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Abbreviations: 

CT cortical thickness 
MRI magnetic resonance imaging 
mRNA messenger ribonucleic acid 
ABA Allen brain atlas 
MNI Montreal Neurological Institute 
FDR false-discovery rate 
ABCD Adolescent Cognitive Brain and Development Study℠ (ABCD Study®) 
ANCOVA analysis of covariance 
ni nuclear imaging-derived brain atlas 
ce cell marker-derived brain atlas 
mr MRI-derived brain atlas 
SV2A synaptic vesicle glycoprotein 2A 
M1 muscarinic receptor 1 
mGluR5 metabotropic glutamate receptor 5 
5HT1a/1b/2a/4/6 serotonin receptor 1a/2a/4/6 
CB cannabinoid receptor 1 
GABAa γ-aminobutyric acid receptor A 
HDAC histone deacetylase 
5HTT serotonin transporter 
FDOPA fluorodopa 
DAT dopamine transporter 
D1/2 dopamine receptor 1/2 
NMDA N-methyl-D-aspartate glutamate receptor 
GI glycolytic index 
MU mu opioid receptor 
A4B2 α4β2 nicotinic receptor 
VAChT vesicular acetylcholine transporter 
NET noradrenaline transporter 
CBF cerebral blood flow 
CMRglu cerebral metabolic rate of glucose 
COX1 cyclooxygenase 1 
H3 histamine receptor 3 
TSPO translocator protein 
Ex excitatory neurons 
In inhibitory neurons 
Oligo oligodendrocytes 
Endo endothelial cells 
Micro microglia 
OPC oligodendrocyte progenitor cells 
Astro astrocytes 
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1. Supplementary Methods and Results 

1.1. Correlating human cortex development patterns with adult neurobiological markers  

As laid out briefly in the main manuscript, our rationale is based on the following premises:  

(i) X is a neurobiological entity (e.g., dendrites, specific neurons, or neurotransmitter recep-

tors) that changes with human neurodevelopment and aging.  

(ii) Changes in X might have downstream effects on CT as measured with MRI, either directly 

(e.g., more/less neurons or dendrites lead to higher/lower CT) or indirectly (e.g., higher 

density of a neurotransmitter receptor as a proxy of certain cellular structures develop-

ing/degrading; cortical myelination leading to changes in gray-white-matter contrast). Al-

ternatively, there might be a common neurobiological process Y, which independently af-

fects both X and CT, leading to a correlation between changes in X and changes in CT that 

does not require a direct causal relationship between X and CT but would still imply a 

common underlying mechanism shaping both. 

(iii) X is in appearance and strength distributed non-uniformly across cortical regions, resulting 

in a (more or less) specific spatial distribution.  

(iv) The cross-regional distribution of X is not necessarily stable across the human lifespan, but 

it might vary with neurodevelopment and aging. However, a major change of X’s distribu-

tion would require that multiple brain regions change their relative ranks of X density/ex-

pression/activity as compared to, e.g., a general decrease of X in all regions or a marginal 

increase of X in one region that does not lead to a relevant “region rank-increase”. Such a 

major reorganization process is relatively more likely during neurodevelopment (i.e., pre-

birth to maximally early adulthood) and aging (late adulthood) than during the relatively 

stable middle adulthood period.  

(v) If changes in X or Y led to changes in CT, the spatial distribution of these CT changes 

would likely resemble the “steady state” adult spatial distribution of X/Y. This can be as-

sumed as the stable adult distribution of a given neurobiological entity has to be the result 

of its neurodevelopment, and also the beginning-point of its aging processes. Therefore, 

changes in X/Y that lead to CT changes will likely be strongest in cortex regions with high 

density/expression/activity in X/Y’s “steady state” as this is either the state that they are 

approaching (neurodevelopmental CT changes) or coming from (aging CT changes). 
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From these assumptions follows that an observed spatial correlation between (i) the distri-

bution of X as measured during the stable period and (ii) the distribution of CT changes during a 

given developmental period could have resulted from a developmental process that X is subject to. 

