SUPPORTING INFORMATION

Telluride-Based Pillar[5]arene: A Recyclable Catalyst For Alkylation Reactions In Aqueous Solution

Patrick C. Nobre,^a Pâmella Cordeiro,^a Ingrid C. Chipoline,^a Victor Menezes,^a Kaila V. S. Santos,^a Alix Y. Bastidas Ángel,^b Eduardo E. Alberto^{b*} and Vanessa Nascimento^{a*}

^a SupraSelen Laboratory, Departament of Chemistry, Universidade Federal Fluminense. Institute of Chemistry, Campus do Valonguinho, 24020-141, Niterói-RJ, Brazil.
^b Departamento de Química, Universidade Federal de Minas Gerais – UFMG. 31.270-901, Belo Horizonte, MG, Brazil.

*E-mail corresponding authors: <u>nascimentovanessa@id.uff.br</u>; albertoee@ufmg.br

Contents

General procedure for the synthesis of the M-Chalcogen	S2
General procedure for the synthesis of the P[5]-Chalcogen	S4
General procedure for the synthesis of the P[6]-TePh	S6
UV-Vis spectra of P[n]-Br and P[n]-TePh	S6
General procedure for alkylation of NaCN catalyzed by P[5]-TePh	S7
General procedure for alkylation of NaN ₃ catalyzed by P[5]-TePh	S9
General procedure for Gram-scale reaction	S10
General procedure for reuse of the catalyst	S10
Experiments to detect the interactions between substrates and P[5]-TePh	S10
References	S14
Selected spectra	S15

General procedure for synthesis of the 1,4-Bis(2-(chalcogen)ethoxy)benzene derivatives (M-Chalcogen):

Procedure for the sulfur derivative: A 10.00 mL round-bottomed glass vial were added thiophenol (0.623 mmol, 70 mg), acetone (2.0 mL), K_2CO_3 (0.684 mmol, 94 mg) and **M-Br**¹ (0.261 mmol, 85 mg). The resulting mixture was stirred at room temperature for 15 h. The reaction was monitored by TLC until the total disappearance of the starting materials. After that, the reaction mixture was poured into a solution of 5% of the NaOH (50.0 mL), and extracted with DCM (3x 15.0 mL). The combined organic phases were dried over MgSO₄, and concentrated under vacuum. The residue was purified by column chromatography on silica gel 60A (0.060-0.200 mm-Across) using a 6:4 (v/v) solution of CHCl₃/hexane to afford **M-SPh** in 60% yield.

Spectral data of the compound

1,4-Bis(2-(phenylthio)ethoxy)benzene **M-SPh**: Purified by chromatography column (hexane/CHCl₃ = 60:40); Yield: 0.0598 g (60%); white solid, m.p.: 125-127 °C. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.41-7.39 (m, 4H); 7.31-7.27 (m, 4H); 7.22-7.19 (m, 2H); 6.76 (s, 4H); 4.08 (t, *J* = 7.0 Hz,

4H); 3.25 (t, J = 7.0 Hz, 4H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 152.8$, 135.5, 129.8, 129.0, 126.5, 115.7, 67.4, 32.9. HRMS (ESI-QTOF) calculated mass for C₂₂H₂₂O₂S₂ [M]⁺: 382.1061, found: 382.1007.

Procedure for the selenium and tellurium derivatives: A 25.0 mL round-bottomed doublenecked flask was charged with a solution of diphenyl diselenide or diphenyl ditelluride (0.210 mmol; 65.9 mg and 86.9 mg respectively) and a mixture of dry THF (1.0 mL) and EtOH (0.5 mL). Subsequently, the system was saturated with nitrogen and NaBH₄ (0.525 mmol; 20.0 mg) was added to the solution. Afterward, the reaction mixture was vigorously stirred at room temperature, and after about 30 minutes, the solution became colorless, indicating the total cleavage of the chalcogen–chalcogen bond. Then, a solution of **M-Br**¹ (0.210 mmol; 67.6 mg). in dry THF (1.0 mL) was added dropwise. After the end of the addition, the mixture was stirred at room temperature for an additional 36 hours. Then, the mixture was poured into a solution of HCl 0.1 mol L⁻¹ (10.0 mL) and extracted with DCM (3 × 10.0 mL). The combined organic layers were dried over Mg₂SO₄, and the solvent evaporated under reduced pressure. The crude product was purified by column chromatography using a 6:4 (v/v) solution of DCM/hexane to afford **M-SePh** in 70% yield and **M-TePh** in 67% yield.

