Cell Reports, Volume 43

Supplemental information

Carcinoma-associated mesenchymal stem

cells promote ovarian cancer heterogeneity

and metastasis through mitochondrial transfer

Leonard Frisbie, Catherine Pressimone, Emma Dyer, Roja Baruwal, Geyon Garcia, Claudette St. Croix, Simon Watkins, Michael Calderone, Grace Gorecki, Zaineb Javed, Huda I. Atiya, Nadine Hempel, Alexander Pearson, and Lan G. Coffman

grown with FACS isolated pt412 tumor cells which did not receive mitochondria (mT-). C) After coculture, the mT- tumor cells did not gain mitochondria from the mT+ tumor cells indicating tumor cells do not transfer either endogenous or donated mitochondria to other tumor cells

Number of Unique Barcodes and Reads from	Tail-Vein Injection Model
--	---------------------------

Condition and Site	Number of Barcodes	Number of Reads	Number of Barcodes/ug DNA
TC + CA-MSC Lung	9410	392918657	22.61
TC + CA-MSC Abdomen	4623	326735198	18.23
TC + CA-MSC Liver	2161	262589084	2.95
TC Lung	1641	151035028	5.14
TC Liver	1238	143062065	2.33

Table S1, related to Figure 1: Shows the number of barcodes and number of total reads recorded across each site and condition in a tail vein injection model. These values correspond to the Sankey visualizations in Figure 1E-G.

Mouse, Condition, and Site	Number of Reads	Genomic DNA in Sample (μg)	Number of Reads (normalized by amount of μg Genomic DNA by sample)
M1 CA-MSC Primary	77886193	131.6	592065.3
M1 CA-MSC Liver	65703374	22.9	2874163.3
M2 CA-MSC Primary	73223004	71.4	1024958.1
M2 CA-MSC Liver	67607026	23.6	2870786.7
M3 MIRO1 Primary	75238821	42.6	1766169.5
M3 MIRO1 Liver	64306171	83.6	769120.6
M4 MIRO1 Primary	66617832	118.2	563745.7
M5 Tumor Only	1049474	66.6	15748.4

Number of Reads in CA-MSC Alone vs MIRO1 Knockdown by Sample

Table S2, related to Figure 7: Shows the number of reads for each site by sample in each mouse in *in vivo* MIRO1 knockdown and CA-MSC alone models. The number of reads were divided by the μ g DNA in each sample to calculate a normalized number of reads such that different sites could be compared.

Video S1:

Real-time microscopy of CA-MSCs with GFP+ mitochondria and tumor cells demonstrating transfer of GFP+ CA-MSC mitochondria to adjacent tumor cells. Both cells types are stained with RFP-actin.