As noted in the main manuscript, this by no means is the only explanation for such CT changes, 

which is discussed in detail in the manuscript’s discussion. Furthermore, although we consider 

them conceptually sound, it is currently not possible to prove all of our assumptions and specific 

research on the matter – especially on cross-regional spatial patterns of (developmental) neurobio-

logical processes – is extremely scarce. Finally, the described framework assumes an idealized 

scenario in which neither measures of CT change nor of X are subject to noise and in which all 

“neurobiological markers” of X are measured during the stable mid-adulthood period.  

1.2. Molecular and cellular neurobiological markers 

1.2.1. Atlas sources 

As neurobiological markers of cell populations, processes, and systems potentially under-

lying CT changes, we collected 27 in vivo nuclear imaging atlases (20 neurotransmitter systems, 

cerebral glucose uptake, blood flow, aerobic glycolysis, synaptic density, transcriptomic activity, 

and two atlases capturing brain immune function), an MRI-derived atlas of cortical microstructure 

(T1w/T2w ratio), and 21 atlases of neuronal and glial cell types generated from Allen Brain Atlas 

mRNA expression data based on marker genes identified in adult human brain tissue (Supplemen-

tary Data S1; Fig. S1)1–29.  

1.2.2. Processing of Allen Human Brain Atlas mRNA expression data 

Regional microarray expression data were obtained from 6 postmortem brains (1 female, 

age range 24.0–57.0 years, mean age 42.50 ± 13.38 years) provided by the Allen Human Brain 

Atlas (https://human.brain-map.org)12. Data were processed with the abagen toolbox (version 

0.1.3; https://github.com/rmarkello/abagen)30 using a 148-region surface-based atlas in fsaverage5 

space31. 

First, microarray probes were reannotated using data provided by Arnatkevic̆iūtė et al.32; 

probes not matched to a valid Entrez ID were discarded. Next, probes were filtered based on their 

expression intensity relative to background noise33, such that probes with intensity less than the 

background in ≥ 50% of samples across donors were discarded, yielding 31,569 probes. When 

multiple probes indexed the expression of the same gene, we selected and used the probe with the 

https://human.brain-map.org/
https://github.com/rmarkello/abagen
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most consistent pattern of regional variation across donors (i.e., differential stability34), calculated 

with: 

Δ!(𝑝) =
1
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where 𝑝 is Spearman's rank correlation of the expression of a single probe, p, across regions in two 

donors B* and 𝐵%, and N is the total number of donors. Here, regions correspond to the structural 

designations provided in the ontology from the Allen Human Brain Atlas. The MNI coordinates of 

tissue samples were updated to those generated via non-linear registration using the Advanced 

Normalization Tools (ANTs; https://github.com/chrisfilo/alleninf). To increase spatial coverage, 

tissue samples were mirrored bilaterally across the left and right hemispheres. Samples were as-

signed to brain regions by minimizing the Euclidean distance between the MNI coordinates of each 

sample and the nearest surface vertex. Samples where the Euclidean distance to the nearest vertex 

was more than 2 standard deviations above the mean distance for all samples belonging to that 

donor were excluded. To reduce the potential for misassignment, sample-to-region matching was 

constrained by hemisphere and gross structural divisions (i.e., cortex, subcortex/brainstem, and 

cerebellum, such that e.g., a sample in the left cortex could only be assigned to an atlas parcel in 

the left cortex32). All tissue samples not assigned to a brain region in the provided atlas were dis-

carded. Inter-subject variation was addressed by normalizing tissue sample expression values 

across genes using a robust sigmoid function35: 

𝑥+,-. =
1

1 + exp − ;(𝑥 − 〈𝑥〉)IQR𝒳
A	

 

where ⟨𝑥⟩ is the median and 𝐼𝑄𝑅0 is the normalized interquartile range of the expression of a single 

tissue sample across genes. Normalized expression values were then rescaled to the unit interval:  

𝑥123456 =
𝑥+,-. −min(𝑥+,-.)

max(𝑥+,-.) − min(𝑥+,-.)
 

