Gliding motility of the diatom *Craspedostauros australis* coincides with the intracellular movement of raphid-specific myosins

Metin Gabriel Davutoglu¹, Veikko F. Geyer¹, Lukas Niese¹, Johannes Müller², Marcelo Leomil Zoccoler², Valeria Sabatino¹, Robert Haase², Nils Kröger^{1,2,3}, Stefan Diez^{1,2,4*}, Nicole Poulsen^{1*}

¹ B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany

² Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062 Dresden, Germany

³ Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany

⁴ Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany

*correspondence to: stefan.diez@tu-dresden.de, nicole.poulsen@tu-dresden.de

Supplementary Figure 1: (a) Genomic arrangement of the four *C. australis* actin genes on the Pacbio Genome assembly contig $7F^1$ (b) Gene structure of the four *C. australis* actin genes showing the position of the intron.

actin 1	MSDDEDIAALVIDNGSGMCKAGFAGDDAPRSVFPSLIGRARQPGIMVGMEQRDAYVGDEA	60
actin 2	MSDDEDIAALVIDNGSGMCKAGFAGDDAPRSVFPSLIGRARQPGIMVGMEQRDAYVGDEA	60
actin 3	MSDDEDIAALVIDNGSGMCKAGFAGDDAPRSVFPSLIGRARQPGIMVGMEQRDAYVGDEA	60
actin 4	MSDDEDIAALVIDNGSGMCKAGFAGDDAPRSVFPSLIGRARQPGIMVGMEQRDAYVGDEA	60
_	***********************	
actin 1	OAKRGVI.TI.KYPTEHGIVTNWDDMEKIWHHTFYNEI.RVAPEAHPVI.I.TEAPONPKANRER	120
actin 2	OAKRGVI.TI.KYPIEHGIVTNWDDMEKIWHHTFYNEI.RVAPEAH PVI.I.TEA PONPKANRER	120
actin 3	OAKRGVI.TI.KYPIEHGIVTNWDDMEKIWHHTFYNEI.RVAPEAH PVI.I.TEA PONPKANRER	120
actin 4	OAKRGVI.TI.KYPIEHGIVTNWDDMEKIWHHTFYNEI.RVAPEAH PVI.I.TEA PONPKANRER	120
	~ *******************************	
actin 1	MTOIMFETFNVPAMYVNIOAVLSLYASGRTTGCVLDSGDGVTHTVPIYEGYALPHAVIRL	180
actin 2	MTOIMFETFNVPAMYVNIOAVLSLYASGRTTGCVLDSGDGVTHTVPIYEGYALPHAVIRL	180
actin 3	MTOIMFETFNVPAMYVNIOAVLSLYASGRTTGCVLDSGDGVTHTVPIYEGYALPHAVIRL	180
actin 4	MTOIMFETFNVPAMYVNIOAVLSLYASGRTTGCVLDSGDGVTHTVPIYEGYALPHAVIRL	180
_	* * * * * * * * * * * * * * * * * * * *	
actin 1	DLAGRDLTEYLMKILTERGYSLTTTAEREIVRDIKESLCFVAVDFEEEMKKAAESSALEK	240
actin 2	DLAGRDLTEYLMKILTERGYSLTTTAEREIVRDIKESLCFVAVDFEEEMKKAAESSALEK	240
actin 3	DLAGRDLTEYLMKILTERGYSLTTTAEREIVRDIKESLCFVAVDFEEEMKKAAESSALEK	240
actin 4	DLAGRDLTEYLMKILTERGYSLTTTAEREIVRDIKESLCFVAVDFEEEMKKAAESSALEK	240
_	***********************	
actin 1	SFELPDGNIIVIGNERFRCPEVLFQPNLTGLEMDGIGDSTFQTIMKCDVDIRKDLYANIV	300
actin 2	SFELPDGNIIVIGNERFRCPEVLFQPNLTGLEMDGVGDSTFQTIMKCDVDIRKDLYANIV	300
actin 3	SFELPDGNIIVIGNERFRCPEVLFQPNLTGLEMDGVGDSTFQTIMKCDVDIRKDLYANIV	300
actin_4	$\tt SFELPDGNIIVIGNERFRCPEVLFQPNLTGLEMDGVGDSTFQTIMKCDVDIRKDLYANIV$	300

actin 1	LSGGTTMFPGISERMSKEITALAPASIKVKIVAPPERKYSVWIGGSILASLSTFQSMWIS	360
actin 2	LSGGTTMFPGISERMSKEITALAPASIKVKIVAPPERKYSVWIGGSILASLSTFQSMWIS	360
actin 3	LSGGTTMFPGISERMSKEITALAPASIKVKIVAPPERKYSVWIGGSILASLSTFQSMWIS	360
actin 4	LSGGTTMFPGISERMSKEITALAPASIKVKIVAPPERKYSVWIGGSILASLSTFQSMWIS	360
—	**********************	
actin 1	KEEYDESGPSIVHRKCF* 377	
actin 2	KEEYDESGPSIVHRKCF* 377	
actin 3	KEEYDESGPSIVHRKCF* 377	
actin 4	KEEYDESGPSIVHRKCF* 377	
_	* * * * * * * * * * * * * * * * *	

Supplementary Figure 2: Clustal Omega alignment of the four *C. australis* actin protein sequences showing a single amino acid exchange. Identical amino acid residues are highlighted in grey and indicated with an asterisk (*), a : (colon) indicates conservation between groups of strongly similar properties.