Spectral data of the compounds

1,4-Bis(2-(phenylselanyl)ethoxy)benzene **M-SePh**:³ Purified by chromatography column (hexane/DCM = 60:40); Yield: 0.0703 g (70%); white solid, m.p.: 98-99 °C, lit.³ = 90.5-93.3 °C. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = 7.54-7.52 (m, 4H); 7.28-7.23 (m, 6H); 6.73 (s, 4H); 4.12 (t,

J = 7.3 Hz, 4H); 3.18 (t, J = 7.3 Hz, 4H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 152.7$, 132.9, 129.3, 129.1, 127.2, 115.6, 68.1, 26.1.

1,4-Bis(2-(phenyltellanyl)ethoxy)benzene **M-TePh**: Purified by chromatography column (hexane/DCM = 60:40); Yield: 0.0813 g (67%); white solid, m.p.: 93-95 °C. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.77-7.75 (m, 4H); 7.30-7.27 (m, 2H); 7.21-7.18 (m, 4H); 6.72 (s, 4H); 4.23 (t,

J = 7.5 Hz, 4H); 3.16 (t, J = 7.5 Hz, 4H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 152.6$, 138.6, 129.2, 127.9, 115.7, 111.0, 70.1, 7.0. ¹²⁵Te{¹H} NMR (158 MHz, CDCl₃) $\delta = 443.8$. HRMS (APCI-QTOF) calculated mass for C₂₂H₂₂O₂Te₂ [M]⁺: 577,9744, found: 577,9757.

General procedure for synthesis of the Chalcogen-Pillar[5]arenes derivatives (P[5]-Chalcogen):

Procedure for the sulfur derivative: A 10.0 mL round-bottomed glass vial, were added the thiophenol (0.623 mmol; 68.5 mg), acetone (1.5 mL), K_2CO_3 (0.684 mmol, 94.4 mg) and **P[5]-Br**¹ (0.051 mmol; 85.2 mg). The resulting mixture was stirred at room temperature for 15 hours. The reaction we monitored by TLC until the total disappearance of the starting materials. After that, the reaction mixture was poured into a solution of 5% of the NaOH (50.0 mL) and extracted with ethyl acetate (3 x 15.0 mL). The combined organic layers were dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel 60A (0.060-0.200 mm-Across) using a 6:4 (v/v) solution of CHCl₃/hexane to afford **P[5]-SPh** in 80% yield.

Spectral data of the compound

Compound **P[5]-SPh**: Purified by chromatography column (hexane/CHCl₃ = 60:40); Yield: 0.0803 g (80%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.34-7.32 (m, 20H); 7.24-7.21 (m, 20H); 7.17-7.13 (m, 10H); 6.87 (s, 10H); 4.16-4.12 (m, 10H); 3.97-3.92 (m, 10H); 3.72 (s, 10H); 3.20-3.16 (m, 20H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 149.7,

136.2, 129.3, 129.0, 128.7, 126.2, 115.6, 67.3, 33.7, 29.3. HRMS (ESI-QTOF) calculated mass for C₁₁₅H₁₁₀O₁₀S₁₀ [M+H]⁺: 1971,5379, found: 1971.5302.

