Supplementary Materials for

$\text{PDGFR}\alpha$ signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking

Thomas E. Forman *et al*.

Corresponding author: Katherine A. Fantauzzo, katherine.fantauzzo@cuanschutz.edu

The PDF file includes:

Figs. S1 to S6 Tables S1, S7 and S16

Other Supplementary Material for this manuscript includes the following:

Tables S2-S6 and S8-S15

Figure S1. High correlation of Srsf3-dependent differentially-expressed genes across ligand treatment conditions. (A,B) Scatter dot plots depicting Srsf3-dependent (A) and PDGF-AA-dependent (B) differentially-expressed genes. Log₂(fold change) (FC) values represent log₂(shSrsf3 normalized counts/scramble normalized counts) (A) or log₂(+PDGF-AA normalized counts/-PDGF-AA normalized counts) (B). Spearman correlation values and approximate pvalues are listed. Immediate early genes are represented in red in B.

Figure S2. Gene ontology analysis of differentially-expressed genes across treatment

comparisons. (A,B) Bubble plots depicting up to ten of the most significant gene ontology (GO) terms for biological process (A) and molecular function (B) for Srsf3-dependent and PDGF-AA-dependent differentially-expressed genes. Colors correspond to -log10(adjusted p-value); sizes correspond to number of genes.

Figure S3. qPCR validation of differential AS between scramble and shSrsf3 samples. (A,B) Representative qPCR gels (left) with depictions of differentially alternatively-spliced exon (gray), and upstream and downstream sequences (white) that were assessed by qPCR in scramble (sc) versus shSrsf3 (sh) samples for *Arhgap12* (A) and *Cep55* (B). Scatter dot plots (right) depicting the percent spliced in from n = 3 biological replicates as at left. Data are mean \pm s.e.m. *, P < 0.05. Shaded circles correspond to independent experiments.

Figure S4. Gene ontology analysis of alternatively-spliced transcripts across treatment comparisons. (A,B) Bubble plots depicting up to ten of the most significant gene ontology (GO) terms for biological process (A) and molecular function (B) for Srsf3-dependent and PDGF-AAdependent alternatively-spliced transcripts. Colors correspond to -log10(adjusted p-value); sizes correspond to number of genes.

-PDGF-AA				+PDGF-AA			
Sequence logo	Occurrence in eCLIP (per 1000 peaks)	Occurrence in control (per 1000 peaks	p-value s)	Sequence logo	Occurrence in eCLIP (per 1000 peaks)	Occurrence in control (per 1000 peaks	p-value s)
	4095	991	<2.2 x 10 ⁻¹⁶		1432	465	<2.2 x 10 ⁻¹⁶
a conception of the second sec	4281	1209	<2.2 x 10 ⁻¹⁶		2032	649	<2.2 x 10 ⁻¹⁶
ST AAGAAG	1307	555	3.6 x 10 ⁻¹¹		2029	726	<2.2 x 10 ⁻¹⁶
	4239	1135	<2.2 x 10 ⁻¹⁶	a GAAGA	1279	353	<2.2 x 10 ⁻¹⁶
	602	253	5.4 x 10 ⁻¹⁵		833	315	<2.2 x 10 ⁻¹⁶
	4286	1151	<2.2 x 10 ⁻¹⁶	a to the second	1273	436	<2.2 x 10 ⁻¹⁶
	4169	1116	<2.2 x 10 ⁻¹⁶		1660	663	<2.2 x 10 ⁻¹⁶
dia GAGGAG	1233	488	<2.2 x 10 ⁻¹⁶	a GGAGGA	1486	636	7.5 x 10 ⁻¹⁶
ACACAC	3970	1026	<2.2 x 10 ⁻¹⁶	a GAAGA	1726	631	<2.2 x 10 ⁻¹⁶
as a gradient of the second se	758	307	3.0 x 10 ⁻¹⁰	a a AGAAG	1383	545	<2.2 x 10 ⁻¹⁶

Figure S5. PDGFR α signaling influences Srsf3 binding specificity. Top 10 motifs enriched in eCLIP peaks in the absence (left) or presence (right) of PDGF-AA stimulation with associated *P* values.

