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Extended Data Fig. 1: Additional evaluation of RNA dataset sequence diversity in
GARNET. a. Number of GARNET sequences for rRNA and for the top twenty most
abundant of the 228 RNA families. b. Total sequence length of GARNET RNA
sequences for rRNA and for the top twenty most abundant of the 228 RNA families. c.
Comparing diversity of GARNET-based alignments against state-of-the-art alignments
for 23S rRNA, 16S rRNA, 5S rRNA by filtering the alignments at a range of pairwise
fractional identity thresholds with esl-weight, part of the HMMER suite of programs®’. d.
Diversity comparison for the three most abundant of the 228 RNA families in GARNET

with esl-weight.
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Extended Data Fig. 2: Bacterial phylogeny within the GTDB including OGTs.
Bacterial phylogenetic tree of GTDB reference organisms, grouped at the Class
taxonomic rank, arbitrarily rooted. Node tip sizes are proportional to the number of
species represented by node (log2 transformed). Inner circle indicates Phylum. The next
circle represents TOME-predicted min, median, and maximal optimal growth
temperatures of all species within rank. The next two circles similarly represent
empirically measured optimal growth temperatures pulled from the Tempura and Gosha
datasets, respectively. Outer circles represent the total number of 23S, 16S, and 5S

detected in each rank, respectively (log2 transformed).
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Extended Data Fig. 3: Schematic of MSA-informed alignment of distance matrices
from ribosomal structures and generation of contact maps. The initial unaligned

pairwise nucleotide distance matrices were generated from 23S rRNA structures in the
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PDB files (see Materials and Methods). Further, sequences of 23S rRNA were extracted
directly from the PDB files and corresponding FASTA files available in the Protein Data
Bank®. In the initial step, nucleotides missing in the structures were pinpointed through
a MAFFT alignment comparing FASTA and PDB-derived sequences, leading to the
insertion of empty columns and rows at these positions in the distance matrices.
Subsequently, in step 2, the extracted archaeal and bacterial rRNA sequences from the
structures (shown) were combined with those from GARNET using Infernal, matching the
distance matrices' coordinates with the MSA with further introduction of empty rows and
columns. At step 3, insertions (lowercase characters in the MSA) and deletions (gaps)
were identified in the E.coli 7TKOO0 sequence in the MSA, and the corresponding rows and
columns were removed from the distance matrices. This process aligned the nucleotides
in the distance matrices of all 18 archaeal and bacterial 23S rRNAs with their counterparts
in the GARNET-anchored MSA utilized for the GNN model. In the final step, contact maps
were generated from the distance matrices based either on the distance cutoff or k-

nearest neighbors criteria (see Materials and Methods).
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Extended Data Fig. 4: Contact maps and comparisons of high-resolution bacterial

and archaeal 50S subunit structures. a-d. Comparison of contact maps generated for
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23S rRNA with the distance cutoff (top-right) and the k-nearest neighbors criteria (bottom-
left). The matching pairs of fully sampled distances and k values for nearest neighbors
were chosen according to the histogram in Fig. 3d. e. Pairwise correlation of contact
maps for 18 bacterial and archaeal 23S rRNA structures, generated at a distance cutoff
of 12 A (see Materials and Methods). Note the high degree of structural correlation in
the plot, which is also evident from matching of the 18 contact maps feature coordinates
in panels (a) through (d). f. Average correlation of the 18 contact maps as a function of
distance cutoff. Local maxima of correlation at 4.5 A, 8 A, 11 A in the plot correspond to
the minima between the peaks in Fig. 3d, indicating full sampling of 3.5 A, 6 A, 12 A
characteristic internucleotide distances. The structural correlation degree does not rise

significantly above the distance cutoff of 12 A.
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Extended Data Fig. 5: Properties of RNA sequences generated from the 23S rRNA
GNN model. a. Cmsearch scores for sequences generated from the pretrained GNN
model at temperatures ranging from 0.1 to 1.0. b. Fraction of mispaired nucleotides of
sequences generated from the pretrained GNN model relative to RF02541 at
temperatures ranging from 0.1 to 1.0. ¢. Cmsearch scores for sequences generated
from the finetuned GNN model at temperatures ranging from 0.1 to 1.0. d. Fraction of
mispaired nucleotides of sequences generated from the finetuned GNN model relative

to RF02541 at temperatures ranging from 0.1 to 1.0.
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Extended Data Fig. 6: Properties of RNA sequences generated from the 23S rRNA