Procedure for the Selenium and Tellurium derivatives: A 25 mL round-bottomed doublenecked flask was charged with a solution of diphenyl diselenide or diphenyl ditelluride (0.214 mmol; 67.2 mg and 88.6 mg respectively) in a mixture of dry THF (1.0 mL) and EtOH (0.5 mL). Subsequently, the system was saturated with nitrogen and NaBH₄ (0.536 mmol; 20.4 mg) was added to the solution. After the addition, the reaction mixture was vigorously stirred at room temperature, and after about 30 minutes, the solution became colorless, indicating the total cleavage of the chalcogen–chalcogen bond. Then, a solution of **P[5]-Br**¹ (0.043 mmol; 71,8 mg) in dry THF (1.0 mL) was added dropwise. After the end of the addition, the mixture was stirred at room temperature for an additional 36 hours. Then, the mixture was poured into a solution of HCl 0.1 mol L⁻¹ (10.0 mL) and extracted with DCM (3 × 10.0 mL). The combined organic layers were dried over Mg₂SO₄, and the solvent evaporated under reduced pressure. The crude product was purified by preparative TLC using a solution of DCM/hexane [1:1; (v/v)] to afford **P[5]-SePh** in 91% yield and **P[5]-TePh** in 70% yield.

Spectral data of the compounds

Compound **P[5]-SePh**:³ Purified by preparative TLC (hexane/DCM = 50:50); Yield: 0.0737 g (70%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.50-7.48 (m, 20H); 7.21-7.20 (m, 30H); 6.87 (s, 10H); 4.23-4.19 (m, 10H); 4.05-4.00 (m, 10H); 3.71 (s, 10H); 3.21-3.14 (m, 20H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 149.6, 132.5, 130.1,

129.2, 128.6, 127.0, 115.5, 68.1, 29.3, 27.1.

Compound **P[5]-TePh**: Purified by preparative TLC (hexane/DCM = 50:50); Yield: 0.0850 g (67%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.73-7.72 (m, 20H); 7.25-7.21 (m, 10H); 7.17-7.14 (m, 20H); 6.85 (s, 10H); 4.37-4.11 (m, 10H); 4.15-4.11 (m, 10H); 3.72 (s, 10H); 3.30-3.25 (m, 10H), 3.16-3.11 (m, 10H). ¹³C{¹H} NMR (CDCl₃,

125 MHz) δ = 150.1, 138.2, 129.2, 127.9, 127.6, 115.6, 111.8, 70.0, 29.7, 8.0. ¹²⁵Te{¹H} NMR (CDCl₃, 158 MHz) δ (ppm) = 440.3. IR (neat) = υ (cm⁻¹) 3049; 2923; 2851; 1495; 1402; 1016; 726.

General procedure for synthesis of Tellurium-Pillar[6]arene derivative (P[6]-TePh):

A 25.0 mL round-bottomed double-necked flask was charged with a solution of diphenyl ditelluride (0.214 mmol; 88.6 mg) in a mixture of dry THF (1.0 mL) and EtOH (0.5 mL). Subsequently, the system was saturated with nitrogen and NaBH₄ (0.536 mmol; 20.4 mg) was added to the solution. After the addition, the reaction mixture was vigorously stirred at room temperature, and after about 30 min, the solution became colorless, indicating the total cleavage of the chalcogen–chalcogen bond. Then, a solution of **P[6]-Br**² (0.043 mmol, 85.6 mg) in dry THF (1.0 mL) was added dropwise. After the end of the addition, the mixture was stirred at room temperature for an additional 36 hours. Then, the mixture

was poured into a solution of HCl 0.1 mol L⁻¹ (10.0 mL) and extracted with DCM (3 × 10.0 mL). The combined organic layers were dried over Mg₂SO₄, and the solvent evaporated under reduced pressure. The crude product was purified by preparative TLC using a 1:1 (v/v) solution of DCM/hexane to afford **P[6]-TePh** in 60% yield.