actin_4_cDNA	ATGTCTGACGATGAAGATATCGCCGCCCTTGTCATCGACAACGGTTCCGGAATGTGCAAA	60
actin_3_cDNA	ATGTCTGACGACGAAGATATCGCCGCCCTTGTCATCGACAACGGTTCCGGAATGTGCAAG	60
actin_1_cDNA	ATGTCTGACGACGAAGATATCGCCGCCCTTGTCATCGACAACGGTTCCGGAATGTGCAAA	60
actin_2_cDNA	ATGTCTGACGATGAAGATATCGCCGCCCTTGTCATCGACAACGGTTCCGGAATGTGCAAA	60
actin_4_cDNA actin_3_cDNA actin_1_cDNA actin_2_cDNA	GCCGGATTCGCTGGAGATGACGCCCCACGCTCCGTCTTCCCATCCCTCATCGGACGTGCC GCCGGATTCGCTGGAGATGACGCCCCACGCTCCGTCTTCCCATCCCTCATCGGACGTGCC GCCGGATTCGCTGGAGATGACGCCCCACGCTCCGTCTTCCCATCCCTCATCGGACGTGCC GCCGGATTCGCTGGAGATGACGCCCCACGCTCCGTCTTCCCATCCCTCATCGGACGTGCC *********************************	120 120 120 120
actin_4_cDNA	CGCCAGCCAGGTATCATGGTTGGTATGGAGCAGCGTGACGCATACGTCGGTGACGAGGCA	180
actin_3_cDNA	CGCCAGCCAGGTATCATGGTTGGTATGGAGCAGCGTGACGCATACGTCGGTGATGAGGCA	180
actin_1_cDNA	CGCCAGCCAGGTATCATGGTCGGTATGGAGCAGCGTGACGCATACGTCGGTGACGAGGCA	180
actin_2_cDNA	CGCCAGCCAGGTATCATGGTCGGTATGGAGCAGCGTGACGCATACGTCGGTGACGAGGCA	180
actin_4_cDNA	CAGGCCAAGCGTGGTGTCCTCACACTGAAGTACCCAATCGAGCACGGCATCGTCACCAAC	240
actin_3_cDNA	CAGGCCAAGCGTGGTGTCCTCACACTGAAGTACCCAATCGAGCACGGTATCGTCACCAAC	240
actin_1_cDNA	CAGGCCAAGCGTGGTGTCCTCACACTGAAGTACCCAATCGAGCACGGTATCGTCACCAAC	240
actin_2_cDNA	CAGGCCAAGCGTGGTGTCCTCACACTGAAGTACCCAATCGAGCACGGTATCGTCACCAAC	240
actin_4_cDNA	TGGGACGATATGGAGAAGATCTGGCATCACACCTTCTACAACGAGCTCCGTGTCGCCCCA	300
actin_3_cDNA	TGGGACGATATGGAGAAGATCTGGCATCACACCTTCTACAACGAGCTCCGTGTCGCCCCA	300
actin_1_cDNA	TGGGACGATATGGAGAAGATCTGGCATCACACCTTCTACAACGAGCTCCGTGTCGCCCCA	300
actin_2_cDNA	TGGGACGATATGGAGAAGATCTGGCATCACACCTTCTACAACGAGCTCCGTGTCGCCCCA	300
actin_4_cDNA actin_3_cDNA actin_1_cDNA actin_2_cDNA	GAGGCCCACCCAGTCCTGCTCACCGAGGCCCCACAGAACCCCAAGGCCAACCGCGAACGT GAGGCCCACCCAGTCCTGCTCACCGAGGCCCCACAGAACCCCCAAGGCCAACCGCGAACGT GAGGCCCACCCAGTCCTGCTCACCGAGGCCCCACAGAACCCCCAAGGCCAACCGCGAGCGT GAGGCCCACCCAGTCCTGCTCACCGAGGCCCCACAGAACCCCCAAGGCCAACCGCGAGCGT *******	360 360 360 360
actin_4_cDNA actin_3_cDNA actin_1_cDNA actin_2_cDNA	ATGACCCAGATCATGTTCGAGACCTTCAACGTCCCGGCCATGTACGTCAACATCCAGGCC ATGACCCAGATCATGTTCGAGACCTTCAACGTCCCGGCCATGTACGTCAACATCCAGGCC ATGACCCAGATCATGTTCGAGACCTTCAACGTCCCGGCCATGTACGTCAACATCCAAGCC ATGACCCAGATCATGTTCGAGACCTTCAACGTCCCGGCCATGTACGTCAACATCCAAGCC *******	420 420 420 420
actin_4_cDNA	GTCCTCTCCCTGTACGCCTCTGGACGTACCACCGGATGCGTGCTGGACTCCGGTGATGGT	480
actin_3_cDNA	GTCCTCTCCCTGTACGCCTCCGGACGTACCACCGGATGCGTGCTGGACTCCGGTGATGGT	480
actin_1_cDNA	GTCCTCTCCCTGTACGCCTCTGGACGTACCACCGGATGCGTGCTGGACTCCGGTGATGGT	480
actin_2_cDNA	GTCCTCTCCCTGTACGCCTCCGGACGTACCACCGGATGCGTGCTGGACTCCCGGTGATGGT	480
actin_4_cDNA actin_3_cDNA actin_1_cDNA actin_2_cDNA	GTGACACACCTGTCCCAATCTACGAGGGATACGCCCTTCCACACGCCGTCATCCGTCTC GTGACACACACGTTCCAATCTACGAGGGATACGCTCTTCCACACGCCGTCATCCGTCTC GTGACACACACGGTTCCAATCTATGAGGGATACGCCCTTCCACACGCCGTCATCCGTCTC GTGACACACACCGTCCCAATCTATGAGGGATACGCTCTTCCACACGCCGTCATCCGTCTC **********	540 540 540 540
actin_4_cDNA actin_3_cDNA actin_1_cDNA actin_2_cDNA	GATTTGGCCGGACGTGACCTGACCGAGTACCTGATGAAGATCCTCACAGAGCGTGGTTAC GATTTGGCCGGACGTGACCTGACC	600 600 600 600
actin_4_cDNA actin_3_cDNA actin_1_cDNA actin_2_cDNA	TCGCTGACAACCACCGCCGAGCGCGAAATCGTCCGTGACATCAAGGAGAGTCTCTGCTTC TCGCTGACAACCACCGCCGAGCGCGAAATCGTCCGTGACATCAAGGAGAGTCTCTGCTTC TCGCTGACAACCACCGCCGAGCGCGAAATCGTCCGTGACATCAAGGAGAGTCTCTGCTTC TCGCTGACAACCACCGCCGAGCGCGAAATCGTCCGTGACATCAAGGAGAGTCTCTGCTTC ******	660 660 660 660
actin_4_cDNA	GTCGCCGTCGACTTCGAGGAGGAGGAGAAGAAGAAGGCCGCTGAGTCTTCTGCTCTTGAGAAG	720
actin_3_cDNA	GTCGCCGTCGACTTCGAGGAGGAGGAGATGAAGAAGGCCGCTGAGTCTTCTGCTCTTGAGAAG	720
actin_1_cDNA	GTCGCCGTCGACTTCGAGGAGGAGGAGATGAAGAAGGCCGCTGAGTCTTCTGCTCTTGAGAAG	720
actin_2_cDNA	GTCGCCGTCGACTTCGAGGAGGAGGAGATGAAGAAGGCCGCTGAGTCTTCTGCTCTTGAGAAG	720

