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Supplementary Information section 1 
Quality Control (QC) 
 
The data analyzed in this study come from multiple sources: imputed ancient DNA sequences 
(shotgun sequences and 1240k enrichment reagent), sequences of people of European ancestry 
from the 1000 Genomes Project, and imputed SNP array data from the UK Biobank (genotyped 
using the UK Biobank Axiom Array). To generate datasets useful for filtering out variants that do 
not have reliable genotyping properties, we used principal components to identify groups of 
individuals with similar ancestry across different datasets. We then filtered out variants whose 
allele frequencies differed significantly between sample sets to minimize batch effects due to 
combining samples from different sources. Variant quality control involves a three-step procedure. 
 
Variant QC: Step 1 
 
We performed a first step QC that restricted to the 1240k sites for which we have particularly rich 
genotyping data. A variant passes provisional QC if it meets all the following criteria: 
 

1. It belongs to the 1240k SNP set. 
2. Chi2-test(aDNA_SG, aDNA_1240k) < 5 
3. Chi2-test(UKBB_UK, GBR_CEU) < chi2_thr 
4. Chi2-test(UKBB_EUR, GNOMAD_EUR) < chi2_thr 
5. INFO_WEA_1240k > 0.6 
6. INFO_WEA_SG > 0.6 

 
We define sample sets in Supplementary Table S1.1 and apply a chi-square test (chi2-test) to 
compare the allele counts of each variant across three pairs of sample sets. INFO_WEA_1240k 
and INFO_WEA_SG are IMPUTE2’s INFO scores for each variant, calculated for high-quality 
imputed individuals from western Eurasia with 1240k and shotgun sequences, respectively. We 
use the Bonferroni-corrected threshold (chi2_thr = 32.03) to filter variants. We select 336 pairs of 
high-quality imputed sequences from ancient individuals with both shotgun (SG) and 1240k 
enrichment reagent data, naming them aDNA_SG and aDNA_1240k. These two sets represent 
different types of sequences for the same individuals, ideally having identical allele frequencies. 
Allowing for a small error, we choose a chi-square test threshold of 5, resulting in 935,237 SNPs 
for the provisional variant QC step (Supplementary Figure S1.1). 
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Supplementary Table S1.1: Sample set used in the quality control of variants. 

Sample set name Number of 
samples 

Description 

aDNA_SG 336 Shotgun sequences of ancient individuals with both shotgun and 1240k 
enrichment reagent data 

aDNA_1240k 336 1240k sequences of ancient individuals with both shotgun and 1240k 
enrichment reagent data 

UKBB_UK 283 Sample from the UK Biobank used in this study with the country of birth 
being the UK. 

GBR_CEU 190 1000 GP samples from GBR and CEU populations 

UKBB_EUR 458,937 Allele frequency of the European subset of UKBB is presented in the 
af_EUR column of the variant manifest of pan-ukbb (2022-04-11). 

GNOMAD_EUR 4299 
Allele frequency of the European subset of GNOMAD is presented in the 
gnomad_genomes_an_EUR column of the variant manifest of pan-ukbb 
(2022-04-11). 

WEA0 79 
Western Eurasian individuals in our dataset with Date=0 years BP but not 
part of UKBB and 1KG. 

WEA1 959 
Western Eurasian individuals in our dataset with Date<1k years BP but not 
part of UKBB and 1KG 

UKBB 5935 
Sample from the UK Biobank used in this study. 

1KG 503 1000 GP samples from EUR populations after dropping up to 2nd-degree 
relatives. 

1KG_ALL 2504 All the samples from 1000GP 
GBR_CEU 190 1000 GP samples from GBR and CEU populations 

GNOMAD_NFE 15414 
Allele frequency in samples of non-Finnish European ancestry is 
represented by the AF_nfe field in the INFO columns of the GNOMAD 
v2.1.1 publicly available variant VCF files. 

1KG_match_UKBB 478 1KG samples that are ancestry matched with samples from UKBB 
UKBB_match_1kg 478 UKBB samples that are ancestry matched with samples from 1KG 
1KG_match_WEA1 314 1KG samples that are ancestry matched with samples from WEA1 
WEA1_match_1KG 314 WEA1 samples that are ancestry matched with samples from 1KG 
1KG_match_WEA0 40 1KG samples that are ancestry matched with samples from WEA0 
WEA0_match_1KG 40 WEA0 samples that are ancestry matched with samples from 1KG 

UKBB_match_WEA1 778 UKBB samples that are ancestry matched with samples from WEA1 
WEA1_match_UKBB 778 WEA1 samples that are ancestry matched with samples from UKBB 
UKBB_match_WEA0 61 UKBB samples that are ancestry matched with samples from WEA0 
WEA0_match_UKBB 61 WEA0 samples that are ancestry matched with samples from UKBB 
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Supplementary Figure S1.1: Allele frequency of 1240k SNPs in different sample sets. Each 
dot represents a SNP; blue dots are SNPs that passed the provisional QC, while orange ones 
failed. Both the x and y axes show allele frequency in the subset of individuals labeled on the 
corresponding axis. 

 
Variant QC: Step 2 
 
We next performed QC not just on the variants in the 1240k SNP set, but on all imputed variants 
in the 1000 Genomes Project variant set. 
 
We use the provisional QCed SNP set and prune them using plink2 with the --indep-pairwise 1000 
1 0.2 option. Then, we use the 5,935 individuals from the UKBB in our imputed dataset restricting 
to the pruned SNP set, using plink2 to calculate eigenvectors and project all individuals to calculate 
principal components (PCs). We use 4 subsets of samples to create 5 pairs of matching subsets 
with similar ancestry using the following procedure: For pop1 and pop2 non-overlapping subsets 
of individuals, we ran hierarchical clustering on their union set using the 
sklearn.cluster.AgglomerativeClustering package in Python on the top two PCs calculated above. 
The number of clusters (n_clusters) is the total number of individuals in these sets divided by 100, 
with a minimum of 10 clusters. Then, for each cluster, we pair individuals such that one is from 
pop1 and the other is from pop2 until no such pair is available. The set of all individuals that have 
been paired and are from pop1 is called pop1_match_pop2, and the other is called 
pop2_match_pop1. These two subsets consist of samples with similar ancestry based on the top 
two PCs. The 4 original subsets and their 5 matching pairs are detailed in Supplementary Table 
S1.1. These matched subsets of individuals are visualized in Supplementary Figure S1.2.  
 
For individual i with both shotgun and 1240k sequences that are in aDNA_SG and aDNA_1240k 
sets of sequences, we define Δi= (GTi(Shotgun) – GTi(1240k))/2 for each variant such that GTi(Y) 
means the imputed genotype in data type Y (shotgun or 1240k) for individual i for the variant of 
interest. A variant passes final QC if: 
 

1. Minor allele frequency in 1KG_ALL > 0.005 
2. mean(|Δ|)<0.05 
3. The p-value of the null hypothesis mean(Δ) = 0 is > 1e-5 
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4. P-chi2-normalized(GBR_CEU, GNOMAD_NFE) > 1e-5 
5. P-chi2-normalized(UKBB_match_1KG, 1KG_match_UKBB) > 1e-5 
6. P-chi2-normalized(WEA1_match_1KG, 1KG_match_WEA1) > 1e-5 
7. P-chi2-normalized(WEA1_match_UKBB, UKBB_match_WEA1 > 1e-5 
8. P-chi2-normalized(WEA0_match_1KG, 1KG_match_WEA0)  > 1e-5 
9. P-chi2-normalized(WEA0_match_UKBB,  UKBB_match_WEA0)  > 1e-5 
10. INFO_WEA_1240k > 0.6 
11. INFO_WEA_SG > 0.6 

 
Here, P-chi2-normalized(pop1, pop2) is the p-value of the chi-square statistic, divided by its mean 
over all variants, from the chi-square test between pop1 and pop2 given the allele counts. Allele 
frequency consistency between different pairs of sample sets is visualized in Supplementary Figure 
S1.3. 
 

 
Supplementary Figure S1.2: Ancestry-matched samples across different datasets. Each 
subplot displays ancestry-matched samples. The number of clusters is the n_clusters parameter 
used in the hierarchical clustering procedure, and n is the final number of ancestry-matched 
individuals in each sample set. 
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Supplementary Figure S1.3: Allele frequency consistency across datasets. The figure displays 
1,000,000 randomly selected variants that passed the filters (blue) and 1,000,000 that did not 
(orange). N represents the number of individuals in each subpopulation. Both the x and y axes 
show allele frequency in the subset of individuals labeled on the corresponding axis. 

 
Variant QC: Step 3 
 
To minimize discrepancies between the imputation of ancient DNA and UK Biobank data, we re-
imputed the UK Biobank genotyping array from scratch. We utilized Affymetrix confidence files 
to simulate genotype likelihoods and processed these through the same imputation pipeline 
employed for ancient DNA. We removed variants that did not pass QC steps 1 and 2 (79.87% of 
all variants); the remaining 20.13% of variants passing these steps are expected to have less 
discrepancy across different datasets and sequencing technology (Supplementary Figure S1.3). 
 
To further minimize the impact of batch effects from adding samples from the UK Biobank and 
1000 Genomes Project (1000GP) in our selection statistics that also co-analyzed ancient 
individuals derived from the GLMM method, we ran our analysis both with and without modern 
individuals. Let Z represent the Z-score of the estimated selection coefficient calculated using all 
samples in our studies, and 𝑍! represent the Z-score calculated excluding the modern samples. We 
employed a weighted least squares (WLS) approach on the two Z-scores and excluded all variants 
with Pearson residuals greater than 5.45. 
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Supplementary Figure S1.4: Comparison of Z-scores from GLMM, with (Z) and without (𝑍!) 
modern samples. Outliers, which are concerned could be due to batch effects, are identified and 
removed using Pearson residuals from weighted least squares. Colormap is |Pearson residual|. 

 
 
We fit a WLS for 𝑍 = 𝑎 + 𝑏𝑍! with weights = 1/(1 + 𝑐𝑍!") and c = 7.41e-4. The weights of WLS 
should be proportional to the variance of the response variable (Supplementary Figure S1.5). 
Weights are inferred empirically using the following approach. First, fit an Ordinary Least Square 
(OLS) for 𝑍 = 𝑎 + 𝑏𝑍!. 𝑍+ is the OLS prediction and 𝑍 − 𝑍+ is the residual. Define variable 𝑥 =
|𝑍!|, 𝑦 = 0𝑍 − 𝑍+1# − 1. Create 100 bins using percentiles of x and fit another OLS such that 𝑦2 =
𝑐𝑥̅", where 𝑥̅ and 𝑦2 represent mean values of x and y in each bin. We used the OLS and WLS 
functions of the statsmodels package in Python for this analysis.  
 
A total of 9,926,484 variants, including 8,212,921 SNPs and 1,713,563 indels, passed all three 
steps of QC, representing 18.95% of the 52,382,872 imputed variants. The counts of variants 
passing QC for different variant types (SNP or indel) and their presence in the PAN-UKBB, 
1240K, or UK Biobank axiom array SNP sets, are summarized in supplementary table S1.2.  
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Supplementary Figure S1.5: Empirical inference of weights for weighted least square (WLS).  