Spectral data of the compound

Compound **P[6]-TePh**: Purified by preparative TLC (hexane/DCM = 50:50); Yield: 0.0850 g (60%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.62 (d, *J* = 7.3 Hz, 24H); 7.18 (t, *J* = 7.3 Hz, 12H); 7.09 (t, *J* = 7.3 Hz, 24H); 6.69 (s, 12H); 4.13-4.10 (m, 24H); 3.73 (s, 12H); 3.07-3.04 (m, 24H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 150.1,

138.2, 129.2, 127.9, 127.6, 115.6, 111.8, 70.0, 29.7, 8.0. ¹²⁵Te{¹H} NMR (CDCl₃, 158 MHz) δ (ppm) = 443.4. IR (neat) = υ (cm⁻¹) 3050; 2921; 2852; 1498; 1405; 1202; 1016; 726; 689.

a) **P[5]Br** and **P[5]TePh**, 1,0 μ M in CH₂Cl₂. b) **P[6]Br** and **P[6]TePh**, 0,2 μ M and 1,0 μ M in CH₂Cl₂, respectively.

General procedure for alkylation of NaCN catalyzed by P[5]-TePh:

A 10.0 mL round-bottomed glass vial was added the appropriate alkyl bromide **3a-n** (0.174 mmol), **P[5]-TePh** (0.00174 mmol, 8.0 mg; 1.0 mol%) and water (1.0 mL). The resulting mixture was stirred at room temperature for 5 minutes. After this, NaCN (0.348 mmol, 17.1 mg) was added, and the mixture was stirred for an additional 12 hours. The reactions were monitored by TLC until the total disappearance of the starting materials (the progress of the reaction could also be visually observed. See Figure S1). After that, the reaction mixture was extracted with ethyl acetate (3x 15.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by preparative TLC using hexane/ethyl acetate [90:10; (v/v)] as the eluent.

Spectral data of the compounds

^{CN} 2-(4-Bromophenyl)acetonitrile **4b**:⁴ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0220 g (65%); white solid; mp.: 51-52 °C, lit.⁴: 46.3-47.6. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.44 (d, J = 8.5 Hz, 2H); 7.14 (d, J = 8.5 Hz, 2H); 3.63 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 132.2, 129.5, 128.8, 122.1, 117.3, 23.1.

 $\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} 2-(2-Chlorophenyl)acetonitrile & \mathbf{4d}:^5 & \text{Purified by preparative TLC} \\ (\text{hexane/ethyl acetate} = 90:10); & \text{Yield}: 0.0229 \text{ g} (87\%); & \text{white oil}; ^1\text{H NMR} \\ (\text{CDCl}_3, 500 \text{ MHz}) \,\delta (\text{ppm}) = \delta \, 7.46-7,44 \, (\text{m}, 1\text{H}); \, 7.36-7.34 \, (\text{m}, 1\text{H}); \, 7.25-7.23 \, (\text{m}, 2\text{H}); \, 3.77 \, (\text{s}, 2\text{H}). \, ^{13}\text{C}\{^1\text{H}\} \, \text{NMR} \, (\text{CDCl}_3, \, 125 \, \text{MHz}) \,\delta = 133.5, \, 129.8, \, 129.7, \\ 129.6, \, 128.2, \, 127.5, \, 116.8, \, 22.1. \end{array}$

CN 2-(4-Nitrophenyl)acetonitrile 4e:⁸ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0155 g (55%); yellowish solid; mp.: 114-115 °C, lit.⁷: 116-117 °C . ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 8.14 (d, J = 8.8 Hz, 2H); 7.49 (d, J = 8.8 Hz, 2H); 4.45 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 147.8, 137.0, 132.8, 128.9, 124.3, 116.4, 23.5.

2-(4-Methoxyphenyl)acetonitrile **4f**:⁴ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0194 g (76%); colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.23 (d, *J* = 8.8 Hz, 2H); 6.90

(d, J = 8.8 Hz, 2H); 3.81 (s, 3H); 3.68 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 159.3, 129.1, 121.7, 118.2, 114.5, 55.3, 22.8.$

 $\begin{array}{c} \begin{array}{c} & 2-(Benzo[d][1,3]dioxol-5-yl)acetonitrile \ \mathbf{4g}:^{4} \ \text{Purified by preparative} \\ & \text{TLC (hexane/ethyl acetate = 90:10); Yield: 0.0182 g (65\%); brown} \\ & \text{solid; m.p.: 51-52 °C, Lit.: 49-50 °C. ^{1}H \ NMR \ (CDCl_{3}, 500 \ MHz) \ \delta} \\ & (ppm) = \delta \ 6.79-6.78 \ (m, 3H); 5,98 \ (s, 2H); 3.65 \ (s, 2H). ^{13}C \ ^{1}H \ NMR \ (CDCl_{3}, 125 \ MHz) \\ & \delta = 148.3, 147.4, 123.3, 121.2, 117.9, 108.6, 108.3, 101.4, 23.2. \end{array}$