Figure S6. Srsf3 exhibits differential transcript binding upon PDGFR α signaling in the subset of transcripts from the high-confidence, overlapping datasets. (A,B) Mean coverage of eCLIP peaks within the high-confidence, overlapping datasets across various transcript locations (A) and surrounding the 5' and 3' splice sites (B) in the absence or presence of PDGF-AA stimulation. (C,D) Top three motifs enriched in eCLIP peaks within the high-confidence, overlapping datasets across various transcript locations. (C,D) Top three motifs enriched in eCLIP peaks within the high-confidence, overlapping datasets in the absence (C) or presence (D) of PDGF-AA stimulation.

Sample	Raw read	Trimmed read pairs	Salmon	Trimmed read pairs	STAR
	pans	for Salmon	rate	(125 bp) for	mapping
		input		STAR input	rate
-PDGF-AA scramble_1	47181591	44410442	0.89055	36343779	0.8773
-PDGF-AA scramble_2	54612492	50500367	0.878847	39971864	0.8681
-PDGF-AA scramble_3	69353787	65529075	0.912399	48327896	0.9022
-PDGF-AA shSrsf3_1	91657568	84086217	0.913324	61269254	0.9035
-PDGF-AA shSrsf3_2	77309551	71220292	0.91638	49390634	0.9013
-PDGF-AA shSrsf3_3	42645900	41078549	0.910338	28737018	0.9054
+PDGF-AA scramble_1	71080979	66836059	0.916828	48116755	0.9027
+PDGF-AA scramble_2	69667521	64974624	0.890505	47762451	0.884
+PDGF-AA scramble_3	78680108	72721916	0.911689	52936280	0.9008
+PDGF-AA shSrsf3_1	42776470	41165756	0.914797	28076373	0.9019
+PDGF-AA shSrsf3_2	37944773	35759828	0.908637	23528077	0.8987
+PDGF-AA shSrsf3_3	36391090	34257983	0.911463	26455873	0.8995

Table S1. RNA-seq sample information.

Table S2. DEseq2 output.

Table S3. rMATS output for scramble (-PDGF-AA) versus shSrsf3 (-PDGF-AA) RNA-seq analysis.

Table S4. rMATS output for scramble (+PDGF-AA) versus shSrsf3 (+PDGF-AA) RNA-seq analysis.

Table S5. rMATS output for -PDGF-AA (scramble) versus +PDGF-AA (scramble) RNA-seq analysis.

Table S6. rMATS output for -PDGF-AA (shSrsf3) versus +PDGF-AA (shSrsf3) RNA-seq analysis.

Table S7. eCLIP sample information.

Sample	Raw read pairs	Trimmed read pairs	Collapsed reads	Reads after removing repetitive elements	Mapped reads	Peaks	Annotated Peaks
-PDGF-AA size-	34303575	22904092	13449745	13358235	17206		
-PDGF-AA replicate 1	22983544	18369023	2758371	2758371	440436	6969	6607
-PDGF-AA replicate 2	15666256	12263540	2742638	2065674	388996		
+PDGF-AA size- matched input	52420337	37454316	13811675	13643948	24275	9075	8623
+PDGF-AA	30105052	23355466	3417325	2845801	872085		

Table S8. eCLIP output.

Table S9. Raw peak counts of eCLIP peaks across various transcript locations.

Table S10. Matt output.

Table S11. List of transcripts and genes from Venn diagram in Figure 5A.

Table S12. High confidence, overlapping dataset output correlating eCLIP with scramble (-PDGF-AA) versus shSrsf3 (-PDGF-AA) rMATS RNA-seq analysis.

Table S13. High confidence, overlapping dataset output correlating eCLIP with scramble (+PDGF-AA) versus shSrsf3 (+PDGF-AA) rMATS RNA-seq analysis.

Table S14. High confidence, overlapping dataset output correlating eCLIP with -PDGF-AA (scramble) versus +PDGF-AA (scramble) rMATS RNA-seq analysis.

Table S15. High confidence, overlapping dataset output correlating eCLIP with -PDGF-AA (shSrsf3) versus +PDGF-AA (shSrsf3) rMATS RNA-seq analysis.

Table S16. Primers used in qPCR analysis.

Transcript	Forward primer (5' to 3')	Reverse primer (5' to 3')
Arhgap12	GGAGACATAGCACCATTGTG	GCACTGCCCAAGAAGACAAC
Cep55	CCTTTCGGCTCCTTTGAACT	GCAGTGTCTGACTTGGAGCT
Wdr81	GCTTTGTGGACTGCAGGAAG	GCAGGGAACAGACACCAATC