 
 

  

Supplementary table S1.2: Summary of variants (SNP and indels) that passed final quality 
control, categorized by their presence in different variant sets. 

Variant set Category based on presence in different variant sets 
(1: present, 0: absent) 

Variant set 
count 

SNP 1 0 1 0 1 1 1 1 8,212,921 

PAN-UKBB 1 1 1 0 1 0 1 0 8,976,393 

1240k 0 0 1 0 0 0 1 1 937,454 

UK Biobank Axiom 0 0 0 0 1 0 1 0 486,264 

Category count 

6,
75

1,
91

2 

92
9,

83
7  

80
8,

38
0 

78
3,

72
6 

35
8,

29
6 

16
5,

25
9 

12
7,

96
8 

1,
10

6  

9,926,484 
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Sample Quality Control 
 
For each imputed sample, we define an imputation quality score where GT is the most likely 
genotype based on the imputed genotype posterior GP = (GP0, GP1, GP2) and GP0 + GP1 + GP2=1. 
We only kept samples with high imputation quality score IQS>0.9. We used the KING software 
to capture duplicates and related samples up to the second degree. We used a greedy algorithm to 
prioritize samples by their IQS and drop all relatives up to the second degree until there are no two 
samples that are second-degree related or more. 
 
We next carried out a filtering step to remove individuals that we found were reducing the 
significance of real signals of selection, either because their assigned dates were incorrect, or 
because they had primary ancestry that was badly captured in the time transect. We ran a 
generalized linear model (GLM) with the date of the sample being the explanatory variable and 
allele counts as the response. We use the p-values to prioritize variants based on their association 
with the date. We restrict to high-quality variants in the 1240k SNP set using plink2 with the option 
--indep-pairwise 100 1 0.2 and a fake frequency file such that p-values calculated from the GLM 
are mapped to a minor allele frequency (MAF) value between 0 and 0.5, where the smallest p-
values are mapped to MAF=0.5 and the largest p-values are mapped to MAF=0. This way, plink2 
is prioritizing by larger values of MAF, which is equivalent to smaller (more significant) p-values. 
This pruned SNP set is used to calculate the top 100 principal components (PCs) of individuals in 
the provisional set. These 100 PCs are used as explanatory variables to fit a linear regression with 
the date of the samples as the response variable. If the estimated date and reported date are 
significantly different, we exclude those samples from our analysis using the following criteria: 
 

1. Date <15,000 years BP 
2. Date_SE <500 years or the absolute value of the regression residual <500 years 
3. P-value of Pearson residual > 1e-5 

 
Here, Date is the reported date of the sample and Date_SE is the reported standard error. We use 
outliers in the top two PCs to remove outliers with some African admixture. 
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Supplementary Information section 2 
Statistical criterion for genome-wide significance 
 
Establishing the Optimal Significance Threshold 
 
Numerous confounding factors, such as population structure, genetic drift, batch effects, the 
quality of genotype imputation, and the processes of sequence generation and data preprocessing, 
have the potential to lead to genomic inflation. We implemented extensive data cleaning and 
quality control measures, along with the Generalized Linear Mixed Model (GLMM) approach, to 
mitigate the impact of these confounding factors on our findings. However, complete elimination 
of these issues is not possible, and thus further correction for their effects during the final analysis 
phase of the summary results is essential. We tried multiple approaches to control family wise 
error rate (FWER). However, we found that these approaches are either inefficient or not robust. 
We used an alternative approach of controlling for false discovery rate (FDR) by leveraging high 
quality GWAS studies.  
 
Controlling for family wise error rate (FWER) 
 
We explored various approaches to identify a control factor (CF) to adjust the nominal 𝜒# of the 
selection signal that is both reliable and maximizes the utility of the data. We tried three different 
CF: genomic inflation factor (lGC), simulation based, and finally LD score regression intercept. 
 
Genomic inflation factor (lGC). To adjust for residual confounding of our selection statistics, we 
tried adjusting with genomic inflation (lGC), defined as the median of the nominal 𝜒#of the 
selection coefficient divided by the median of a chi-square distribution with 1 degree of freedom 
(0.455). This empirical correction factor is 5.26 for our dataset. We tried using the lGC as the 
control factor for the nominal 𝜒# . The nominal genome-wide significance threshold, 
corresponding to an adjusted P-value threshold of 5e-8 with CF=5.26, is p=7.2e-36, which yields 
48 independent loci, excluding the HLA region. By using orthogonal information (GWAS data) to 
estimate the fraction of the genome affected by directional selection, however, we infer that 26% 
of analyzed sites are in at least weak linkage disequilibrium (LD) (𝑟# > 0.05 ) with high-
confidence signals of selection (<5% False Discovery Rate - FDR) (Extended Data Figure 2b). 
This is a much larger fraction of the genome shaped by directional selection signals than can be 
explained by 48 loci, and thus, relying on lGC is too conservative. 
 
Simulation. We turned to simulation, which suggests that the control factor for the nominal χ# is 
1.04. The nominal genome-wide significance threshold, corresponding to an adjusted P-value 
threshold of 5e-8 with CF=1.04, is p=2.7e-8, which yields 8,210 independent loci. The FDR for 
this threshold is estimated to be 44%, which is far more than the <1% that would be expected if 
the threshold was well-calibrated. Therefore, our simulation is not realistic enough and does not 
adequately adjust for all the artifacts contributed to false-positives in real data. 
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LD score and pseudo-intercept. “LD score regression” (LDSC) analyzes the relationship 
between the LD among variants and their associated test statistics to disentangle the effects of 
polygenicity from confounding. If it is working properly is expected to show a linear relationship 
between “LD score bin” and tests statistics whose y-intercept that can be used to estimate inflation 
and is often in fact used in this way in GWAS studies1. We explored using this approach to correct 
for inflation in our selection scan. 
 
A potential challenge in using LDSC to correct for inflation in a selection scan is that our dataset 
is plausibly more affected by data artifacts than GWAS studies in living people where data sources 
are relatively homogeneous. The data we are analyzing here comes from much more diverse 
sources: imputed ancient DNA sequences (shotgun sequences and 1240k enrichment reagent), 
sequences of people of European ancestry from the 1000 Genomes Project, and imputed SNP array 
data from the UK Biobank (genotyped using the UK Biobank Axiom Array). While we employed 
extensive quality control and data cleaning (Supplementary Information section 1) with the goal 
of minimizing the impact of artifacts, data cleaning is never perfect, and some artifacts will always 
be present. The accuracy of imputed genotypes is also expected to be lower for variants with low 
levels of LD and low minor allele frequency in the reference panel2, and for ancient individuals 
who are less related than modern individuals to the populations in the reference panel used for 
imputation3. This raises the possibility of higher inflation for variants with lower LD score, and 
indeed, the LD-score vs. nominal χ# of selection reveals exactly what would be expected from 
such issues: a non-linear relationship between LD score bin and test statistics that is not expected 
for well-behaved LDSC (Supplementary Figure S2.1). Because of these issues, we cannot simply 
use the LDSC framework to determine an appropriate inflation factor correction. 
 
We explored computing a pseudo-intercept using S-LDSC with baseline v2.2, where SNPs with 
LD-scores above a minimum threshold, called min(LD-score), are considered in the calculation of 
the intercept. The pseudo-intercept as a function of min(LD-score) decreases monotonically until 
min(LD-score) = 89, which gives a pseudo-intercept of 2.63, and then after that point, it fluctuates. 
The nominal genome-wide significance threshold, corresponding to an adjusted P-value threshold 
of 5e-8 with CF = 2.63, is 9.5e-19, which yields 319 independent loci, excluding the HLA region. 
The FDR for this threshold is estimated to be 1.2%. This CF from the pseudo-intercept is the most 
reasonable compared to previous approaches, assessed based on the independent FDR criterion, 
and in fact it is very similar to the threshold we used in practice and which we obtained by 
calibration from orthogonal data (enrichment in signals of association to phenotypes from GWAS). 
However, because of the non-linearities, we refrain from using this correction to control formally 
for FWER. 
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Supplementary Figure S2.1: (a) LD score plot for nominal 𝜒#  statistics, with each point 
representing an LD score quintile. Values are averaged within each bin for visualization 
purposes only. (b) The pseudo-intercept is the intercept of the LD score regression after dropping 
all SNPs with LD scores below the minimum threshold. 

  



 13 

Controlling for false discovery rate (FDR) by leveraging GWAS signals 
 
In this study, we abandoned controlling for the family-wise error rate (FWER), which is the 
probability of obtain one or more false positives in a multiple testing scenario, and instead decided 
to take advantage of information-rich, high-quality GWAS data to estimate the false discovery rate 
(FDR) and posterior probability, and thereby to calibrate our summary statistics. 
 
In Supplementary Figure S2.2, the x-axis is the nominal p-value of the selection coefficient, and 
the left y-axis is the enrichment in pan-UKBB GWAS studies. To estimate the enrichment values, 
ultimately determining FDR and the posterior probability of being a true selection signal, we 
followed the procedure outlined below.  
 
First, for all SNPs that pass the quality control, we apply a pruning procedure using PLINK 
(version 1.9) with an r2 threshold of 0.99 and a window size of 1 Mbp. This results in 3,085,793 
SNPs, of which 14.5% are genome-wide significant in at least one of 454 GWAS from the Pan-
UKBB that pass QC. 
 
To adjust for minor allele frequency variation, we initially applied a logistic regression model to 
this set of SNPs: 
 

𝑙𝑜𝑔 >
𝑝$

1 − 𝑝$
@ = 𝑎 + 𝑏𝑓$ 

 
Here, pi denotes the expected probability that SNP i is a GWAS hit, given the minor allele 
frequency fi, and yi is a binary outcome variable indicating whether SNP i is identified as a GWAS 
hit (yi = 1) or not (yi = 0). 
 
For each threshold for significance t, we define R(t) as: 
 

𝑅(𝑡) =
1

𝑁(𝑡)E
𝑦$
𝑝$$∈&!

 

 
Where St={i: Pi £10-t}  and N(t) is number of SNPs in set St. Subsequently, we define a0=R(0),   
and E(t)=R(t)/R(0). We rewrite E(t) in the following form:  
 

𝐸(𝑡) =
∫ H𝑛(𝑥)𝑝(real|𝑥)𝛼' + 01 − 𝑝(real|𝑥)1𝑛(𝑥)𝛼!O𝑑𝑥
(
)*+

(𝛼' − 𝛼!) ∫ 𝑛(𝑥)𝑑𝑥(
)*+

 

 
where 𝑛(𝑡) = ,-.(+)

-+
 and p(real|t) is the posterior probability of being a true selection signal.  