actin 4 cDNA	TCTTTCGAGCTTCCAGATGGTAACATCATCGTGATTGGAAACGAGCGCTTCCGTTGCCCA	780
actin 3 cDNA	TCTTTCGAGCTTCCAGATGGTAACATCATCGTGATTGGAAACGAGCGCTTCCGTTGCCCA	780
actin 1 cDNA	TCTTTCGAGCTTCCAGATGGTAACATCATCGTGATTGGAAACGAGCGCTTCCGTTGCCCA	780
actin 2 cDNA	TCTTTCGAGCTTCCAGATGGTAACATCATCGTGATTGGAAACGAGCGCTTCCGTTGCCCA	780

actin 4 cDNA	GAGGTCCTGTTCCAGCCTAACTTGACTGGTCTCGAAATGGACGGTGTTGGCGACTCCACC	840
actin 3 cDNA	GAGGTCCTGTTCCAGCCTAACTTGACTGGTCTCGAAATGGACGGTGTTGGCGACTCCACC	840
actin 1 cDNA	GAGGTCCTGTTCCAGCCTAACTTGACTGGTCTCGAAATGGACGGTATTGGCGACTCCACC	840
actin 2 cDNA	GAGGTCCTGTTCCAGCCTAACTTGACTGGTCTCGAAATGGACGGTGTTGGCGACTCCACC	840

actin 4 cDNA	TTCCAGACCATCATGAAGTGCGATGTCGATATCCGCAAGGATCTGTACGCCAACATCGTC	900
actin 3 cDNA	TTCCAGACCATCATGAAGTGCGATGTCGATATCCGCAAGGATCTGTACGCCAACATCGTC	900
actin 1 cDNA	TTCCAGACCATCATGAAGTGTGATGTCGATATCCGCAAGGATCTGTACGCCAACATCGTC	900
actin 2 cDNA	TTCCAGACCATCATGAAGTGCGATGTCGATATCCGCAAGGACCTGTACGCCAACATCGTC	900

actin 4 cDNA	CTTTCTGGAGGAACCACCATGTTCCCAGGAATCAGCGAGCG	960
actin 3 cDNA	CTTTCTGGAGGAACCACCATGTTCCCAGGAAT <mark>T</mark> AGCGAGCGCATGTCGAAGGAGATCACC	960
actin 1 cDNA	CTTTCTGGAGGAACCACCATGTTCCCAGGAAT <mark>T</mark> AGCGAGCGCATGTCGAAGGAGATCACC	960
actin 2 cDNA	CTTTCTGGAGGAACCACCATGTTCCCAGGAAT <mark>C</mark> AGCGAGCGCATGTCGAAGGAGATCACC	960

actin 4 cDNA	GCCCTCGCCCCAGCCTCCATCAAGGTCAAGATCGTGGCCCCACCGGAGCGAAAGTACTCC	1020
actin 3 cDNA	GCCCTCGCCCCAGCCTCCATCAAGGTCAAGATCGTGGCCCCACCGGAGCGAAAGTACTCC	1020
actin 1 cDNA	GCCCTCGCCCCAGCCTCCATCAAGGTCAAGATCGTGGCCCCACCGGAGCGAAAGTACTCC	1020
actin_2_cDNA	GCCCTCGCCCCAGCCTCCATCAAGGTCAAGATCGTGGCCCCACCGGAGCGAAAGTACTCC	1020

