1	Supporting Information for
2	Ligand Dependent and G Protein Dependent Properties for the Sweet Taste Heterodimer,
3	TAS1R2/1R3
4	Soo-Kyung Kim, ¹ Brian Guthrie, ² and William A. Goddard III. ^{1,*}
5	¹ Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena,
6	California 91125, United States
7	² Cargill Global Core Research, Wayzata, MN 55391, United States
8	* Correspondence: wag@caltech.edu; ORCID: 0000-0003-0097-5716
9	Soo-Kyung Kim; 1004skkim@gmail.com, ORCID: 0000-0002-4498-5441
10	Brian Güthrie: Brian_Guthrie@cargill.com, ORCID: 0000-0002-3508-4625
11	

Figure S2. The best initial positions of the C-terminal α-helices of C20 G protein peptide at the cytoplasmic
transmembrane domain (TMD) of closed taste receptor TAS1R2 (red) and open TAS1R3 (blue)
between helix 3 and 6. The best C20 orientation for the TMD2 is from GABAB2R-Gi (PDB ID:
7EB2)¹⁴ in the class C GPCR-like non-canonical way, while the best C20 orientation for TMD3 is
from our predicted structure of the GNAT3-TAS1R3/1R3 homodimer complex in the class A
GPCR-like canonical way.¹⁶

29

Figure S3. (A) Interaction energy between C20 and TAS1R2 or TAS1R3 over 20 ns (B and C) The root
 mean square deviation (RMSD) of the TAS1R2/1R3-C20 complex when C20 binds at 7
 transmembrane domain (TMD) of TAS1R2 (TMD2-C20) or TAS1R3 (TMD3-C20).