HO 4h

2-(4-Hydroxy-3-methoxyphenyl)acetonitrile **4h**:⁶ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0196 g (69%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 6.89

(d, J = 8.0 Hz, 1H); 6.82-6.78 (m, 2H); 3.90 (s, 3H); 3.68 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 146.9, 145.4, 121.4, 121.0, 118.2, 114.8, 110.3, 56.0, 23.2.$

3-(4-Bromophenyl)-3-oxopropanenitrile 4i:⁴ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0155 g (40%); yellowish solid; m.p.: 158-160 °C, lit.4: 156.9 -158.2 °C. ¹H NMR Br 4j (Acetone-d₆, 500 MHz) δ (ppm) = δ 7.95 (d, J = 8.5 Hz, 2H); 7.77 (d, J = 8.5 Hz, 2H); 4.60 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 188.9, 134.8, 132.9, 131.0, 129.4, 115.3.

(E)-4-Phenylbut-3-enenitrile 4j:4 Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0169 g (68%); yellowish oil. 41 ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.38-7.32 (m, 5H); 6.73 (dt,

J = 15.8 and 1.7 Hz, 1H); 6.07-6.02 (m, 1H); 3.28 (dd, J = 5.7 and 1.7 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 135.6, 134.6, 128.7, 128.3, 126.4, 117.3, 116.7, 20.7.

General procedure for alkylation of NaN₃ catalyzed by P[5]-TePh:

A 10.0 mL round-bottomed glass vial was added the alkyl bromide **3a-f** (0.174 mmol), P[5]-TePh (0.00174 mmol, 8.0 mg; 1 mol%) and water (1.0 mL). The resulting mixture was stirred at room temperature for 5 min. After this, NaN₃ (0.348 mmol, 22.6 mg) was added and the mixture was stirred for an additional 12 hours. The reaction was monitored by TLC until the total disappearance of the starting materials. After that, the reaction mixture was extracted with ethyl acetate (3x 15.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by preparative TLC using hexane/ethyl acetate [90:10; (v/v)] as the eluent.

Spectral data of the compound

(Azidomethyl)benzene 5a:⁷ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0208 g (90%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.37-7.28 (m, 5H); 4.29 (s, 2H). ¹³C{¹H} NMR $(CDCl_3, 125 \text{ MHz}) \delta = 135.3, 128.7, 128.2, 128.1, 54.7.$

 $I-(Azidomethyl)-4-bromobenzene 5b:^{9} Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0283 g (77%); colorless oil. ¹H NMR (CDCl₃, 500 MHz) <math>\delta$ (ppm) = δ 7.51 (d, J = 8.3 Hz; 2H); 7.19 (d, J = 8.3 Hz; 2H); 4.30 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 134.3, 131.9, 129.8, 122.3, 54.0. IR (neat) = v (cm⁻¹) 2927; 2093; 1488; 1282; 1246; 1012; 791.

1-(Azidomethyl)-4-nitrobenzene **5c**:⁹ Purified by preparative TLC (hexane/ethyl acetate = 85:15); Yield: 0.0217 g (70%); colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 8.25 (d, *J* = 8.8 Hz, 2H); 7.50

(d, J = 8.8 Hz, 2H); 4.51 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 13$ C NMR (126 MHz, CDCl₃) δ 147.7, 142.7, 128.6, 124.0, 53.7. IR (neat) = v (cm⁻¹) 3081; 2097; 1516; 1340; 1294; 1256.