 
Thus, 
 

𝑝(real|𝑡) =
∂0𝐸(𝑡)𝑁(𝑡)1
∂0𝑁(𝑡)1
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The false discovery rate FDR(t) is defined as: 
 

𝐹𝐷𝑅(𝑡) = 1 −
𝐸(𝑡) − 1

lim
+→(

𝐸 (𝑡) − 1 

 
To estimate E(t) and N(t) smoothly, we utilize the polyfit function from the numpy package in 
Python. Our estimations for values approaching 0 or 1 tend to be less reliable. Consequently, we 
refrain from reporting values below 1% or above 99%. 
 

 
Supplementary Figure S2.2: Estimated FDR and posterior probability of being a true selection 
signal as a function of the nominal p-value threshold. The black dashed line shows the P-
threshold (9.55e-20) with a posterior probability of 99%. 

 
This analysis suggests that at a nominal p-value threshold of 9.55e-20, the posterior probability is 
~99%. The appropriate threshold for controlling FWER should be somewhere between 9.5e-19 
and 7.2e-36 based on the discussion above. However, the 7.2e-36 threshold seems extremely 
conservative, while the enrichment in GWAS studies gives us a good handle on FDR, not FWER, 
and makes the most out of the data, and hence we use the FDR approach.  
 
We implement the FDR approach in practice using a newly defined statistic 𝑋 = 𝑍/√𝐶𝐹, where 
Z is the nominal test staticic for the selection signal without full correction for inflation, and CF is 
an empirically calibrated correction factor. We set CF=2.78 (√𝐶𝐹 = 1.67) based on this being the 
point at which we estimate that the posterior probability is 99%. Encouragingly, this falls within 
the 95% confidence interval (2.47, 2.91) estimated using the pseudo-intercept of the LD score 
regression, providing a supporting line of evidence that this is a reasonable approach.  
 
With our parameterization of the X-statistic, the threshold |X|=5.45 which if it was a normally 
distributed variably would imply a classically genome-wide significance threshold of 5x10-8, is the 
threshold of genome-wide significance for our study as well. Thus, p-values obtained from 
interpreting our X-score as a normally distributed variable provide reasonable guidelines for 
whether particular SNPs are genome-wide significant. 



 15 

Supplementary Information section 3 
HAF score analysis proves directional selection 
 
HAF score dynamic for positive and negative selection 
 
The haplotype allele frequency (HAF) score for a given haplotype is calculated by summing the 
derived allele counts of the polymorphic sites on that haplotype4,5. It distinguishes carrier 
haplotypes from non-carriers of the favored allele in an ongoing selective sweep, without prior 
knowledge of the favored allele. The HAF-score is defined for a haploid population, requiring 
phased haplotype information and ancestral and derived allelic states to distinguish carriers from 
non-carriers of the favored mutation in an ongoing selective sweep. For a diploid population, 
however, calculating the mean HAF-score does not require phased information, and  only the 
derived allele frequency (DAF) is needed. The mean HAF-score is given by: 
 
 

𝐻𝐴𝐹222222 = 𝑛E𝐷𝐴𝐹$#
2

$*'

 

 
where n is the number of haplotypes (twice the number of diploid individuals), m is the number of 
polymorphic sites in the sample, and DAFi is the derived allele frequency for the i-th polymorphic 
site. 
 
 
In a neutrally evolving population with a constant population size N, the expected HAF score under 
the coalescent model6 is: 
 

𝐸[𝐻𝐴𝐹] =
θ(𝑛 − 1)

2  
 
where 𝜃 = 	2𝑁𝜇𝐿 represents the scaled mutation rate, 𝜇 is the mutation rate per base pair per 
generation, L is the haplotype length, and n is the number of sampled haplotypes.  
 
 
Ronen et al. (2015) show that for strong selection (𝑁𝑠	 ≫ 	1) without recombination, the expected 
HAF scores for carrier and non-carrier haplotypes of a favored allele with frequency f during a 
hard selective sweep are given by: 
 

𝐸[𝐻𝐴𝐹345] ≈ θ𝑛 >
𝑓 + 1
2 −

1
(1 − 𝑓)𝑛 + 1@ 

 

𝐸[𝐻𝐴𝐹676] ≈ θ𝑛 >
1
2 +

1
2𝑛 −

1
(1 − 𝑓)𝑛 + 1@ 

 
Thus, the expected HAF score for n haplotypes undergoing a hard selective sweep is: 
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𝐸[𝐻𝐴𝐹] ≈ θ𝑛 h
𝑓# + 1
2 +

1 − 𝑓
2𝑛 −

1
(1 − 𝑓)𝑛 + 1i 

 
When 𝑛(1 − 𝑓)𝑓 > (2 − 𝑓), E[HAF] is greater than	𝜃(𝑛 − 1)/2, indicating that the expected 
HAF score is larger than the neutral case if the sweep is not near fixation (Supplementary Figure 
S3.1). Thus, a positive deviation from expectation provides evidence of a partial sweep. 
 
 

 
Supplementary Figure S3.1: Haplotype allele frequency (HAF) score as a function of favored 
allele frequency during an ongoing hard selective sweep without recombination. 

 
For negative selection, the effective population size (N) is reduced due to linked background 
selection. This leads to a decrease in 𝜃 and the expected HAF score, making it lower than in the 
neutral case7. Thus, in principle, observation of a rise in the HAF score can provide unambiguous 
evidence of positive directional selection associated with our X-statistic. 
 
A challenge in testing for evidence of direction selection based on a rise in the HAF score is that 
alleles in the genome that are subject to positive selection are also expected to be regions rich in 
functional effects and, thus, are expected to be more subject to purifying selection. When we 
compute how HAF score changes as a function of our test statistic for natural selection, we observe 
a nominal decrease in HAF score—not the increase expected for positive selection—which could 
be due to this phenomenon (Extended Data Figure 3c). To distinguish between scenarios in which 
the correlation of our X-statistic to functionally more important regions is due at least in part to 
the signal we are interested in (that is, directional selection), and cannot be trivially explained as 
an artifact of purifying selection at alleles in functionally more important regions leading to false-
positives, we controlled for the effects of linked negative selection  (B-statistic) genome-wide. The 
resulting residual HAF-score increases as a function of X-statistic, plateauing around |X|=5.45, the 
same plateau as we observe for the enrichment of signals in independent GWAS data (Figure 1b, 
Extended Data Figure 3c)  
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Supplementary Information Section 4 
Allele frequency trajectory and selection coefficient over 
time for 347 independent loci with >99% probability of 
selection 
  
In this section, we visualize allele frequency trajectories (Supplementary Figure S4.1-S4.29) and 
selection coefficient over time (Supplementary Figure S4.30-S4.58) for 347 independent loci (279 
outside the HLA region and an additional 68 in HLA) with |X|>5.45 corresponding to a π>99% 
probability of selection. To produce this list, we identified the strongest signal in the genome and 
considered all SNPs in LD with it in modern Europeans from the 1000 Genomes Project (r2>0.05) 
to potentially reflect the same signal. We then found the second-strongest signal excluding these 
positions, and so on, until no more SNPs pass this threshold (Extended Data Figure 2b). The SNPs 
are listed in genomic order. 
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Supplementary Figure S4.1: Allele frequency over time. From chr 1. 
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Supplementary Figure S4.2: Allele frequency over time. From chr 1 and 2. 
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Supplementary Figure S4.3: Allele frequency over time. From chr 2. 
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Supplementary Figure S4.4: Allele frequency over time. From chr 2 and 3. 
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Supplementary Figure S4.5: Allele frequency over time. From chr 3. 
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Supplementary Figure S4.6: Allele frequency over time. From chr 3 and 4. 
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Supplementary Figure S4.7: Allele frequency over time. From chr 4. 
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Supplementary Figure S4.8: Allele frequency over time. From chr 4 and 5. 
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Supplementary Figure S4.9: Allele frequency over time. From chr 5. 
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Supplementary Figure S4.10: Allele frequency over time. From chr 5 and 6. 
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Supplementary Figure S4.11: Allele frequency over time. From chr 6. 
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Supplementary Figure S4.12: Allele frequency over time. From chr 6. 
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Supplementary Figure S4.13: Allele frequency over time. From chr 6. 
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Supplementary Figure S4.14: Allele frequency over time. From chr 6. 
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Supplementary Figure S4.15: Allele frequency over time. From chr 6. 
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Supplementary Figure S4.16: Allele frequency over time. From chr 6. 
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Supplementary Figure S4.17: Allele frequency over time. From chr 6, 7, and 8. 
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Supplementary Figure S4.18: Allele frequency over time. From chr 8 and 9. 
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Supplementary Figure S4.19: Allele frequency over time. From chr 9, 10, and 11. 
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Supplementary Figure S4.20: Allele frequency over time. From chr 11. 
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Supplementary Figure S4.21: Allele frequency over time. From chr 11 and 12. 
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Supplementary Figure S4.22: Allele frequency over time. From chr 12. 
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Supplementary Figure S4.23: Allele frequency over time. From chr 12 and 13. 
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Supplementary Figure S4.24: Allele frequency over time. From chr 13, 14, and 15. 
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Supplementary Figure S4.25: Allele frequency over time. From chr 15 and 16. 
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Supplementary Figure S4.26: Allele frequency over time. From chr 16 and 17. 
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Supplementary Figure S4.27: Allele frequency over time. From chr 17. 
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Supplementary Figure S4.28: Allele frequency over time. From chr 17, 18, and 19. 
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Supplementary Figure S4.29: Allele frequency over time. From chr 19, 20, 21, 22. 
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Supplementary Figure S4.30: Selection coefficient over time. From chr 1. 
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Supplementary Figure S4.31: Selection coefficient over time. From chr 1 and 2. 



 49 

 
Supplementary Figure S4.32: Selection coefficient over time. From chr 2. 
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Supplementary Figure S4.33: Selection coefficient over time. From chr 2 and 3. 
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Supplementary Figure S4.34: Selection coefficient over time. From chr 3. 
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Supplementary Figure S4.35: Selection coefficient over time. From chr 3 and 4. 
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Supplementary Figure S4.36: Selection coefficient over time. From chr 4. 
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Supplementary Figure S4.37: Selection coefficient over time. From chr 4 and 5. 
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Supplementary Figure S4.38: Selection coefficient over time. From chr 5. 
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Supplementary Figure S4.39: Selection coefficient over time. From chr 5 and 6. 
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Supplementary Figure S4.40: Selection coefficient over time. From chr 6. 
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Supplementary Figure S4.41: Selection coefficient over time. From chr 6. 
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Supplementary Figure S4.42: Selection coefficient over time. From chr 6. 
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Supplementary Figure S4.43: Selection coefficient over time. From chr 6. 
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Supplementary Figure S4.44: Selection coefficient over time. From chr 6. 
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Supplementary Figure S4.45: Selection coefficient over time. From chr 6. 
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Supplementary Figure S4.46: Selection coefficient over time. From chr 6, 7, and 8. 
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Supplementary Figure S4.47: Selection coefficient over time. From chr 8 and 9. 
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Supplementary Figure S4.48: Selection coefficient over time. From chr 9, 10, and 11. 
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Supplementary Figure S4.49: Selection coefficient over time. From chr 11. 
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Supplementary Figure S4.50: Selection coefficient over time. From chr 11 and 12. 
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Supplementary Figure S4.51: Selection coefficient over time. From chr 12. 
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Supplementary Figure S4.52: Selection coefficient over time. From chr 12 and 13. 
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Supplementary Figure S4.53: Selection coefficient over time. From chr 13, 14, and 15. 
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Supplementary Figure S4.54: Selection coefficient over time. From chr 15 and 16. 
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Supplementary Figure S4.55: Selection coefficient over time. From chr 16 and 17. 
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Supplementary Figure S4.56: Selection coefficient over time. From chr 17. 
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Supplementary Figure S4.57: Selection coefficient over time. From chr 17, 18, and 19. 