actin 4 cDNA	GTGTGGATCGGAGGATCCATCCTCGCTTCCCTGTCTACATTCCAGAGCATGTGGATCAGC	1080
actin 3 cDNA	GTGTGGATCGGAGGATCCATCCTCGCTTCCCTGTCTACATTCCAGAGCATGTGGATCAGC	1080
actin 1 cDNA	GTGTGGATCGGAGGATCCATCCTCGCTTCCCTGTCTACATTCCAGAGCATGTGGATCAGC	1080
actin_2_cDNA	GTGTGGATCGGAGGATCCATCCTCGCTTCCCTGTCTACATTCCAGAGCATGTGGATCAGC	1080

actin_4_cDNA	AAGGAGGAGTACGACGAGTCCGGCCCATCCATCGTCCACCGCAAGTGCTTCTAA 1134	
actin_3_cDNA	AAGGAGGAGTACGACGAGTCCGGTCCATCGTCCACCGCAAGTGCTTCTAA 1134	
actin_1_cDNA	AAGGAGGAGTACGACGAGTCCGGTCCATCGTCCACCGCAAGTGCTTCTAA 1134	
actin_2_cDNA	AAGGAGGAGTACGACGAGTCCGGTCCATCGTCCATCGCAAGTGCTTCTAA 1134	

Supplementary Figure 3: Clustal Omega alignment of the four *C. australis* mRNA sequences. Identical nucleotides are highlighted in grey and indicated with an asterisk (*).

Supplementary Figure 4: Cell motility analysis of *C. australis* **cell lines.** Histograms (upper panels) and corresponding box plots (lower panels) showing the distribution of cell velocities in populations of wild type *C. australis* (far left) and *C. australis* cell lines expressing actin or myosins as GFP fusion proteins used for TIRFM analyses of actin and myosin dynamics. In the box plots, the red center lines denote the median (50th percentile) values, with the blue boxes having lower and upper bounds of the 25th and 75th, respectively. The black whiskers indicate the 5th and 95th percentiles, and outlier values outside of this range are indicated by red plus signs. N represents the number of investigated cells.

Supplementary Figure 5: Image analysis pipeline. a Maximum projection of a 20 s dualchannel movie of a gliding cell. **b** Overlay of tracks generated using TrackMate using the chloroplast autofluorescence signal in the far red optical spectrum. Chloroplast positions (circles) are shown only for the first and last frames. **c** Chloroplast positions for each frame were used to determine the position of the midpoint between the two chloroplasts (red dot) and the angle of the cell relative to a horizontal origin. **d**, **e** Kymographs of myosin-GFP signals (in black) generated by reslicing and projecting each row of pixels of the image before (**d**) and after (**e**) registration using displacement and angle values. **f** Refined kymograph after performing a Fast-Fourier-Transformation, masking horizontal traces, and inverting the Fourier transformation. Indigo, red, cyan and yellow boxes indicate regions-of-interest (ROIs) used for directionality measurements. **g** Orientation map showing the preferred orientation of the myosin-GFP signals in the red ROI shown in **f** (top left), color wheel showing gradient of colors used to indicate angle (top right) and histogram of estimated angles generated by the directionality plugin in Fiji. Scale bars – horizontal 5 μ m, vertical 5 s.

Supplementary Figure 6: TIRFM based kymograph analysis of GFP-actin in stationary cells. a Montage generated for dual-channel TIRFM data showing the positions of a stationary cell at 7.5 s intervals (GFP-actin in green and chloroplast autofluorescence in magenta, generated from Supplementary Movie S2). b Kymograph analysis of GFP-actin movement. GFP-channel data from the Supplementary Movie S2 shown in a was registered using cell tracking data (GFP-actin in black). Gray ellipse and white slits above kymograph approximate the positions of the cell body and raphe openings, respectively. (Scale bars: horizontal = 5 μ m, vertical = 5 s)

Supplementary Figure 7: Phylogenomic analysis of diatom myosins. Cladogram of 309 diatom myosins. The position of *C. australis* myosins (CaMyoX, 12 sequences) are in bold and labeled with a green arrow. A large clade containing only raphid diatom myosins, including the four *C. australis* myosins investigated in this study (CaMyo51A-D) is highlighted in blue. Node tips are color coded by species type. Internal nodes indicate Ufboot bootstrap scores of <95 (hollow nodes) or \geq 95 (solid nodes). Species name are abbreviated as follows as the full sequence names can be found in Supplementary Table 1. *Amphora coffeaeformis* (Ac); *Asterionellopsis glacialis* (Ag); *Amphiprora paludosa* (Ap) *Astrosyne radiata* (Ar); *Amphiprora sp* (As); *Attheya septentrionalis* (Ats); *Craspedostauros australis* (Ca); *Cyclotella cryptica* (Cc); *Chaetoceros affinis* (Cha); *Chaetoceros debilis* (Chd); *Chaetoceros neogracile* (Chne); Cylindrotheca closterium (Cnc); *Corethron hystrix* (Coh); *Corethron pennatum* (Cop); *Ditylum brightwellii* (Dib); *Entomoneis sp* (Es); *Extubocellulus spinifer* (Exs); *Fragilariopsis*