1-(Azidomethyl)-4-methoxybenzene **5d**:⁹ Purified by preparative TLC (hexane/ethyl acetate = 85:15); Yield: 0.0255 g (90%); colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.24 (d, J = 8.6 Hz, 2H); 6.91

(d, J = 8.6 Hz, 2H); 4.26 (s, 2H); 3.81 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 159.6, 129.7, 127.4, 114.2, 55.3, 54.4$. IR (neat) = υ (cm⁻¹) 2935; 2091; 1611; 1512; 1243; 1175; 1032; 811.

0 0 5e 5-(*Azidomethyl*)*benzo*[*d*][1,3]*dioxole* **5e**:⁷ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0200 g (65%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 6.81-6.76 (m, 3H); 5.97 (s,

2H); 4.22 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ = 148.0, 147.6, 129.0, 121.9, 108.7, 108.3, 101.2, 54.6. IR (neat) = v (cm⁻¹) 2898; 2093; 2093; 1503; 1252; 1037; 927; 808.

Br 5f

2-Azido-1-(4-bromophenyl)ethan-1-one **5f**:¹⁰ Purified by preparative TLC (hexane/ethyl acetate = 85:15); Yield: 0.0015 g (36%); colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.78 (d, *J* = 8.7 Hz, 2H); 7.65 (d, *J* = 8.7 Hz, 2H); 4.52 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 125

MHz) δ = 192.3, 133.1, 132.4, 129.5, 129.4, 54.8. IR (neat) = υ (cm⁻¹) 3086; 2904; 2098; 1692; 1293; 1215; 835.

(*E*)-(3-Azidoprop-1-en-1-yl)benzene **5g**:⁷ Purified by preparative TLC (hexane/ethyl acetate = 90:10); Yield: 0.0152 g (55%); yellowish oil. ¹H NMR (CDCl₃, 500 MHz) δ (ppm) = δ 7.41-7.39 (m, 2H); 7.35-7.32

(m, 2H); 7.29-7.26 (m, 1H); 6.65 (d, J = 15.7 Hz, 1H); 6.24 (dt, J = 15.5 Hz and 6.6 Hz, 1H); 3.94 (d, J = 6.6 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 136.0$, 134.5, 128.6, 128.2, 126.6, 122.4, 53.0. IR (neat) = v (cm⁻¹) 3028; 2926; 2093; 1233; 965.

General procedure for Gram-scale reaction:

A 10.0 mL round-bottomed glass vial was added the benzyl bromide **3a** (4.1 mmol, 70 mg), **P[5]-TePh** (0.041 mmol, 188.5 mg; 1 mol%) and water (23.6 mL). The resulting mixture was stirred at room temperature for 5 minutes. After this, NaCN (8.2 mmol, 401.8 mg) was added, and the mixture was stirred for an additional 12 hours. After that, the reaction mixture was extracted with ethyl acetate (3x 45.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by preparative TLC using hexane/ethyl acetate (90:10) as the eluent, to afford the desired product 4a in 91% yield (3.7 mmol, 436 mg).

General procedure for recovery and reuse of the catalyst P[5]-TePh:

A 10.0 mL round-bottomed glass vial was added the appropriate benzyl bromide **3a** (0.174 mmol), **P[5]-TePh** (0.00174 mmol, 8.0 mg; 1 mol%) and water (1.0 mL). The resulting mixture was stirred at room temperature for 5 minutes. After this, NaCN (0.358 mmol, 17.5 mg) was added, and the mixture was stirred for an additional 12 hours. After that, the reaction mixture was extracted with ethyl acetate (3x 15.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude was washed with hexanes (3 x 5 mL) to separate the catalyst **P[5]-TePh** from the crude product **4a**. Then, the catalyst is dried under vacuum and used directly in another cycle.

Experiments to detect the interactions between substrates and P[5]-TePh

¹H Nuclear Magnetic Resonance Analyses:

A test tube was charged with substrate **3i** (4.6 mg, 0.0169 mmol). P[5]-TePh (10.0 mg, 0.0039 mmol) and CDCl₃ (1 mL). After stirring for 15 minutes at 25 °C, the solution was then transferred to an NMR tube and analyzed by ¹H NMR.

Figure S1. Stacked ¹H NMR spectra of 3i (red), P[5]-TePh (blue) and 3i + P[5]-TePh (green).