 75 

 
Supplementary Figure S4.58: Selection coefficient over time. From chr 19, 20, 21, 22. 
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Supplementary Information section 5 
Re-evaluation of results from previous studies 
 
Overview 
We evaluated candidate loci from five different genome scans for selection: four analyzing ancient 
DNA time transects (Mathieson et al. 20158, Le et al. 20229, Kerner et al. 202310, and Irving-Pease 
et al. 202411) and one analyzing modern variation but sensitive to signals we might expect to be 
replicable in our ancient DNA time transect (Field et al. 201612).  
 
To enable this comparison, we used variants from the high-coverage (30x) 1000 Genomes 
Project13 mapped to GRCh38, and remapped to positions in GRCh37/hg19 using CrossMap 
(v0.5.2)14. We used data from 2,504 unrelated individuals from the phase three panel of the 1000 
Genomes Project as our imputation reference panel. We retained only the variants that passed all 
quality control filters from gnomAD (v2.1.1)15, indicated by a PASS value in the FILTER column 
of the VCF file available for all chromosome sites on the gnomAD website. This filtering resulted 
in 52,382,872 biallelic variants. In some cases, the SNPs reported by five studies whose results we 
re-examined were not included in this reference panel and were excluded from our re-analysis. 
Additionally, some SNPs did not pass subsequent quality control (QC), as detailed in 
Supplementary Information section 1. We analyzed all SNPs present in the reference panel. 
However, the GLMM and allele frequency trajectory results for SNPs that failed QC may be 
unreliable and could be influenced by the artifacts that caused QC failure. 
 
For each study, we re-evaluated the selection signals using our GLMM approach. The cumulative 
number of non-HLA signals identified as genome-wide significant in these studies and confirmed 
in our re-analysis with a posterior probability of 𝜋>99% is 17 (6% of the 279 non-HLA loci 
showing 𝜋>99% in our genome-wide scan). Of these, 8 were found in Mathieson et al., Field et al. 
added 0, Le et al. added 3, Kerner et al. added 0, and Irving-Pease et al. added 6. (Table1, 
Supplementary Table S5.1). An additional 22 non-HLA loci reported as genome-wide significant 
in at least one of these five studies did not replicate at 𝜋>99% in our re-analysis (Table 1). 
 
Mathieson et al. 2015 analyzed whole genome data from 230 ancient Eurasian individuals who 
lived between 6500 BCE and 300 BCE and compared it to data from modern Europeans from the 
1000 Genomes Project. They found 12 genome-wide signals of selection with a significance 
exceeding a P-value threshold of 5e-8, two of which are from the HLA region. Of the 11 that pass 
our QC, we replicate 10 (𝜋>99%) (the 11th is replicated at 𝜋>69%, and is almost certainly a real 
signal of selection as it is the blue eye-color variant at OCA2/HERC2 which has been found to be 
subject to fluctuating selection which our methodology is not optimized to detect as we are 
explicitly testing for a scenario of a constant non-zero selection coefficient). 
 
Field et al. 2016 analyzed 3195 contemporary individuals from the UK10K project to study signals 
of selection in the past 2000 years inferred from an unusually high density of singleton genetic 
variants associated with a tested allele, which can be evidence of a distortion of the gene as a result 
of selection. We applied our GLMM approach to three time transects: to all individuals in our 
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study, to individuals who lived before 2000 BP, and to individuals who lived after 2000 BP which 
is the time frame where Field et al. 2016 have particularly notable statistical power. There are 3 
genome-wide signals of selection in Field et al. 2016 exceeding a P value threshold of 5e-8, and 
two of them (LCT and HLA) are replicated in our analysis (𝜋>99%). There is no evidence for 
selection during the past 2000 years for the third candidate at the WDFY4 locus using our analysis, 
and we hypothesize that this signal may be an artifact of incompletely corrected population 
structure due to ancestry derived from steppe pastoralists, an issue known to have caused Field et 
al. 2016 to find false-positive signals of polygenic selection16,17. Using a less stringent threshold, 
out of 37 independent loci highlighted in Field et al. 2016 as passing the significance threshold of 
1e-5, 35 pass our QC, and only three (LCT, HLA, KITLG) show a strong signal of selection. 
 
Le et al. 2022 analyzed 1291 European individuals from the past 10,000 years to identify selection 
signals in the Neolithic, Bronze Age, and Historical periods. They found 25 selection signals across 
24 loci, of which 22 loci could be retested in our analysis (two were not present in the imputation 
reference panel), and we replicated 9 in our full time transect (𝜋>99%). We also separately 
analyzed each of the three epochs to mimic the approach in Le et al. 2022, and only replicated 7 
of 23 signals for which the associated SNPs passed QC. In the Neolithic we replicated 1 out of 10. 
In the Bronze Age we replicated 1 out of 7 (we could not retest two SNPs that were not present in 
the imputation reference panel). In the Historical period we replicated 5 out of 6. 
 
Kerner et al. 2023 analyzed 2879 Eurasian individuals from the past 10,000 years to screen for 
signals of selection. They highlighted a list of 139 SNPs, with 89 potentially showing evidence of 
positive selection and 50 showing evidence of negative selection on the derived allele. As the 
authors point out in the transparent peer review records published alongside their study 
(Supplementary Document S2 of that study), only 3 of these 139 signals of selection (LCT/MCM6, 
HLA, and SLC45A2) pass a formal genome-wide significant threshold with a P-value significance 
threshold of 5e-8; all three are replicated in our analysis. We believe that the great majority of the 
139 highlighted selection signals are false positives due to not applying threshold for genome-wide 
statistical significance: out of 123 candidate SNPs that pass QC, only 14 are genome-wide 
significant in our re-analysis (𝜋>99%); an additional 10 loci had probable evidence of selection in 
our re-analysis (50%<π<99%). When we visually inspect the SNPs where there is a failure to 
replicate, the great majority show no visual evidence for selection in our time-transect. In 
particular, shifts in frequency at these non-replicated variants often appear to be in the direction 
expected based on pre-existing allele frequency differences between source populations like steppe 
pastoralists, European farmers, and European hunter-gatherers (which would be expected to 
produce a substantial allele frequency shift following mixture of these group if not corrected). 
 
Irving-Pease et al. 2024 analyzed 1518 West Eurasians over the past 15,000 years and used the 
CLUES methodology18,19 to identify 21 genome-wide significant loci with at least one genome-
wide significant signal (P-value threshold of 5e-8) across five ancestry categories: pan-ancestry 
(ALL), Western hunter-gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-
gatherers (CHG), and Anatolian farmers (ANA). Of the 21 candidate loci identified, our analysis 
found that 13 had at least one SNP among five candidates per locus listed by Irving-Pease et al. 
2024 with genome-wide significant posterior probability (π>99%); an additional 4 loci had 
probable evidence of selection in our re-analysis (50%<π<99%). Our analysis increases the chance 
that some or all of the remaining 8 may be false-positives. 
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Supplementary Table S5.1: Summary of genome-wide significant signals of selection across 
five studies. SNPs within 100 kb of each other are considered a single locus, except for HLA, 
which is treated as one locus regardless of distance for this reanalysis. For each study, a value 
of 1 indicates that the locus is reported as genome-wide significant, and 0 otherwise. The Panel 
ID corresponds to the identifier used in the supplementary figures below to mark each panel, 
starting with the first letter of the corresponding study. (In Mathieson et al. 2015, there are two 
signals from the HLA region, while Le et al. 2022 excluded the HLA region from their Table 
1, despite its evidence of significant selection across all epochs.) 
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1_22704191_T_G rs11799474 I1  1 0 0 0 0 1 0.28 

1_150596411_C_A rs7517 L3 ENSA 2 0 0 1 0 0 0.38 
1_181018799_A_C rs10797666 L16 MR1 3 0 0 1 0 0 0.03 
1_202143512_A_G rs12401678 L4 PTPRVP 4 0 0 1 0 0 0.37 
1_230854999_C_T rs7555650 L14 AGT 5 0 0 1 0 0 0.21 
2_100604753_G_C rs56127672 I7 AFF3 6 0 0 0 0 1 0.65 
2_102824201_G_A rs2310239 L2 IL1RL2 7 0 0 1 0 0 >0.99 
2_136608646_G_A rs4988235 M1 

MCM6 
LCT 8 

1 0 0 0 0 >0.99 
2_136608646_G_A rs4988235 L18 0 0 1 0 0 >0.99 
2_136608646_G_A rs4988235 K1 0 0 0 1 0 >0.99 
2_136608646_G_A rs4988235 I11 0 0 0 0 1 >0.99 
2_136707982_T_C rs6754311 F1 0 1 0 0 0 >0.99 
3_46954614_A_C rs201652298 I16  9 0 0 0 0 1 0.95 
4_38745482_T_C rs10008032 I21 

TLR10 
TLR1 10 

0 0 0 0 1 >0.99 
4_38776107_T_G rs11096955 L22 0 0 1 0 0 >0.99 
4_38815502_A_C rs4833103 M7 1 0 0 0 0 >0.99 

4_145506871_C_T rs6537298 I29  11 0 0 0 0 1 0.4 
5_33951693_C_G rs16891982 M5 

SLC45A2 12 

1 0 0 0 0 >0.99 
5_33951693_C_G rs16891982 L11 0 0 1 0 0 >0.99 
5_33952106_C_T rs185146 K3 0 0 0 1 0 >0.99 
5_33954880_G_A rs35389 I33 0 0 0 0 1 >0.99 

5_131675864_A_G rs272872 M4 SLC22A4 
SLC22A5 13 1 0 0 0 0 >0.99 

5_131705458_C_G rs2631367 I39 0 0 0 0 1 >0.99 
5_176842474_T_C rs2731672 I45 GRK6 14 0 0 0 0 1 >0.99 
6_28322296_A_G rs6903823 M8 

HLA* 15 

1 0 0 0 0 >0.99 
6_28819880_A_G rs9257267 F2 0 1 0 0 0 >0.99 
6_30746519_G_T rs3130673 K4 0 0 0 1 0 >0.99 
6_31142245_C_A rs3094188 I50 0 0 0 0 1 >0.99 
6_32132233_G_A rs2269424 M10 1 0 0 0 0 >0.99 
8_9604066_T_G rs35169606 I54 TNKS 16 0 0 0 0 1 >0.99 