cylindrus (Fc); Fragilariopsis kerguelensis (Fk); Fistulifera solaris (Fso); Grammatophora oceanica (Go); Helicotheca tamesis (Ht); Leptocylindrus danicus (Ld); Leptocylindrus danicusvar danicus (Ldd); Licmophora paradoxa (Lp); Minutocellus polymorphus(Mp); Nitzschia sp (Ns); Odontella aurita (Oa); Proboscia alata (Pa); Pseudo-nitzschia multiseries (Pn); Pseudo-nitzschia australis (Pnau); Pseudo-nitzschia fraudulenta (Pnf); Pseudo-nitzschia pungens (PnP); Phaeodactylum tricornutum (Pt); Skeletonema costatum (Sc); Skeletonema menzelii (Sm); Stephanopyxis turris (Spt); Seminavis robusta (Sro); Striatella unipunctata (Sru); Staurosira sp. (Ss); Stauroneis constricta (Stc); Synedro acus (Sya); Synedropsis cf recta (Sycr); Thalassionema frauenfeldii (Tf); Thalassiosira pseudonana (Thp); Thalassionema nitzschioides (Tn); Thalassiosira antarctica (Tsa); Thalassiosira gravida (Tsg); Thalassiosira miniscula (Tsm); Thalassiothrix antarctica (Txa)

Supplementary Figure 8. Schematic of twelve predicted C. australis myosins

CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1 CaMyo51A CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	LHEAAILYNLKARHV-QALPYTRTGDIVIAVNPYQWFHVLYSHDNQNTYSEALIWKNRSN LHEAAILYNLKERHC-SAKPYTRVSDIVIAVNPYQWLTDLYTEKVRLYYAQKLVWEQSE- LHEAAILYNLKERHL-NNHPYTRTGDIVIAVNPFQWFKEIYTEKVRARFANKLVWEDHE- LHEPAILFNLKERHG-SGKPYTRTGDIIIAVNPFQWFKEIYTEKVRNRYARILVWENVD- LHEPAVLHNLQVRFVKGSSIYTYCGIVLVAINPYADCSHIYGEEIIQVYRGA ITENAFIENLTMRHK-SDNIYTYIGDVVISTNPFKNL-NIYKESDIKAYNGR LHEPAVLYNLKERYA-AWMIYTYSGLFCVTVNPYKWL-PVYKPEVVTAYRGK : * *.: ** . ** . :: **: : * : ITKRKSTSKPNSNDNSNNSNNNQTKSQTQPQSQGEGASPTADISDPRNGLVPHVYEAS 	59 58 58 52 50 50 50 73 73 73 67 63 63 63 63
	**:: : P-loop	
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	ALAYQGLAARGDDQSILVSGESGAGKTETVKICMSHLASIQNLTPKQRQKQRVLNAAVSS SLCYRGLAYEGVNQSILVSGESGAGKTETVKICMNHIASVQKDPTAV	179 120 120 120 116 111 112 112
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1 CaMyo51A	ASSVASSALSTTGSASAPANSEIVQRVLDSNPLLEAFGNAKTLRNDNSSRFGKYIQLQFD SEIDADAVVNRILDSNPLLEAFGNAKTRRNDNSSRFGKYIVLQFD ADGGAKFSDPIVQRIMESNPLLEAFGNAKTRRNDNSSRFGKYQLQFD GGGNNVVVNRVLESNPLLEAFGNAKTRRNDNSSRFGKYQLQFD TTSIEARVLASNPIMESIGNAKTIRNDNSSRFGKFIQINFC EITSGKIQGTLEDQIISANPLLEAFGNAKTVRNDNSSRFGKFIRIHFG EITSGKIQGTLEDQIISANPLLEAFGNAKTVRNDNSSRFGKFIRIHFG : :: :**::****************************	239 165 168 164 157 151 160 160 299
CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	RKEPKN	198 206 201 181 174 183 183
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	AEGERTFHIFYQLLAAPEEYKATVWSGLEDTDNESFCYVGWTDTNTIEGRSDEDRFQLTL DETERTYHIFYQLLAAPEEYKATVWSGLEDTDNESFCYVGWTDTNTIEGRSDEDRFQLTL DTTERTYHSFYQLLAAPENEKVEIWSELKGTNYESFAYIGTPPTDVIEGKKDGDHWHTTL DPEERTYHIFYQIIASKHKTKYWSHLAGTTNESFRFVGKAPTDTIEGMKDGDHFNETV APGERNYHIFYQLCAARNHQVLKDLHLGPC-ESYSYLTQGGDSRIPGVDDKADFEALL TQGERSFHIFYQMLKGLSQSKLNELGLTPNAPAYEYLKKSGCFDVSTIDDSGEFKIIV LKAERSYHIFYQITSNKKPELIEMLLITTNPYDYPFV-SQGEISVASIDDQEELMATD LKAERSYHIFYQIMSNKKPDLIEMLLITTNPYDYAFV-SQGEITVPSIDDQEELMATD **.:* ***: : : : : : : :	359 258 266 259 238 232 240 240
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	NSLALVGVIDDKLKALLRAICIVLQLGNLEFAPLDDDKCVISTDEELMELAELM KALEIVGIKDDKYITLFQAIAAVLQLGNLSFAPKPGNDESSVVTSKKEFKELAELI EILDTINVKGNDRRDLMRAMCIVLQLGNVSFMKDPNDDDRSVVKDRKEFDKLAALM KVLEKVGVKDDNLMTLMQAIIIVLQIGNLTFGPDPKDDERSVVTSTKDFAALSEIM KALQLLGFDEKQMSDVFRLLAGLLLGNVHFENGEGSSAVSASSCQEISRLCREFW KAMETLGLKESDQNSIWRILAAILHIGNITFAEAAEQRTGTTT-VKVSDTKSLAAAASCL SAIDILGFTNEEKVSIYKLTGAVMHYGNLKFKQKQREEQAEPDGTEVADKAAYLQ SAIDILGFTSDERVSIYKLTGAVMHYGNMKFKQKQREEQAEPDGTEVADKAAYLQ	413 314 322 315 294 291 295 295

CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	DVPPDELAVALLVRTVTAKGETFQVPLKAETAKDSTDAFAKEIYAKTFLWLVRTIN GCEEDLLGRAFTERTIKTRGEEYKVPLKSDVSKESADAFAKEIYAKIFLWLVRAIN GVTNQDLVDCLTERTMKTRNESYKVPLNADVAKESADAFAKEIYSKLFLWLVRAIN CVPEEAMECSFTERTMKTRNETYKVPLNATVAKESAEAFAKEIYGRLFLWLVRAIN KISESDLRIMITRREIRAVNEIVTKPLTKNEAVRSRDALTKMLYSHLFGWLVDKIN KTDQQSLSIALCYRSISTGVGKRCSVISVPMDCNQAAYSRDALAKALYERLFNWLVSKIN SLNSADLLKALCYPRVKVGNEYVTKGQTVEQVSNAVGALAKAVYEKMFLWMVARIN SLNSXDLLKALCYPRVKVGNEYVTKGQTVQQVYNAVGALAKAVYEKMFLWMVTRIN : : : : : * * * * * * * * * * *	469 370 378 371 350 351 351 351
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	DATCAENNYRNASFDHQRFGVIGLLDIFGFETFEVNRFEQLCINYANEKLQQKFTQDIFR DATCAENNYPGADAN-TEFGVVGLLDIFGFESFPINGFEQLCINYCNEKLQAKFTHDIFQ DATCAELNYEGG-MD-KHFGVIGLLDIFGFESFVRNRFEQLCINYANEKLQAKFTEDIFR DATSAELNYKSG-LM-EHFGVIGLLDIFGFESFVRNRFEQLCINYANEKLQAKFTEDIFR EALNEKDKLDGTNQKKRPDRFIGVLDIYGFETFDVNSFEQFSINYANEKLQQQFNQHVFK TIINCTTEKGPVIGILDIYGFEVFQNNSFEQLNINFCNEKLQQLFIELTLK QQLDTKQPRQYFIGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHMFV QQLDTKQPRQYFIGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHMFV	529 429 436 429 410 402 402 402
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	SVQTEYEFEGIELGEITYDDNTDV-LDLVEGGMGLLALLNEECVRPKGSDKTFVFKAQAM TVQEEYKAEGLNLDDIQYDDNSDV-LELIEGKFGIIKQLNEECVRPKGNDEAFVSKALQS SVQEEYEFEGIPLDEIKYDDNTDV-LDLIEGKAGLLAMLNEECVRPKGDDAFVAKALAA SVQDEYEKEGIPLDEIKYDDNTDV-LDLIEGKTGLAMLNEECVRPKGTDQAFVTKALAA LEQEEYIREEIEWVRVDFHDNQPA-IDLIEGPVGMINLLDEQCKRLNGSDADWLSQLQNS SEQEEYVREGIEWKNIEYFNNKPICELIEKKPIGLISLLDEACLIAKSTDQTFLDSICKQ LEQEEYKKEGIEWFFIDFGMDLAACIELIEKKPIGIFSILEEECMFPKATDTSFKNKLYDQ LEQEEYKKEGIEWEFIDFGMDLAACIELIEKPMGIFSILEEECMFPKATDTSFKNKLYEQ * ** *: :: :: :: *:: *:: *:: *:: *:: *:	588 488 495 488 469 462 462 462
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	NKDNAVWIREPHYSATSFGIRHYAGKVTYDSNGFVTKNMDTLPTDLQDCAAKS NKTVPCLIAKNTFKRSEFGINHYAGAVIYTAQDFVIRNTDTLPTDLQVCAKAC NKCSPCLIASK-TNRREFGIHHYAGKVMYDAEGFVGSNVDTLPTDLGECAAKS NKQSPCLFPNK-VNRMGFGIHHYAGKVMYDAEGFVIRNQDTLPTDLSDLASLC TELKRNPQLAFPKVRSNDFIVRHFAADVTYSTDGFVEKNRDAIGEQLLDVVAS FE-KN-PHLQSYVVSKDRSIGDTCFRLKHYAGDVTYDVRGFLDKNKDTLFGDLISSMQSS HL-GKSANFQKPKVVKGKAEAHFALIHYAGVVDYNITGWLEKNKDPLNETVVGLYQKS HL-GKSNNFQKPKPAKRKVEAHFSLVHYAGTVDYNITGWLDKNKDPLNETVVGLYQKS * : *:*. * * :: * * :: * * :: .	641 541 547 540 523 520 519 519
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2 OcMhc1	SNAILAKELTNEAMMNPFAPVQSSTKAPETAAAAAAPKKKKKRPKGARGRPGGAPTASSA KNEILAKHLDNDKCTNQESKAPAP	701 565 569 563 542 537 538 537
	actin binding	
CaMyo51A CaMyo51D CaMyo51B CaMyo51C CeMyo5 DdMyo1E HsMhc2	SAPTSRPGHHMPRRSVKSNLVAETVWTKFKTQLSRLMTQLNDTRTRYIRCIKPNSKKRPR AA-KSGRGPPRRAKSNLVADTVMTKFKTQLSSLMKGLSTTKSRYIRCIKPNVLKKKL P-GAAKKAPPRRAKSNLVAATVWTKYKSQLMSLMNMLAQTNSRYIRCIKPNTYKKPS AQ-VAKKAPPKRAKSNLVAATVWAKYKTQLMSLMNMLKTTESKYIRCIKPNAPKKPL SSSSSTPGKRTIKKTVASQFRDSLKELMSVLCSTRPHYVRCIKPNDSKISF KKRPETAGSQFRNAMNALITTLLACSPHYVRCIKSNDNKQAG AGGGAKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPG	761 621 624 619 593 579 592
OcMhc1	GGGKKGGKKKGSSFQTVSALFRENLNKLMTNLRTHSPHFVRSIIPNETKTPG *. : :: *:. * ::::: :: *:: * *	589