LM. a. CM scores for sequences generated from the pretrained 23S rRNA LM at

temperatures ranging from 0.1 to 0.9. b. Fraction of mispaired nucleotides of sequences

generated from the pretrained 23S rRNA LM relative to RF02541 at temperatures

ranging from 0.1 to 0.9. c. CM scores for sequences generated from the finetuned 23S

rRNA LM at temperatures ranging from 0.1 to 0.6. d. Fraction of mispaired nucleotides

of sequences generated from the finetuned 23S rRNA LM relative to RF02541 at

temperatures ranging from 0.1 to 0.6.
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Extended Data Fig. 7: Properties of RNA sequences generated from the 23S rRNA
LM models trained on the 231-RNA dataset. a. CM scores for sequences generated
from the pretrained RNA LM model at temperatures ranging from 0.1 to 0.9. b. Fraction
of mispaired nucleotides of sequences generated from the pretrained RNA LM relative
to RF02541 at temperatures ranging from 0.1 to 0.9. ¢. CM scores for sequences
generated from the finetuned RNA LM model at temperatures ranging from 0.1 to 0.6. d.
Fraction of mispaired nucleotides of sequences generated from the finetuned RNA LM

model relative to RF02541 at temperatures ranging from 0.1 to 0.6.
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Extended Data Fig. 8: Top 200 JSD locations from the GNN model. Top ranking 200
Jensen-Shannon divergence values calculated from a secondary structure alignment of

generated E. coli 23S rRNA sequences are colored in red.
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Extended Data Fig. 9: Top 200 JSD locations from the 23S LM model. Top ranking
200 Jensen-Shannon divergence values calculated from a secondary structure

alignment of generated E. coli 23S rRNA sequences are colored in red.
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Extended Data Fig. 10: Top 200 JSD locations from the 231 RNA LM model. Top
ranking 200 Jensen-Shannon divergence values calculated from a secondary structure

alignment of generated E. coli 23S rRNA sequences are colored in red.
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Extended Data Fig. 11: Analysis of AAlogP values for mutations in helix H89. a.
Cumulative plots of AAlogP of all single mutations to the E. coli 23S rRNA for each
model. Each point represents the probability of generating a single nucleotide mutant E.
coli 23S sequence from the FT model relative to the PT model, normalized to that of the
WT sequence. Two mutations, U2477C and U2554C, are denoted in orange and green,
respectively. b. Analysis of helix 89 for candidate thermostabilizing mutations. For each
position, the most frequent nucleotide in FT generated sequences (top FT nucleotide) is
grafted into the E. coli 23S rRNA sequence and used to calculate AAlogP(FT-PT) for the
23S LM, 231-RNA LM, and GNN models. Positions where the top FT nucleotide differs
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from WT in at least one model are highlighted in gray. Base pairing positions are

indicated on the left.
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Extended Data Fig. 12: Location and purification of rRNA mutations in the E. coli
ribosome. a. H89 and bL36 in the E. coli ribosome (PDB:7K00). 23S rRNA positions
that are mutated in this study are shown in red. b. After 50S purification, 23S rRNA was
isolated and subjected to RT-PCR analysis to quantify endogenous WT 50S

contamination. The band intensities of RT-PCR products were used to quantify sample

purity.
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Supplementary Information

Supplementary Table 1: Information about the 231 RNA family dataset within
GARNET. The table includes Rfam model IDs, descriptions, and length, as well as the
number of Rfam seed and full-alignment sequences. The table also includes the
number of GARNET sequences for each Rfam ID, as well as the total GARNET

sequence length.

Supplementary Table 2: Optimal Growth Temperatures of GTDB organisms.
This dataset contains empirical OGTs from the TEMPURA and Gosha databases,
OGTs predicted by TOME, GTDB genome accessions, GTDB taxonomic classifications,

and thermal classifications for GTDB isolate descriptions.

Supplementary Table 3: RNA language model parameters and training.

All pretrained language models used the following common hyperparameters: batch
size = 18, dropout = 0.2, AdamW minimizer beta2 = 0.998, and use of the Flash
attention algorithm®'. Finetuned models had a batch size of 48. Extended parameters

are also listed, including specifications for each GNN model.

Supplementary Table 4: Jensen-Shannon divergences of RNA sequences
generated by the RNA language models. Nucleotide frequencies of natural
sequences in GARNET and generated sequences are included, along with the JSD
values at each position. E. coli 23S rRNA nucleotide numbering is shown, after

removing gaps and insertions (Materials and Methods).

Supplementary Table 5: Log likelihood calculations for candidate mutations in E.
coli 23S rRNA. Values were calculated using the strategy shown in Fig. 6b. Control
calculations for all possible single-nucleotide mutations (GNN AAlogP, 23S rRNA LM
AAlogP, and 231-RNA LM AAlogP) are included.
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Supplementary Table 6: DNA sequences used in this study. Comprehensive list of

DNA sequences described in Materials and Methods.

65