8_130981907_C_A rs10956504 L7 FAM49B 17 0 0 1 0 0 0.07 
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8_132669706_A_G rs1420488 I60  18 0 0 0 0 1 0.22 
9_136137657_C_T rs8176693 I63 ABO 19 0 0 0 0 1 >0.99 
10_49924070_T_C rs76203261 F3 WDFY4 20 0 1 0 0 0 0.36 
11_18167630_A_G rs4256954 L17  21 0 0 1 0 0 <0.01 
11_27679916_C_T rs6265 L9 BDNF 22 0 0 1 0 0 <0.01 
11_61569830_C_T rs174546 M2 

FADS1 23 
1 0 0 0 0 >0.99 

11_61569830_C_T rs174546 I69 0 0 0 0 1 >0.99 
11_61571478_T_C rs174550 L19 0 0 1 0 0 >0.99 
11_71153459_C_A rs11603330 L21 DHCR7 

NADSYN1 24 
0 0 1 0 0 >0.99 

11_71165625_A_G rs7944926 M9 1 0 0 0 0 >0.99 
11_88515022_A_G rs7119749 M6 GRM5 25 1 0 0 0 0 >0.99 

12_112007756_C_T rs653178 M3 
ATXN2 26 

1 0 0 0 0 >0.99 
12_112007756_C_T rs653178 L20 0 0 1 0 0 >0.99 
12_112007756_C_T rs653178 I74 0 0 0 0 1 >0.99 
14_103867320_A_G rs4906319 L13 MARK3 27 0 0 1 0 0 0.51 
15_28365618_A_G rs12913832 M11 

HERC2 28 
1 0 0 0 0 0.69 

15_28386626_C_T rs11636232 L12 0 0 1 0 0 >0.99 
15_75077367_C_A rs1378942 I80 CSK 29 0 0 0 0 1 >0.99 
16_54231250_A_G rs2010410 L8  30 0 0 1 0 0 0.02 
16_69969299_C_G rs62053262 I82 WWP2 31 0 0 0 0 1 0.72 
16_80036594_G_T rs4073089 L5  32 0 0 1 0 0 0.09 
17_37355093_C_T rs57944517 L6 RPL19 33 0 0 1 0 0 0.09 
17_38150946_C_T rs4795413 I87 PSMD3 34 0 0 0 0 1 0.76 
17_44086267_A_G rs4792897 I93 MAPT 35 0 0 0 0 1 >0.99 
19_49206603_C_T rs281377 L1 FUT2 36 0 0 1 0 0 >0.99 
19_57499627_G_A rs62132568 I99  37 0 0 0 0 1 0.02 
21_43679554_C_T rs915843 L15 ABCG1 38 0 0 1 0 0 0.11 
22_22027348_C_T rs1669125 L10 PPIL2 39 0 0 1 0 0 <0.01 
22_42340844_T_C rs1023500 I104 CENPM 40 0 0 0 0 1 >0.99 
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Re-evaluation of results from Mathieson et al. 2015 
 
We evaluated 12 SNPs identified as candidates for selection from Extended Data Table 3 of 
Mathieson et al. 20158. In our re-evaluation of these 12 SNPs, 10 SNPs (rs4988235, rs16891982, 
rs2269424, rs174546, rs4833103, rs653178, rs7944926, rs7119749, rs272872, rs6903823) showed 
a compelling signal of selection with posterior probability 𝜋>99% in our analysis. One SNP, 
rs12913832 at the OCA2/HERC2 locus, showed a signal of selection with posterior probability 
𝜋=69%, and is likely a real signal of selection as this is the blue eye color variant which other work 
has shown has been subject to fluctuating selection over space and time, a scenario not tested for 
in our methodology which explicitly assumes a constant selection coefficient over space and time. 
The last SNP, rs1979866, did not pass quality control in our analysis but had a posterior probability 
𝜋<1%, so we believe it may be a false-positive due to data artifact (Supplementary Figure S5.1). 
Two SNPs, rs6903823 and rs2269424, are from the HLA region. 



 81 

 
Supplementary Figure S5.1: Re-evaluating 12 signals of selection from Mathieson et al. 2015. 
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Re-evaluation of results from Field et al. 2016 
 
The singleton density score (SDS) from Field et al. 201612 was devised to capture signals of recent 
selection with particular statistical power during the past 2000 years. This method does not use 
ancient DNA and is entirely based on patterns of variation in contemporary populations. Here, we 
evaluated 37 independent tagging SNPs with a p-value of SDS (PSDS) less than 1e-5. We used the 
PLINK clumping option, prioritizing SNPs by PSDS and using clump_kb = 10 Mbp and clump_r2 
= 0.05. SNPs that do not exist in the imputation reference panel are dropped. These independent 
SNPs are shown in a Manhattan plot of the SDS score (Supplementary Figure S5.2). 
 
Out of 37 SNPs tagging independent loci with PSDS<1e-5, those at only three loci (LCT (F1), HLA 
(F2), KITLG (F17)) produced a strong signal in our ancient DNA time transect analysis (𝜋>99%). 
The LCT and HLA signals are 2 of the 3 loci with PSDS<5e-8 in Field et al. 2016. The third SDS 
genome-wide significant locus, WDFY4 (F3), has a posterior probability of 𝜋=36% in our 
evaluation, with time transect analysis suggesting a greater probability selection before 2000 years 
BP (𝜋B=58%) than after (𝜋A<1%). The frequency of the tagging variant for WDFY4 (F3) is around 
5% in Steppe pastoralists and near zero in Western Hunter-Gatherers (WHG) and Early European 
Farmers (EEF). Its allele frequency increased rapidly with the arrival of Steppe in Europe and 
remained stable afterward. This allele frequency trajectory, along with our formal GLMM analysis, 
suggests that this signal may be an artifact of Steppe admixture, and that the significant SDS signal 
may be due to unresolved population structure (Supplementary Figures S5.3-S5.6) 
 
The methodology in Field et al. 2016 is profoundly different from ours and uses a different type 
of data (not ancient DNA). Thus, while the two scans are maximally powered in the same time 
period, it is possible and even likely that the Field et al. 2016 methodology is sensitive to some 
genuine signals that our ancient DNA time transect study misses.  
 
However, the far lower replication rates in the list of highlighted SNPs from Field et al. with less 
compelling P-values (5e-8 < PSDS < 1e-5) (1 of 34) than for the SNPs with strong P-values (PSDS < 
5e-8) raises the possibility that most of the list of 37 SNPs highlighted from Field et al. 2016 were 
false-positives likely due unresolved population structure and the threshold for including a SNPs 
in the list was not stringent enough. 
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Supplementary Figure S5.2: Manhattan plot of SDS score from Field et al. 2016. Red circles 
indicate 37 independent tagging SNPs with PSDS < 1e-5. Each SNP is annotated with the panel 
name in the following Supplementary Figures 5.3-5.6. 
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Supplementary Figure S5.3: Re-evaluating selection signals from Field et al. 2016. A and B 
refer to After and Before 2000 BP. 
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Supplementary Figure S5.4: Re-evaluating selection signals from Field et al. 2016. A and B 
refer to After and Before 2000 BP. 
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Supplementary Figure S5.5: Re-evaluating selection signals from Field et al. 2016. A and B 
refer to After and Before 2000 BP. 
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Supplementary Figure S5.6: Re-evaluating selection signals from Field et al. 2016. A and B 
refer to After and Before 2000 BP. 
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Re-evaluation of results from Le et al. 2022 
 
We evaluated 25 signals of selection at 24 loci detected during the Neolithic (N), Bronze Age (B), 
and Historical (H) periods, from Table 1 of Le et al. 20229. Two of these signals are from SNP 
rs16891982 at the SLC45A2 locus, which appear as a significant signal in both the Bronze Age 
and Historical periods. Two of these 24 SNPs are not present in the imputation reference panel 
and, therefore, are not re-evaluated here. This leaves 22 SNPs to re-evaluate, of which 9 produce 
strong signals (𝜋>99%) in our full time transect analysis. We also analyzed three different time 
transects separately using the GLMM approach to mimic the three time periods of Le et al. 2022.  
 
From the Neolithic period, we evaluated 10 candidate SNPs (rs281377, rs2310239, rs7517, 
rs12401678, rs4073089, rs57944517, rs10956504, rs2010410, rs6265, rs1669125). Only rs281377 
at FUT2 showed a compelling signal of selection (𝜋N>99%) during the Neolithic period, while 
rs57944517 at RPL19 had a posterior probability (𝜋N=50%) for selection (Supplementary Figure 
S5.7). 
 
From the Bronze Age period, two candidate SNPs (rs143482314, rs117124595) from Le et al. 
2022 with signals of selection are not in the 1000 Genomes Project SNP set and were not analyzed 
here. Of the remaining 7 candidate SNPs (rs16891982, rs11636232, rs4906319, rs7555650, 
rs915843, rs10797666, rs4256954), only rs16891982 at SLC45A2 showed a strong signal of 
selection (𝜋B>99%) during the Bronze Age period, while rs7555650 at AGT had a posterior 
probability (𝜋B=58%) for selection (Supplementary Figure S5.8). 
 
From the Historical period, we evaluated 6 candidate SNPs (rs16891982, rs4988235, rs174550, 
rs653178, rs11603330, rs11096955) from Le et al. 2022. Five showed strong signals of selection 
(𝜋H>99%), with only rs11096955 having a lower posterior probability (𝜋H=10%) for selection 
(Supplementary Figure S5.9). All these 6 showed strong signals of selection (𝜋B>99%) during the 
earlier Bronze Age period as well, with only rs16891982 at the SLC45A2 locus (Supplementary 
Figure S5.8, panel L11) being reported as a Bronze Age-specific signal. 
 
Some co-authors of this study are also co-authors of Le et al. 2022. In their updated analysis, which 
includes additional measures to control for uncertainty in admixture proportions, allele frequency 
uncertainty in the source and target populations, and stochasticity in sampling, Le et al. now report 
22 genome-wide significant hits at 21 loci. Of these, 17 validate with >99% posterior probability 
in our analysis (2 of 4 in the Neolithic, 3 of 6 in the Bronze Age, and 12 of 12 in the Historical 
Period) (Vagheesh Narasimhan, personal communication). 
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Supplementary Figure S5.7: Re-evaluating signals of selection from Le et al. 2022 from the 
Neolithic (N) period. 



 90 

 
Supplementary Figure S5.8: Re-evaluating signals of selection from Le et al. 2022 from the 
Bronze Age (B).  
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Supplementary Figure S5.9: Re-evaluating signals of selection from Le et al. 2022 for the 
Historical (H) period. Panel L11 from Supplementary Figure S5.8 is a candidate signal of 
selection for both the Bronze Age and the Historical period. 
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Re-evaluation of results from Kerner et al. 2023 
 
We evaluated 89 SNPs identified as candidates for positive selection on the derived allele from 
supplementary Table S2 of Kerner et al. 202310, along with 50 other candidate missense SNPs for 
negative selection from supplementary Table S7 of the same study. Only three candidate positive 
selection SNPs (rs4988235 at the LCT locus, rs185146 at the SLC45A2 locus, and rs3130673 at 
the HLA locus) meet the genome-wide significant P-value threshold of 5e-8 for ‘pbeta’ test 
statistics of Kerner et al. 2023, and all three are replicated in our analysis with posterior probability 
(𝜋>99%; Supplementary Figure S5.10). In our analysis, only 14 of 123 candidates passing QC 
show strong evidence for selection (𝜋>99%), while an additional 10 are probable signals of 
selection in our re-analysis (50%<𝜋<99%) This suggests most of the candidates are false positives, 
likely due to unresolved population structure and data artifacts (Supplementary Figures S5.11-
S5.23). 
 