Supplementary Figure 9: Sequence alignment of the motor domain of the *C. australis* myosins CaMyo51A-D and myosins from *Oryctolagus cuniculus* (Genbank ID AAA74199.1); *Homo sapiens* (Gene bank ID: AAD29950.1), *Caenorhabditis elegans* (Genbank ID: AAA97926.1), *Dictyostelium discoideum* (Genbank ID: EAL63071.1). Identical amino acids are indicated by (*) and highlighted in grey, a : (colon) indicates conservation between groups of strongly similar properties; a . (period) indicates conservation between groups of weakly similar properties

Supplementary Figure 10: Kymograph analysis of CaMyo51A-GFP in starting, slowlymoving and stationary cells. Analysis of 25-30 s time-lapse segments of CaMyo51A-GFP expressing cells upon a starting (Supplementary Movie S7), b slowly-moving (Supplementary Movie S8) and c being stationary (Supplementary Movie S9). (Left panels) Montages showing the position of cells at 10 s intervals (GFP in green, chloroplast autofluorescence in magenta, scale bars: 5 μ m). (Middle panels) Cell velocity as function of time, generated from chloroplast tracking data. (Right panels) Registered kymographs generated from GFP-channel data (black) showing movement of myosins relative to the cell. Gray ellipses and white slits above kymographs approximate the positions of the cell body and raphe openings, respectively. (Scale bars: horizontal = 5 μ m, vertical = 5 s)

Supplementary Figure 11: Plasmid map of the DNA construct for N-terminal eGFP tagging of the *C. australis* Actin. nat = nourseothricin (ClonNat) resistance gene; eGFP = enhanced green fluorescent protein.

Supplementary Figure 12: Plasmid map of the DNA construct for C-terminal eGFP tagging of the *C. australis* CaMyo51A under the control of the CaRpl44 regulatory sequences. eGFP = enhanced green fluorescent protein.

Supplementary Figure 13: Plasmid map of the DNA construct for C-terminal eGFP tagging of the *C. australis* CaMyo51B under the control of its endogenous CaMyo51B regulatory sequences. nat = nourseothricin (ClonNat) resistance gene; eGFP = enhanced green fluorescent protein.

Supplementary Figure 14: Plasmid map of the DNA construct for C-terminal eGFP tagging of the *C. australis* CaMyo51C under the control of its endogenous CaMyo51B regulatory sequences. nat = nourseothricin (ClonNat) resistance gene; eGFP = enhanced green fluorescent protein.

Supplementary Figure 15: Plasmid map of the DNA construct for C-terminal eGFP tagging of the *C. australis* CaMyo51D under the control of the Cafcp regulatory sequences. eGFP = enhanced green fluorescent protein.

Supplementary Tables

Supplementary	Table 1:	Primers	used to	determine	full-length	gene models
11 2						0

