, as revealed by the confusion 
matrix, thus there are likely additional factors that influence the detectability of ncORF. 
 
The Number of Predicted HLA-binding peptides to length (amino acids) ratio appeared to be the 
most important attribute. Unsurprisingly, ncORFs rich in predicted HLA-binding peptides should 
be more easily detected.  
 
The designated biotype of the ORF, specifically whether it originates from a lncRNA, emerged 
as the second most important attribute for their potential detectability. ORF microproteins 
derived from lncRNAs and dORFs are a little less likely to be detected, while the uORFs, 
uoORFs, and intORFs are moderately more likely to be detected.  
 
Overall, the ncORF length affects detectability, as the shortest ncORFs are more difficult to 
detect. 
 

 
2. ncORF HLA-I predicted binder peptides classification model 

 
Considering the model results in section 1, where the number of predicted HLA-binding peptides 
may play an influential role in the ncORF detectability, and most MS-based proteomics 
approaches identify peptides, the next step was to focus on the analysis of ncORF peptide 
sequences. Then, to discern potential differences between detected and undetected HLA-I 
predicted binder peptides, we curated a dataset comprising both categories and applied a 
Statistical Learning model for analysis. 



 
We focused on 9-amino acid (9aa) long detected HLA-I predicted peptides, originating from 
ncORFs. We created a list of 341 9aa detected peptides, each with a binding score (min_rank) 
falling within the range of 0.1 to 1.7. We then paired these peptides, along with their 
corresponding best alleles, with undetected HLA-I predicted peptides of the same length (9aa), 
ensuring alignment with the closest possible binding score and allele. 
 
From the combined set of all peptides (totaling 677), we derived a comprehensive array of 63 
attributes. These attributes were computed utilising both the Bio.SeqUtils.ProtParam module 
from BioPython and the Amino Acid Indices version 9.2 (https://www.genome.jp/). Employing 
the Boruta algorithm (https://gitlab.com/mbq/Boruta/), we selected the most discriminative 
features from the pool of 63 attributes. 
 



 
Figure 7. Boruta selected attributes. As described in the previous section, features that 
consistently have higher Z-scores than the shadow features are considered important, while 
those with lower Z-scores are considered unimportant and are removed from the model. Blue 
box plots correspond to minimal, average and maximum Z score of a shadow attribute. Red and 
green box plots represent Z scores of respectively rejected and confirmed, and yellow boxplots 
are considered tentative attributes. 
 



Boruta selected and confirmed 20 attributes (Figure 7, green boxplots), 4 were assessed as 
tentative (yellow boxplots), all 24 are shown on the left side green panel. 39 attributes were 
rejected (red boxplots) as being not useful in discriminating between detected and undetected. 
We further selected all confirmed 20 (green boxplots) and added 2 tentative attributes. The 
following 22 attributes associated with these ncORF peptides were finally utilised to test a 
statistical learning Multilayer Perceptron (2) model, (MLPClassifier): 
 

1. Partition_coeff - Partition coefficient (Garel et al., 1973) 
2. Citrullination_aa_count - Number of residues that can be modified by Citrullation 
3. FreeEnergySolutionWater - Free energy of solution in water, kcal/mole (Charton-

Charton, 1982) 
4. pK(_COOH) -  pK-a(RCOOH) (Fauchere et al., 1988) 
5. nHbondDonors - Number of hydrogen bond donors (Fauchere et al., 1988) 
6. percentExposedResidues - Percentage of exposed residues (Janin et al., 1978) 
7. Modified_KD_hydrophob_scale - Modified Kyte-Doolittle hydrophobicity scale (Juretic et 

al., 1998) 
8. Hydrophathy_index - Hydropathy index (Kyte-Doolittle, 1982) 
9. KD_Hydrophobicity - Hydrophobicity (Kyte & Doolittle, 1982) 
10. solubility_index - Bio.SeqUtils.ProtParam 
11. SideChainHydropathyCorrectSolvation - Side chain hydropathy, corrected for solvation 

(Roseman, 1988) 
12. basic_aa_count - number of basic amino acid residues. 
13. NEIG_index - NNEIG index (Cornette et al., 1987) 
14. positive_charge - Positive charge (Fauchere et al., 1988) 
15. Polarity - Polarity (Grantham, 1974) 
16. peptide_disorder_percentage - Bio.SeqUtils.ProtParam 
17. Avrg_FlexibilityIndices - Average flexibility indices (Bhaskaran-Ponnuswamy, 1988) 
18. CompAA_nuCelprot - Composition of amino acids in nuclear proteins (percent) (Cedano 

et al.,  1997) 
19. Instability_index - Bio.SeqUtils.ProtParam 
20. pI - Isoelectric point (Zimmerman et al., 1968) 
21. 8AcontactNumber - 8 A contact number (Nishikawa-Ooi, 1980) 
22. Charge_value - Bio.SeqUtils.ProtParam 

 
A dataset with these attributes served as a basis to generate an MLP Classifier model using 
Python 3, and software/libraries: pandas, numpy, matplotlib, sklearn. This involved data 
preparation, model initialisation and tuning, model fitting, prediction, and evaluation. First, the 
features of the dataset were separated from the target variable, and the data was split into 
training and testing sets, allocating 80% for training and 20% for testing, while ensuring 
reproducibility by setting the random state to 42. 
 