These 139 SNPs are listed in Supplementary Table S5.2. Three positive selection candidate SNPs 
(rs11125238, rs34969536, rs4717903) are not in the 1000 Genomes Project reference panel, and 
therefore we did not analyze them. Three positive selection and ten negative selection candidate 
SNPs did not pass quality control (QC) in our study. 

 

 
Supplementary Figure S5.10: Comparison of Z𝜷 from Kerner et al. (2023) for positive and 
negative selection candidates with the X score from this study. Labels indicate the panel ID for 
frequency trajectory plots in the supplementary figures below. The dashed gray line represents 
±5.45, marking the classic genome-wide p-value threshold of 5e-8. 
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Supplementary Table S5.2: List of SNPs from Kerner et al. 2023 analyzed in this study. Panel 
ID is the identifier used in the supplementary figures below to mark each panel. The Variant ID 
is defined as the CHROM_POS_REF_ALT using the human genome reference assembly 
version hg19/GRCh37.	

RSID Panel 
ID Variant ID Ancestral 

Allele Gene name Selection Type QC Kerner et al. 2023 𝜋 Psel P𝜷 
rs4988235 K1 2_136608646_G_A G MCM6 Positive Pass <2.0e-6 1.58E-19 >0.99 
rs174537 K2 11_61552680_G_T T TMEM258 Positive Pass 2.70E-05 0.001 >0.99 
rs185146 K3 5_33952106_C_T C SLC45A2 Positive Pass <2.0e-6 8.71E-16 >0.99 

rs3130673 K4 6_30746519_G_T G HCG20 Positive Pass <2.0e-6 1.13E-14 >0.99 
rs10765770 K5 11_88513636_G_A G GRM5 Positive Pass 2.00E-06 0.000123 >0.99 
rs4705844 K6 5_131365784_A_C A AC034228.2-IL3 Positive Pass <2.0e-6 4.26E-05 >0.99 

rs10008492 K7 4_38765720_C_T T RNA5SP158-TLR10 Positive Pass 1.20E-05 3.14E-07 >0.99 
rs4792831 K8 17_44206665_G_A G RNU7-101P Positive Pass 1.10E-05 1.16E-07 >0.99 
rs7141996 K9 14_93094298_G_A G RIN3 Positive Pass 0.000849 0.0256 >0.99 

rs11674302 K10 2_102887128_T_C T AC007248.6-IL1RL1 Positive Pass 2.80E-05 0.000935 >0.99 
rs36083353 K11 4_42041692_A_T A SLC30A9 Positive Pass 0.000209 0.0085 0.99 
rs1229758 K12 7_114229139_G_A G FOXP2 Positive Pass 0.000394 0.0152 0.99 

rs10095927 K13 8_10729177_G_T G RP11-177H2.2-XKR6 Positive Pass <2.0e-6 8.67E-06 0.82 
rs11042594 K14 11_2117403_A_G G H19-IGF2 Positive Pass 0.000853 0.026 0.79 
rs10513801 K15 3_185822353_T_G T ETV5 Positive Pass 0.000511 0.0148 0.66 
rs17605165 K16 16_11297562_C_T C RP11-396B14.2 Positive Pass 0.000797 0.0227 0.63 
rs8176635 K17 9_136152009_G_A G ABO Positive Pass 5.40E-05 0.00135 0.55 

rs11057805 K18 12_125246993_G_A G NCOR2-SCARB1 Positive Pass 2.60E-05 0.000892 0.54 
rs389663 K19 6_117868051_T_C T DCBLD1 Positive Pass 4.00E-05 0.00152 0.53 

rs8022676 K20 14_77825746_A_C C RP11-493G17.4 Positive Pass 9.10E-05 0.00352 0.4 
rs72700902 K21 1_150633347_C_T C GOLPH3L Positive Pass 5.80E-05 0.00216 0.36 
rs10507766 K22 13_69940025_A_G A LINC00401-SRSF1P1 Positive Pass 0.000563 0.0213 0.35 
rs8033465 K23 15_69773781_G_T G RP11-279F6.1 Positive Pass 6.90E-05 0.00173 0.34 

rs13307276 K24 7_150061525_T_C T REPIN1 Positive Pass 2.00E-05 0.000597 0.25 
rs7958347 K25 12_113325061_C_T C RPH3A Positive Pass <2.0e-6 4.76E-05 0.2 

rs55846849 K26 5_460710_G_A G EXOC3 Positive Pass 0.000618 0.0173 0.19 
rs10496379 K27 2_104602547_A_T A RP11-76I14.1 Positive Pass 3.00E-05 0.00102 0.16 

rs721992 K28 10_61539402_G_T G LINC00948-CCDC6 Positive Pass 1.70E-05 0.000517 0.15 
rs6694101 K29 1_2020489_C_T C PRKCZ Positive Pass 0.000485 0.0172 0.12 
rs3858036 K30 9_2968107_G_A G CARM1P1 Positive Pass <2.0e-6 8.57E-05 0.12 
rs1055472 K31 12_125510104_G_A A BRI3BP Positive Pass 7.00E-06 0.000197 0.11 
rs1531212 K32 19_13951830_G_A G MIR24-2 Positive Pass 0.000303 0.00981 0.1 

rs10841899 K33 12_8716873_G_A G RP11-561P12.5 Positive Pass 0.001341 0.0465 0.09 
rs1047616 K34 17_25642522_G_A A WSB1 Positive Pass 0.001428 0.0486 0.08 

rs713217 K35 11_69579070_T_C T RP11-300I6.5-
AP001888.1 Positive Pass 3.00E-05 0.00101 0.08 

rs586554 K36 9_22796540_T_C C RP11-399D6.2 Positive Pass 0.000883 0.0287 0.08 

rs10515671 K37 5_151845342_A_G A NMUR2-CTC-
550M4.1 Positive Pass 1.60E-05 8.95E-06 0.07 

rs4922511 K38 10_48402818_T_C C RBP3-GDF2 Positive Pass 0.00037 0.0116 0.06 
rs2974658 K39 5_2960267_G_T G RP11-35O7.1 Positive Pass 0.000175 0.00625 0.06 

rs62054458 K40 17_13672024_C_T C COX10-AS1 Positive Pass 2.70E-05 0.000981 0.05 
rs3780710 K41 9_132942794_G_A G NCS1 Positive Pass 0.000352 0.0109 0.05 
rs1076005 K42 18_5973037_C_T C L3MBTL4 Positive Pass 5.10E-05 0.00188 0.05 
rs9840198 K43 3_184770686_C_T C VPS8 Positive Pass <2.0e-6 3.24E-05 0.05 

rs75770273 K44 6_53877078_C_T C ERHP2 Positive Pass 8.10E-05 0.00195 0.05 
rs7422 K45 14_89884022_A_C A FOXN3 Positive Pass 9.30E-05 0.00371 0.05 

rs4280687 K46 4_156105105_C_T C RBM46-RP11-92A5.2 Positive Pass 0.000238 0.0101 0.04 

rs13009356 K47 2_8530522_G_A G LINC00299-
AC011747.3 Positive Pass 0.00024 0.0103 0.04 

rs8079769 K48 17_9588455_G_A G USP43 Positive Pass 2.00E-05 0.000238 0.03 
rs12666876 K49 7_155417249_G_A G AC009403.2 Positive Pass 0.000492 0.0345 0.03 
rs11884056 K50 2_85339839_C_T C LSM3P3-TCF7L1 Positive Pass 0.000105 0.00274 0.03 
rs34404720 K51 2_86879419_A_G A CHMP3 Positive Pass 0.000601 0.0169 0.02 
rs3003615 K52 9_130997892_G_A G DNM1 Positive Pass 6.50E-05 0.00238 0.02 

rs12580172 K53 12_1623989_G_A G LINC00942-WNT5B Positive Pass 0.006145 0.155 0.01 

rs6900553 K54 6_10231925_C_T C RNU6ATAC21P-RP1-
290I10.2 Positive Pass <2.0e-6 0.000468 0.01 

rs10188894 K55 2_6643733_A_G A AC021021.2 Positive Pass <2.0e-6 1.40E-05 0.01 
rs12033048 K56 1_246429681_T_C T SMYD3 Positive Pass 2.10E-05 0.000555 0.01 

rs62436708 K57 7_1323037_C_T C AC073094.4-
MICALL2 Positive Pass 0.001715 0.0619 <0.01 

rs8031453 K58 15_91108674_A_C A CRTC3 Positive Pass 2.10E-05 0.000483 <0.01 
rs6698312 K59 1_164206815_G_T G U3-NMNAT1P2 Positive Pass 4.50E-05 0.00169 <0.01 
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rs62043998 K60 16_81921203_C_T C PLCG2 Positive Pass 1.60E-05 7.64E-06 <0.01 

rs11059425 K61 12_128441207_T_G T LINC00507-RP11-
349K16.1 Positive Pass 9.00E-06 0.0107 <0.01 

rs12715075 K62 3_2620454_C_T T CNTN4 Positive Pass 0.000484 0.0326 <0.01 
rs4745827 K63 10_65659657_A_G A RP11-170M17.2 Positive Pass <2.0e-6 6.80E-05 <0.01 
rs2426652 K64 20_55294098_A_G A AL133232.1 Positive Pass 3.00E-06 0.000135 <0.01 

rs1009543 K65 10_3319474_A_G A RP11-195B3.1-RP11-
482E14.1 Positive Pass 0.001032 0.0355 <0.01 

rs10501651 K66 11_87527561_G_A G RP11-665E10.5 Positive Pass 2.90E-05 0.000965 <0.01 
rs4405041 K67 9_99088478_T_G G SLC35D2 Positive Pass 9.00E-05 0.00338 <0.01 

rs10809509 K68 9_1162013_A_C A RPS27AP14 Positive Pass 8.40E-05 0.0031 <0.01 
rs12711473 K69 16_87224293_A_G G C16orf95 Positive Pass 7.90E-05 0.00292 <0.01 

rs3957465 K70 5_5817703_G_A G KIAA0947-CTC-
471C19.1 Positive Pass 9.90E-05 0.00449 <0.01 

rs4374563 K71 3_31776980_G_A G OSBPL10 Positive Pass 3.00E-06 0.000141 <0.01 
rs176482 K72 7_105730038_G_A G SYPL1 Positive Pass 0.000612 0.0225 <0.01 