8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 f1 (ppm)

Figure S2: Partial ¹H NMR of 3i (red), P[5]-TePh (blue) and 3i + P[5]-TePh (green).

Figure S3: Partial ¹H NMR of 3i (red), P[5]-TePh (blue) and 3i + P[5]-TePh (green).

Progress of the reaction

Figure S4. Progress of the reaction. (a) after addition of reagents, (b) during reaction (c) after the reaction is over.

References

[1] da Silva, A. F. M.; da Costa, N. M.; Fernandes, T. S.; Bessa, I. A. A.; D'Amato, D. L.; Senna, C. A.; Lohan-Codeço, M.; Nascimento, V.; Jr, P. A.; Archanjo, B. S.; Pinto, L. F. R.; dos Santos, T. C.; Ronconi, C. M. Responsive Supramolecular Devices Assembled from Pillar[5]arene Nanogate and Mesoporous Silica for Cargo Release *ACS Appl. Nano Mater* 2022, *5*, 10, 13805-13819. DOI: 10.1021/acsanm.2c01408[2] Nierengarten, I.; Guerra, S.; Holler, M.; Karmazin-Brelot, L.; Barberá, J.; Deschenaux, R.; Nierengarten, J.-F. Macrocyclic Effects in the Mesomorphic Properties of Liquid-Crystalline Pillar[5]- and Pillar[6]arenes *Eur. J. Org, Chem.* 2013, 3675-3684. DOI: 10.1002/ejoc.201300356.

[3] Zhou, Y..; Jie, K.; Huang, F. A redox-responsive selenium-containing pillar[5]arenebased macrocyclic amphiphile: synthesis, controllable self-assembly in water, and application in controlled release *Chem. Commun.* **2017**, *53*, 8364-8367. DOI: 10.1039/C7CC04779G.

[4] Martins, N. S.; Ángel, A. Y. B.; Anghinoni, J. M.; Lenardão, E. J.; Barcellos, T.; Alberto, E. E. From Stoichiometric Reagents to Catalytic Partners: Selenonium Salts as Alkylating Agents for Nucleophilic Displacement Reactions in Water *Adv. Synth. Catal.* **2022**, *364*, 87-93. DOI: 10.1002/adsc.202100797.

[5] Zhang, J.-Q.; Liu, J.; Hu, D.; Song, J.; Zhu, G.; Ren, H. Rapid and Simple Access to α -(Hetero)arylacetonitriles from Gem-Difluoroalkenes *Org. Lett.* **2022**, *24*, 786-790. DOI: 10.1021/acs.orglett.1c04336.

[6] Röckl, J. L.; Imada, Y.; Chiba, K.; Franke, R.; Waldvogel, S. R. Dehydrogenative Anodic Cyanation Reaction of Phenols in Benzylic Positions *ChemElectroChem* **2019**, *6*, 4184-418. DOI: 10.1002/celc.201801727.

[7] Lenstra, D. C.; Lenting, P. E.; Mecinović, J. Sustainable organophosphorus-catalysed Staudinger reduction *Green Chem.* **2018**, *20*, 4418-4422. DOI: 10.1039/C8GC02136H.

[8] Chen, X.; Peng, Y.; Yu, W.; Zhang, X.; Shao, X.; Xu, X.; Li, Z. Condition-Based Selective Synthesis of 3,4,5-Trisubstituted Isoxazoline N-oxides, 4,5-Dihydroisoxazoles and Isoxazoles *ChemistrySelect* **2018**, *3*, 6344-6348. DOI: 10.1002/slct.201800839.

[9] Bao, M; Lu, W.; Su, H.; Qiu, L.; Xu, X. A convergent formal [4 + 2] cycloaddition of 1,6-diynes and benzyl azides: construction of spiro-polyheterocycles *Org. Biomol. Chem.* **2018**, *16*, 3258-3265. DOI: 10.1039/C8OB00735G.