Gene	Sequence
CaMyo51A	
3'RACE	1 ST PCR: 5'-AGGGTCCTCGATTCAAACCCGCTCCTCGAAGCA-3';
	2 nd PCR: 5'-GTGCGTCCGAAGGGCTCCGACAA-3'
5'RACE	1 ST PCR: 5'-CAGGGTACCCTATTCGAAACCGAAGATGTCGAG-3';
	2 nd PCR: 5'- GCCAGC GCGGATGCTTCGTAGA-3'
Full-length	sense: 5'-CCACAGACAGCGCTGCGACT-3'
gene model	antisense 5'-CAGGGTACCCTATTCGAAACCGAAGATGTCGAG-3'
Full-length	sense: 5'-AGGGAATTCGATTCAAACCCGCTCCTCGAAGCA-3'
gene model	antisense: 5'-GGC GATGTAGGTTGCCTT-3'
CaMyo51B	
3'RACE	1st PCR: 5'-GCAGCCAGATCATCGCTTACC-3'
	2nd PCR: 5'-CGCAAGGACTTCGACATCATG-3'
5' RACE	1 st PCR: 5'-CCCTCGTGGTCCTCCCAGACG-3'
	2 nd PCR: 5'-GGGCAAGTTGACCATGTCCGG -3'
Full-length	sense: 5'-AAACAACAATTACAACAACCTACATGGGCAAGAAAAAGGCC-3'
gene model	antisense: 5'- CCTCGCCCTTGCTCACCATTCTAGAAGCTACGGATTCGGCAGC-3'
CaMyo51C	
3'RACE	1st PCR: 5'-CCTCATCCAGGCCAACGAGTC-3'
	2nd PCR: 5'-CGTTCGAGATGTTGAACAACC-3'
5' RACE	1st PCR: 5'-GCTCCACCATGTCTGGGAAGG-3'
	2nd PCR: 5'-ACTGTGGCACGCGGACTTGGG-3'
Full-length	sense: 5'-AAACAACAATTACAACAACCTACGTATGGGCGAGAAAAAGTCCCAATACG-
gene model	3'; antisense: 5'-CCTCGCCCTTGCTCACCATTCTAGACAGGCCTGGGGGGGG
CaMyo51D	
3'RACE	1ST PCR: 5'-TGCGAGAGCATGAAGCGTGAC-3'
	2nd PCR: 5'-CGCGAAGGGATTGAACGCAAC-3'
5' RACE	1 st PCR: 5'-GATACGGTTGACGACCGCATC-3'
	2 nd PCR: 5'- GTCGCCGACGTTCTTGGGGCTC-3'
Full-length	sense: 5'-AAACAACAATTACAACAACCTACATGCCAAAGGAAAAGGAC-3'
gene model	antisense: 5'- CCTCGCCCTTGCTCACCATTCTAGAATCGGAATCAGAGTCCGAG-3'
CaMyo51E	
3'-end	manual annotation
5' RACE	1st PCR: 5'-GATACCTGTTGCTTCCTTTTG-3'

	2 nd PCR: 5'-TCGCAGCAGCGCTCTTGTTGC-3'
CaMyo52	
3'RACE	1 st PCR: 5'-CAGGAATGCAAACGACTT-3'
	2 nd PCR: 5'-CGCGTTGCACCAATATCA-3'
5' RACE	1 st PCR: 5'-TTGTCTACCTGCTCTTCCG-3'
	2 nd PCR: 5'-GCACGACATTGCCATCCTC-3'
CaMyo53	
3'RACE	1 st PCR: 5'-CAGCAACAACAGCAGCAA-3'
	2 nd PCR: 5'-GAGAACGGAGTGCCAAAG-3'
5' RACE	1 st PCR: 5'-ATTTCTGGTTCTCCAAGC-3'
	2 nd PCR: 5'-GCTTGAAGGGGTTGATGG-3'
CaMyo47	
3'RACE	1 st PCR: 5'-GGCATTTTGGGACGACAT-3'
	2 nd PCR: 5'-CGATATTTTGCCGTCACT-3'
5' RACE	1 st PCR: 5'-GAAACCAGGATCGATTGG-3'
	2 nd PCR: 5'-GCATCGTAGCTGAGGGAGA-3'
CaMyoI	
3'RACE	1 st PCR: 5'-CGTCGATGAGGATGAGAT-3'
	2 nd PCR: 5'-CGAAGATGTGAAGGCCAA-3'
5' RACE	1 st PCR: 5'-GGATGGATTGAGATTTGC-3'
	2 nd PCR: 5'-CGATGGATGAAAGATGCC-3'
CaMyoJ	
3'RACE	1 st PCR: 5'-CAAGGAAGGCAAGGAGCA-3'
	2 nd PCR: 5'- GTCATGAATGGGGGCAACC -3'
5' RACE	1 st PCR: 5'- AGAATGGCCTGGTTGCAG -3'
	2 nd PCR: 5'- CTTGTCCCAGTAGCGCTT -3'
CaMyo29	
3'RACE	1 st PCR: 5'-ATGAGCCGCGTGTCCATGAAC-3'
	2 nd PCR: 5'-GTCTCAAGAAGGCCTTCTGCG-3'
5'-end	truncated, manual annotation
CaMyoL	
3'RACE	1 st PCR: 5'-CAACGATTTGCGAGAGGG-3'
	2 nd PCR: GAAACAGTCAAGGCGAAG-3'
5' RACE	1 st PCR: 5'-GATTGGTTGACTTGCACG-3'
	2 nd PCR: 5'-TGGAGATGGGTCAAGGTG-3'

References

1. Zackova Suchanova, J. *et al.* Diatom adhesive trail proteins acquired by horizontal gene transfer from bacteria serve as primers for marine biofilm formation. *New Phytol.* **240**, 770–783 (2023).

2. Priyam, A. *et al*, Sequenceserver: A Modern Graphical User Interface for Custom BLAST Databases, *Molecular Biology and Evolution*, **36**, 2922–2924(2019).

3. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. *PLOS Biology* **12**, e1001889. (2014)

4. Osuna-Cruz, C.M., Bilcke, G., Vancaester, E. *et al.* The *Seminavis robusta* genome provides insights into the evolutionary adaptations of benthic diatoms. *Nat Commun* **11**, 3320 (2020).