rs2291897 K73 3_33419422_C_T C FBXL2 Positive Pass 2.20E-05 0.000692 <0.01 

rs2619105 K74 10_118977123_C_A C KCNK18-RP11-
501J20.5 Positive Pass <2.0e-6 0.00882 <0.01 

rs11189359 K75 10_99517616_C_A C ZFYVE27 Positive Pass <2.0e-6 0.00121 <0.01 
rs10841952 K76 12_22289304_A_G A ST8SIA1 Positive Pass 0.000216 0.00898 <0.01 
rs35345724 K77 7_136627956_A_G A KRT8P51 Positive Pass 0.000405 0.0127 <0.01 
rs8103030 K78 19_23568661_G_A G CTB-175P5.1 Positive Pass 5.40E-05 0.00135 <0.01 
rs1364095 K79 16_79566150_G_C G RP11-467I17.1-MAF Positive Pass 6.00E-05 0.00221 <0.01 

rs2631934 K80 8_21052978_G_A A AC021613.1-RP11-
24P4.1 Positive Pass 0.000164 0.0139 <0.01 

rs9314061 K81 5_164760466_C_T C CTB-181F24.1-CTC-
535M15.2 Positive Pass 0.000244 0.0106 <0.01 

rs458552 K82 9_4833437_C_T C RCL1 Positive Pass 0.000206 0.00829 <0.01 

rs4863449 K83 4_189987905_C_T C RP11-818C3.1-RP11-
706F1.1 Positive Pass 5.10E-05 0.00189 <0.01 

rs12146727 K84 12_7170336_G_A G C1S Negative Pass 0.000497 0.006 >0.99 
rs3775291 K85 4_187004074_C_T C TLR3 Negative Pass 0.001151 0.0121 >0.99 
rs3814541 K86 9_109689752_C_T C ZNF462 Negative Pass 0.002527 0.0279 0.88 
rs2305637 K87 3_47045846_C_T C NBEAL2 Negative Pass 0.001961 0.0223 0.79 
rs7722711 K88 5_75906851_T_C T IQGAP2 Negative Pass 0.004925 0.0439 0.67 
rs948962 K89 11_76919478_C_A A MYO7A Negative Pass <2.0e-6 0.000121 0.44 

rs4916685 K90 5_89979698_C_T C GPR98 Negative Pass 0.005972 0.0692 0.4 
rs2366926 K91 5_89988504_A_G A GPR98 Negative Pass 0.009795 0.111 0.39 

rs17545756 K92 7_150732812_C_T C ABCB8 Negative Pass 0.001789 0.0162 0.39 
rs1064583 K93 6_116446576_A_G G COL10A1 Negative Pass 0.006171 0.0707 0.34 
rs868738 K94 10_115381747_G_A G NRAP Negative Pass 0.004358 0.0496 0.22 

rs2274654 K95 9_98691137_T_C T ERCC6L2 Negative Pass 0.00503 0.0509 0.19 
rs1799977 K96 3_37053568_A_G A MLH1 Negative Pass 0.006816 0.0762 0.19 
rs1051489 K97 5_32400266_A_G A ZFR Negative Pass 0.0014 0.016 0.17 

rs11209026 K98 1_67705958_G_A G IL23R Negative Pass 0.00726 0.0696 0.16 
rs2298260 K99 9_21029330_T_C T PTPLAD2 Negative Pass 0.001052 0.0114 0.13 

rs34536443 K100 19_10463118_G_C G TYK2 Negative Pass 0.004458 0.039 0.1 
rs13009282 K101 2_68364478_T_C T WDR92 Negative Pass 4.00E-05 0.000847 0.1 

rs34899 K102 5_95091201_A_G G RHOBTB3 Negative Pass 0.009069 0.102 0.09 
rs1124649 K103 2_27260469_G_A G TMEM214 Negative Pass 0.009551 0.108 0.07 
rs2275477 K104 1_36886117_C_T C OSCP1 Negative Pass 0.005291 0.0628 0.06 
rs678892 K105 15_55632859_G_T T PIGB Negative Pass 0.000276 0.00353 0.05 

rs77491573 K106 12_124288264_G_A G DNAH10 Negative Pass 0.007884 0.0708 0.03 
rs2287059 K107 2_10717806_C_T C NOL10 Negative Pass 0.005546 0.0648 0.03 

rs11080134 K108 17_29161503_A_G A ATAD5 Negative Pass 3.90E-05 0.000784 0.03 
rs16885 K109 6_16306751_G_A G ATXN1 Negative Pass 0.009295 0.105 0.02 

rs3829765 K110 14_58605790_G_A G C14orf37 Negative Pass 0.009228 0.104 0.01 
rs11568591 K111 17_48761053_G_A G ABCC3 Negative Pass 0.009769 0.087 <0.01 
rs3803716 K112 16_24802325_C_T C TNRC6A Negative Pass 0.000263 0.00321 <0.01 
rs2276774 K113 3_122646828_A_G A SEMA5B Negative Pass 0.005904 0.0598 <0.01 
rs8052655 K114 16_67409180_G_A G LRRC36 Negative Pass 0.00887 0.0791 <0.01 
rs4935502 K115 10_55955444_T_G T PCDH15 Negative Pass 0.0048 0.049 <0.01 
rs2303291 K116 2_24431184_C_T C ITSN2 Negative Pass 0.009605 0.108 <0.01 

rs16853333 K117 2_168108032_G_A G XIRP2 Negative Pass 0.0062 0.0533 <0.01 
rs12609039 K118 19_11348960_G_A G DOCK6 Negative Pass 2.40E-05 8.58E-05 <0.01 
rs2270856 K119 2_234741808_C_T C MROH2A Negative Pass 0.006914 0.0589 <0.01 

rs11204546 K120 1_248059712_T_C C OR2W3 Negative Pass 0.000999 0.0105 <0.01 
rs2306541 K121 12_133428242_G_A G CHFR Negative Pass 0.002304 0.0264 <0.01 

rs10083789 K122 16_23080634_C_A C USP31 Negative Pass 0.000395 0.00495 <0.01 
rs45559835 K123 5_155935708_G_A G SGCD Negative Pass 0.005314 0.0463 <0.01 
rs17080528 K124 3_49389842_C_T C GPX1 Positive Fail 1.90E-05 0.000557 0.41 
rs4077347 K125 16_29036915_G_A G LAT-CTB-134H23.2 Positive Fail 0.005233 0.182 0.09 

rs11150556 K126 16_83270541_T_C T CDH13 Positive Fail 0.000517 0.0201 0.01 
rs61732547 K127 9_113233652_C_T C SVEP1 Negative Fail <2.0e-6 1.42E-07 >0.99 
rs3732380 K128 3_39307562_C_T C CX3CR1 Negative Fail 1.60E-05 4.54E-06 0.95 
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rs11357576
7 K129 11_125765587_C_T C PUS3 Negative Fail 1.70E-05 5.05E-06 0.5 

rs2291375 K130 3_105264129_G_A G ALCAM Negative Fail 4.00E-05 7.16E-05 0.49 
rs1042311 K131 22_46627780_C_T C PPARA Negative Fail 0.000289 0.000853 0.3 
rs7594497 K132 2_55872538_T_C T PNPT1 Negative Fail 6.80E-05 0.000295 0.12 
rs2298316 K133 10_101147692_G_A G CNNM1 Negative Fail 0.005556 0.056 0.09 
rs2271694 K134 10_71874784_C_T C AIFM2 Negative Fail 0.000299 0.000924 <0.01 

rs16945138 K135 17_11556248_C_T C DNAH9 Negative Fail 8.40E-05 0.000265 <0.01 
rs2232607 K136 20_36993333_A_G A LBP Negative Fail 0.003067 0.0245 <0.01 

rs11125238 NA NA G RNU6-439P-RPL7P13 Positive NA 3.10E-05 0.00103 NA 
rs34969536 NA NA A AC008984.6 Positive NA 0.000104 0.00261 NA 
rs4717903 NA NA C GTF2I Positive NA 0.000464 0.0284 NA 
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Supplementary Figure S5.11: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.12: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.13: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.14: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.15: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.16: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.17: Positive selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.18: Negative selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.19: Negative selection cases from Kerner et al. 2023 passing QC. 



 105 

 
Supplementary Figure S5.20: Negative selection cases from Kerner et al. 2023 passing QC. 
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Supplementary Figure S5.21: Negative selection cases from Kerner et al. 2023 passing QC. 
 
 

 
Supplementary Figure S5.22: Positive selection cases from Kerner et al. 2023 failing QC. 
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Supplementary Figure S5.23: Negative selection cases from Kerner et al. 2023 failing QC. 
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Re-evaluation of results from Irving-Pease et al. 2024 
 
We evaluated 21 selection signals from Figure 2a of Irving-Pease et al. 202411 and extracted 
summary statistics from Supplementary Table S2.1.4 of that study. That table includes five sets of 
estimated selection coefficients for different ancestry categories: pan-ancestry analysis (ALL), 
Western hunter-gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers 
(CHG), and Anatolian farmers (ANA). For each SNP, we picked ZTop as the Z score with the most 
significant value across these categories. In Supplementary Figure S5.24, we compare ZTop and X 
scores for the full time transect analysis. We evaluated five SNPs with the largest ZTop for each 
locus (Supplementary Figure S5.24). We picked these five SNPs for each locus because they are 
highlighted in the Extended Data Figures 1-10 and Supplementary Figures S56-S76, all from 
Irving-Pease et al. 2024. Re-evaluation of these SNPs is shown in our Supplementary Figures 
S5.25-S5.29. 
 
In interpreting our re-evaluation of the results from Irving-Pease et al. 2024, it is important to be 
cognizant of the fact that for each locus, we selected the SNP with the most significant signal of 
selection in our study out of five candidate SNPs per locus proposed by Irving-Pease et al. While 
this approach lacks control for multiple testing and thus does not provide an entirely fair 
comparison with the other four studies re-evaluated here—it is expected to overestimate the 
replication rate in Irving-Pease et al. 2024 relative to those other studies—we followed this 
approach to maintain consistency with the approach of Irving-Pease et al. 2024. 
 
Of the 21 candidate loci identified by Irving-Pease et al. 2024, our analysis found that 13 had at 
least one SNP among five candidates per locus with significant posterior probability (π > 99%). 
These loci include MCM6 (peak 3), RNA5SP158 (peak 5), SLC45A2 (peak 7), IRF1 (peak 8), 
SLC34A1 (peak 9), HLA (peak 10), GATA4 (peak 11), ABO (peak 13), FADS2 (peak 14), ACAD10 
(peak 15), CYP1A1 (peak 16), ARL17B (peak 19), and CENPM (peak 21).  
 
Additionally, CCDC12 (peak 4, SNP 1, π = 95%), RAPGEFL1 (peak 18, SNP 2, π = 76%), WWP2 
(peak 17, SNP 2, π = 72%), and LINC01104 (peak 2, SNP 2, π = 65%) showed some evidence of 
selection on at least one of the five candidate SNPs per locus passing QC.  
 