Before fitting the model, the features were standardised using the StandardScaler, a 
preprocessing step that removes the mean and scales the features to have unit variance. Next, 
an MLP Classifier model was initialised with a maximum of 8000 iterations and a random state 



of 42. The model was then tuned using grid search with cross-validation, exploring various 
hyperparameters including the hidden layer sizes, activation function, and regularisation 
parameter. Grid search with cross-validation tuned the model using the specified 
hyperparameters: Hidden layer sizes: (280,) Activation function: 'tanh', and Regularization 
parameter (alpha): 0.01. 
 
Upon completion of the tuning process, the best performing model was identified based on the 
grid search results. This model was used to make predictions on the previously untouched test 
set, allowing for an assessment of its predictive capabilities. Finally, a range of evaluation 
metrics including ROC AUC, F1 score, accuracy, precision, recall, and the confusion matrix 
were calculated to gauge the model's performance on the test set. 
 
Evaluation of the model: 
 
ROC AUC Score:  0.694 
F1 Score:              0.732 
Accuracy Score:   0.699 
Precision Score:   0.737 
Recall Score:        0.727 
Confusion Matrix: [[39 20] 
                              [21 56]] 
 
Considering all the metrics results, the model demonstrates relatively balanced performance. 
The accuracy score of 0.699 indicates that approximately 70% of the predictions were correct. 
The precision and recall scores, both around 0.73, suggest that the model is reasonably good at 
correctly identifying positive cases and minimising false positives. 
 
Looking at the confusion matrix, the model made 39 correct predictions for the positive class 
(detected) and 56 correct predictions for the negative class. However, it also misclassified 21 
negative instances as positive and 20 positive instances as negative. 
 
Figure 8 shows a ROC plot for the test set of 677 nc ORF peptides.  



 
Figure 9. MLPClassifier’s output ROC AUC curve. The ROC AUC score is an indicator of how 
well the MLP Classifier model distinguishes between detected and undetected ncORF peptides. 
A value of 0.69 suggests that the model has some ability to differentiate between the classes. 
The ROC AUC curve (orange) specifically shows the relationship between the true positive rate 
(sensitivity) and the false positive rate (1-specificity) for the MLP binary classification model. 
Here, the model's performance changes as the discrimination threshold is adjusted, providing 
insights into its ability to correctly classify positive and negative instances. Then, the AUC value 
quantifies the overall predictive accuracy of the MLP model, with a higher AUC indicating better 
performance in distinguishing between detected and undetected peptides. 
 
Supplementary Table S7 provides a complete list of all 677 peptides, including their sequence, 
best allele, the 22 features that the model used for training, and the output probabilities from the 
model. 
 
 
Figure 10 shows the highest importance computed property, Instability Index versus the model-
predicted probability of detection. Instability index is usually calculated using various algorithms 
that consider factors such as amino acid composition, secondary structure, and other 
physicochemical properties. Figure 10 suggests an increase in ncORF HLA-I peptide 
detectability correlates with an increase in stability.   
 
 



 
Figure 10. Scatter plot of the probability of detection for each ncORF HLA-I predicted peptide 
based on the Instability Index. The detected ORF peptides are depicted in red. 
 
Figure 4 shows the Variable Importance scores for the attributes associated with the Instability 
Index according to the MLP model. 

 
Figure 11. Variable Importance scores bar plot. 
 
While the model showed moderate discriminatory ability (as indicated by the ROC AUC score) 
and achieved decent accuracy, precision, and recall scores, it also misclassified a notable 



number of instances. The model performance may improve e.g. when data on ncORFs HLA-I 
peptide abundance or other relevant attributes become available.  
 
Although the performance of the model is not optimal to classify peptides as detectable or 
undetectable, the most important features appear to be correlated, with the peptide Instability 
Index as the most important attribute for their potential detectability. 
 
A lower instability index suggests that a peptide is more stable, whereas a higher index 
indicates greater instability. The usefulness of this variable in the model can be explained by 
several key factors: 
 
Peptide Degradation: peptides with high instability indices are more prone to degradation. In 
MS-based experiments, unstable peptides may degrade during sample preparation, storage, or 
analysis, leading to reduced detectability. Stable peptides are more likely to remain intact, 
ensuring they reach the mass spectrometer and produce reliable signals. 
 
Ionisation Efficiency: the stability of a peptide can affect its ionisation efficiency. Unstable 
peptides might undergo partial degradation or modifications that alter their ionizable groups, 
impacting their ionisation efficiency and, consequently, their detectability by MS. 
 
Fragmentation Patterns: in MS/MS (tandem MS), peptides are fragmented to provide sequence 
information. Peptides with a high instability index might produce unpredictable or incomplete 
fragmentation patterns, complicating their identification and reducing confidence in their 
detection. 
 
Protein Expression and Processing: the stability of peptides can also reflect their processing 
and expression within the cell. Stable peptides are likely to be present in higher quantities and 
more consistently processed, leading to higher chances of detection. 
 
Biological Relevance: The Instability Index might correlate with other biologically relevant 
properties such as protein half-life, subcellular localisation, and interaction with other cellular 
components. These factors collectively influence the overall abundance and accessibility of 
peptides for MS analysis. 
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