[10] Panday, P.; Garg, P.; Singh, A. Manganese-Dioxide-Catalyzed Trifluoromethylation and Azidation of Styrenyl Olefins via Radical Intermediates *Asian J. Org. Chem.* **2018**, 7, 111-115. 10.1002/ajoc.201700508.

Figure S5. ¹H NMR (500 MHz, CDCl₃) of the compound M-SPh.

Figure S6. ¹³C NMR (125 MHz, CDCl₃) of the compound M-SPh.

Figure S7. ¹H NMR (500 MHz, CDCl₃) of the compound M-SePh.

Figure S8. ¹³C NMR (125 MHz, CDCl₃) of the compound M-SePh.

Figure S9. ¹H NMR (500 MHz, CDCl₃) of the compound M-TePh.

Figure S10. ¹³C NMR (125 MHz, CDCl₃) of the compound M-TePh.

Figure S11. ¹²⁵Te NMR (158 MHz, CDCl₃) of the compound M-TePh.

Figure S12. ¹H NMR (500 MHz, CDCl₃) of the compound P[5]-SPh.

Figure S13. ¹³C NMR (125 MHz, CDCl₃) of the compound P[5]-SPh.

Figure S14. ¹H NMR (500 MHz, CDCl₃) of the compound P[5]-SePh.

Figure S15. ¹H NMR (500 MHz, CDCl₃) of the compound P[5]-SePh.

Figure S16. ¹H NMR (500 MHz, CDCl₃) of the compound P[5]-TePh.

Figure S17. ¹³C NMR (125 MHz, CDCl₃) of the compound P[5]-TePh.

Figure S18. ¹²⁵Te NMR (158 MHz, CDCl₃) of the compound P[5]-TePh.

Figure S19. ¹H NMR (500 MHz, CDCl₃) of the compound P[6]-TePh.

Figure S20. ¹³C NMR (125 MHz, CDCl₃) of the compound P[6]-TePh.

Figure S21. ¹²⁵Te NMR (158 MHz, CDCl₃) of the compound P[6]-TePh.

Figure S22. ¹H NMR (500 MHz, CDCl₃) of the compound 4a.

Figure S23. ¹³C NMR (125 MHz, CDCl₃) of the compound 2a.

Figure S24. ¹H NMR (500 MHz, CDCl₃) of the compound 4b.

Figure S25. 13 C NMR (125 MHz, CDCl₃) of the compound 4b.

Figure S26. ¹H NMR (500 MHz, CDCl₃) of the compound 4c.

Figure S27. ¹³C NMR (125 MHz, CDCl₃) of the compound 4c.

Figure S28. ¹H NMR (500 MHz, CDCl₃) of the compound 4d.

Figure S29. ${}^{13}C{}^{1}H$ -APT NMR (125 MHz, CDCl₃) of the compound 4d.

Figure S30. ¹H NMR (500 MHz, CDCl₃) of the compound 4e.

Figure S31. ¹H NMR (500 MHz, CDCl₃) of the compound 4e.

Figure S32. ¹H NMR (500 MHz, CDCl₃) of the compound 4f.

Figure S33. ¹³C NMR (125 MHz, CDCl₃) of the compound 4f.

Figure S34. ¹H NMR (500 MHz, CDCl₃) of the compound 4g.

Figure S35. $^{13}C{^{1}H}$ -APT NMR (125 MHz, CDCl₃) of the compound 4g.

Figure S36. ¹H NMR (500 MHz, CDCl₃) of the compound 4h.

Figure S37. ${}^{13}C{}^{1}H$ -APT NMR (125 MHz, CDCl₃) of the compound 4h.

Figure S38. ¹H NMR (500 MHz, Acetone- d_6) of the compound 4i.

Figure S39. ¹³C NMR (125 MHz, Acetone- d_6) of the compound 4i.

Figure S40. ¹H NMR (500 MHz, CDCl₃) of the compound 4j.

Figure S41. ¹³C NMR (125 MHz, CDCl₃) of the compound 4j.

Figure S42. ¹H NMR (500 MHz, CDCl₃) of the compound 5.

Figure S43. ¹³C NMR (125 MHz, CDCl₃) of the compound 5.