For the remaining four loci—KRT18P51 (peak 6, SNP 4, π = 40%), RP11-415K20.1 (peak 1, SNP 
1, π = 28%), CTD-2008O4.1 (peak 12, SNP 5, π = 22%), and CTC-258N23.3 (peak 20, SNP 4, π 
= 2%)—there is no strong evidence of selection, as all five SNPs per locus that passed QC had 
posterior probabilities below 40%. 
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Supplementary Figure S5.24: Re-evaluating 21 candidate selective sweeps from Irving-Pease 
et al. 2024. Each marker represents a SNP, with the x-axis showing the absolute value of the X-
score (|X|) from the current study. Irving-Pease et al. reported five sets of estimated selection 
coefficients for different ancestry categories: ALL, WHG, EHG, CHG, and ANA. For each SNP, 
we selected ZTop (y-axis), the most significant Z score across these five categories. Then, we 
evaluated the five SNPs with the largest ZTop for each locus, represented by markers in different 
colors, as shown in the legend of each panel. We picked these five SNPs for each locus because 
they are highlighted in the Extended Data Figures 1-10 and Supplementary Figures S56-S76, all 
from Irving-Pease et al. 2024. The y-axis is polarized using the sign of the X-statistic. 
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Supplementary Figure S5.25: Re-evaluating 21 candidate sweeps from Irving-Pease et al. 
2024. 
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Supplementary Figure S5.26: Re-evaluating 21 candidate sweeps from Irving-Pease et al. 
2024. 
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Supplementary Figure S5.27: Re-evaluating 21 candidate sweeps from Irving-Pease et al. 
2024. 
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Supplementary Figure S5.28: Re-evaluating 21 candidate sweeps from Irving-Pease et al. 
2024. 
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Supplementary Figure S5.29: Re-evaluating 21 candidate sweeps from Irving-Pease et al. 
2024. 
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Supplementary Information section 6 
A new picture of selection at the major risk factor for 
multiple sclerosis (MS) 
 
Barrie et al. 202420 reported positive selection at the HLA-DRB1*15:01 allele tagged by the 
rs3135388 (G>A) variant, the strongest known genetic risk factor for multiple sclerosis (MS), and 
proposed that the elevated genetic risk for MS in Northern Europeans relative to other populations 
owes its origins at least in part due to the very high steppe pastoralist ancestry proportion in these 
populations. We confirm a strong signal of positive selection at this locus. However, we also 
identify features of the selection history at the locus missed by the previous study, and that together 
paint a qualitatively different story. The selection history was more complicated, and steppe 
ancestry was not in fact the main driver of the variant’s frequency differences across Europe today. 
 
First, we detect a period of strong negative selection from ~2000 years ago to the present (s = -
2.4%, p>99%) (Figure 3). This period of negative selection has had a primary influence on the 
frequency of this variant in Europeans, was missed in Barrie et al. 2024, and followed the period 
of positive selection from ~6000 to ~2000 years ago (s = 4.0%, p>99%) that drove their finding. 
 
Second, we show that the rise in frequency of this variant occurred initially in people without 
steppe ancestry living south of the Caucasus mountains, prior to the period of positive selection in 
Yamnaya steppe pastoralists around 5000 years ago that was the focus of the Barrie et al. 2024 
study. We infer that the variant’s frequency was around 10% (4.6%-18.2%; 95% confidence 
interval) 7000-5000 years ago south of the Caucasus mountains. Our finding of a first rise in 
frequency in association with Caucasus ancestry is entirely consistent with Figure 5c of Barrie et 
al. 2024 which infers that that the variant rose in frequency on a Caucasus ancestry background, 
one of the primary components of the ancestry of Yamnaya steppe pastoralists. However, our 
results go beyond that earlier study in showing that the rise in frequency actual likely to have 
occurred south of the Caucasus mountains (Supplementary Figures S6.2, S6.3), not in Eneolithic 
steppe hunter-gatherers in this period who also carried Caucasus ancestry. 
 
Third, Barrie et al. 2024 observed that the frequency of the MS risk allele is highest among modern 
individuals in northern Europe with high steppe ancestry. They proposed that the steppe ancestry 
gradient, combined with environmental factors modulating genetic risk independent of genetics, 
address the long-standing debate regarding the north-south gradient in MS prevalence. However, 
our data reveal that the selection coefficient for this variant varies in both space and time, with the 
intensity of selection highest in northern populations compared to southern ones (Supplementary 
Figure S6.3). For example, for time transects older than 3500 years ago, the selection coefficient 
in the northern region (N; 14.5 ± 3.4% s.d.) is approximately three times higher than that for 
southwest region (SW; 5.1 ± 2.5% s.d.). The correlation between steppe ancestry and allele 
frequency in modern individuals is thus geographically confounded: the difference in selective 
pressure between the north and south after the spread of steppe pastoralists, not steppe ancestry, is 
consistent with driving the observed north-south gradient of this allele (Supplementary Figures 
S6.2, S6.3). 
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qpAdm modeling 
 
We used qpAdm21,22 (v1700) to estimate ancestry proportions for each sample.  
 
We applied a 4-way model based on the Fernandes et al. 202023, using the following populations: 
 
Right: Mbuti.DG, Ust_Ishim, ElMiron, Vestonice16, MA1, Israel_Natufian, Jordan_PPNB, 
Russia_Samara_EBA_Yamnaya, Morocco_LN.SG 
 
Left: Turkey_N, EHG, WHG, Iran_GanjDareh_N 
 
 
We also applied a 3-way model from Patterson et al. 202224, using the following populations: 
 
Right: OldAfrica, WHGB, Russia_Afanasievo, Turkey_N 
 
Left: WHGA, Balkan_N, OldSteppe 
 
 
Inference of allele frequency in ancestral populations 
 
We estimate allele frequencies in the ancestral populations by maximizing the likelihood, 
incorporating the estimated qpAdm ancestry proportions and imputed genotypes of all 
individuals.  
 
Assume a 4-way model with unknown allele frequencies 𝑝8, 𝑝9, 𝑝:  and 𝑝; for the source 
populations A, B, C, and D, respectively. For each individual i, the latent allele frequency	𝑝̂$ 	is 
calculated as a weighted average based on ancestry proportions 𝑞8,$, 𝑞9,$, 𝑞:,$, and 𝑞;,$: 
 

𝑝̂$ =	𝑞8,$𝑝8 +	𝑞9,$𝑝9 + 𝑞:,$𝑝: + 𝑞;,$𝑝; 
 
The likelihood of observing the genotype 𝑔$ 	for each individual is then computed as: 
 

𝑃(𝑔$ = 0 ∣∣ 𝑝̂$ ) = (1 − 𝑝̂$)#, 	 𝑃( 𝑔$ = 1 ∣∣ 𝑝̂$ ) = 2𝑝̂$(1 − 𝑝̂$), 	 𝑃( 𝑔$ = 2 ∣∣ 𝑝̂$ ) = 𝑝̂$#	 
 
The likelihood across all individuals is maximized to estimate allele frequencies in the sources. 
 

𝐿(𝑝̂', 𝑝̂#, … , 𝑝̂6) =q𝑃(𝑔$ ∣∣ 𝑝̂$ )
6

$*'
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Supplementary Figure S6.1: Maximum likelihood estimation of allele frequencies of 
rs3135388 (G>A) across different time transects for ancestral populations using the 4-way and 
3-way qpAdm ancestry models: ANF (Anatolian neolithic farmer), WHG (Western hunter-
gatherer), ICR (Iranian/Caucasian-related), EHG (Eastern hunter-gatherer), EEF (Early 
European farmer), and STEPPE (Steppe pastoralists). For each qpAdm model, only individuals 
with a model P-value greater than 0.05 were used for the maximum likelihood estimation of 
allele frequencies.  
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Supplementary Figure S6.2: Allele frequency trajectory of rs3135388 (G>A) stratified by five 
geographic regions: N (Northern), C (Central), E (Eastern), SW (Southwest), and SE 
(Southeast). 
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Supplementary Figure S6.3: Selection coefficient of rs3135388 (G>A) across different time 
transects, stratified by five geographic regions: N (Northern), C (Central), E (Eastern), SW 
(Southwest), and SE (Southeast). Selection coefficient values are presented as percentages in 
the format (s ± s.d.). Each star represents the level of significance. The number of stars (n stars) 
indicates that the P value is less than 0.5 × 10-n, while the absence of a star means the P value is 
greater than 0.05. 
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Supplementary Information section 7 
A fast GLMM implementation - PQLseq2 
 
To analyze on the order of 15,000 individuals in a more time-efficient manner, we re-implemented 
the PQLseq25 algorithm with several programming techniques to improve its computational speed. 
Specifically, we implemented the core algorithm exclusively in efficient C++ code. While the 
original implementation of PQLseq also used C++ for a portion of its algorithm, it alternates 
between R and C++ code in every iteration of the numerical optimization process, inducing 
repetitive type casting and object duplication. By fully implementing the core algorithm in C++, 
we circumvent those issues and significantly reduce the computational time. We refer to this faster 
re-implementation of PQLseq as PQLseq2. Furthermore, we implemented a specialized version of 
PQLseq2 with the heritability parameter fixed at 1, designed specifically for our analysis where 
the heritability parameter is expected to be close to 1. This adaptation further improves 
computational speed. We conducted a head-to-head comparison focusing on the computational 
speed and the parameter estimation between PQLseq and the faster version, PQLseq2. To do this, 
we randomly extracted the genotype data of 1,000 SNPs for 1,000 samples from the ancient DNA 
dataset, along with the sample dates and the genetic relatedness matrix. We then applied PQLseq, 
PQLseq2, and the specialized version of PQLseq2 to analyze the association between the allele 
frequency and sample dates. We analyzed one SNP at a time and compared the average 
computational time across the 1,000 SNPs. In the analysis, we found that PQLseq2 is 
approximately 15 times faster than PQLseq and the specialized version of PQLseq2 demonstrates 
a further 72% speed increase over PQLseq2 (Supplementary Figure S7.1A). Additionally, the 
estimates for all the parameters, including the fixed effect 𝛽 and its standard error, p-values for 
testing the presence of the fixed effect, heritability parameter ℎ#, and the total variance component 
𝜎#, remained consistent between PQLseq and PQLseq2 (Supplementary Figure S7.1B-F). These 
results highlight both the efficiency and the accuracy of the PQLseq2 implementation. PQLseq2 
is freely available and can be downloaded from https://github.com/zhengli09/PQLseq2.  
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Supplementary Figure S7.1: Performance of a faster re-implementation of PQLseq. (A) Average 
computational time in seconds for the analysis of 1,000 randomly selected SNPs for 1,000 
individuals from the ancient DNA data. Compared methods include the original implementation 
of PQLseq, the faster re-implementation PQLseq2, and a special version of PQLseq2 with the 
heritability parameter fixed at 1. (B-F) Scatter plots comparing the (B) p-values for testing the 
presence of the fixed effect 𝛽, (C) estimates of 𝛽, (D) standard errors of the 𝛽 estimates, (E) 
estimates of the total variance component 𝜎#, and (F) estimates of the heritability parameter ℎ#. 
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