Gene expression values were then normalized across tissue samples using an identical pro-

cedure. Samples assigned to the same brain region were averaged separately for each donor and 

then across donors, yielding a regional expression matrix with 148 rows, corresponding to brain 

regions, and 15,633 columns, corresponding to the retained genes. 

https://github.com/chrisfilo/alleninf
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1.2.3. Temporal stability of original brain atlases 

Our analyses make use of the spatial pattern present in every given brain map to draw rela-

tionships between brain maps from different sources and levels of biological organization. This 

pattern is encoded in the relative ranks of the metric in question across the cortex regions. To retain 

good interpretability of our findings, the multimodal atlases should, in the best case, show a high 

stability of these ranks over the adult lifespan. We tested for this by collecting the available PET 

maps derived from the same tracer in healthy adult samples which’s mean age different from the 

atlases used in our main analyses11,16,17,36–38.  

Spearman correlations across cortex regions indicated a high stability (r ≥ .77) which, based 

on the limited data available, did not depend on sample age (Fig. S2).  

1.2.4. Factor analyses validation against null data 

In sensitivity analyses, we tested if the factor solutions estimated on the original brain at-

lases explained significantly more variance in the original data than factor solutions estimated on 

permuted brain atlases. Using the same autocorrelation-preserving method as in our remaining 

analyses39, we generated n = 10,000 permuted brain maps. Each of these null datasets was z-stand-

ardized and used to fit a factor analysis (same settings as used in the main analyses) with n = 10 

factors, separately for nuclear imaging and cell types. Explained variance in the observed data was 

calculated as the fraction of (i) the variance in the observed dataset and (ii) the variance in each 

null dataset. Based on the resulting null distributions of explained variance scores, two empirical p 

values were calculated for the nuclear imaging and the cell type datasets.  

At an alpha level of p > .05, the “observed” factor analyses explained more variance in the 

observed data as compared to factor analyses estimated on null data (nuclear imaging: p = .0317; 

cell types: p = .0495; Fig. S3).  

1.3. Discovery analyses based on the Braincharts model 

1.3.1. Modeled CT data 

Modeled CT values across the lifespan for 148 cortex regions were extracted from the 

Braincharts normative model published by Rutherford et al.40 (5–90 years with 0.5-year steps; 

separate female and male data from approximately 58,000 subjects; 1st, 5th, 25th, 50th, 75th, 95th, and 

99th model percentile, age distribution: Fig. S5). As expected, lifespan cortical thickness develop-

ment showed a general trend towards cortical thinning, with different trajectories across brain 
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regions. While absolute values differed slightly by sex, the general trajectories and relative devel-

opment were highly similar, so that we decided to average the data across sexes for all main anal-

yses (Fig. S6A, Movie S1).  

Cross-sectional colocalization analyses were based on the modeled CT data at each ex-

tracted timepoint. For analyses aiming to explain modeled longitudinal CT change patterns, we 

calculated timepoint-to-timepoint relative CT change of 50th percentile data within a sliding win-

dow approach (5–90-year range, 5-year length, and 1-year steps). During childhood, adolescence, 

and up to young adulthood, precentral and temporal gyri showed the strongest relative increase of 

modeled CT while the remaining cortex showed thinning patterns. Generally, the strongest mod-

eled CT changes across the lifespan (mostly thinning) occurred in the first and last third of life (Fig. 

S6B–C).  

1.3.2. Replication of explained CT change patterns using the Desikan-Killiany parcellation 

All analyses in this work are based on the 148-parcel (74 per hemisphere) Destrieux par-

cellation31, subdividing the cortex into gyri and sulci. However, the 68-parcel (34 per hemisphere) 

Desikan-Killiany parcellation41 (DK), which subdivides the cortex into gyri only, is more prevalent 

in the literature and is set as standard in FreeSurfer. We clearly argue that our approach requires a 

finer parcellation and therefore decided for the 148-parcel version. Furthermore, the Braincharts 

model is available for the Destrieux parcellation only. To nevertheless provide preliminary results 

on the basis of the DK parcellation, we transformed all surface data, i.e., both modeled CT change 

maps and the factor-level neurobiological markers from Destrieux to DK by (i) projecting the Des-

trieux data to the fsaverage5 surface and (ii) “re-parcellating” it using the DK parcels. While this 

is clearly not the most accurate approach, we argue that it is sufficient to approximate whether our 

results replicate with the DK parcellation, especially considering that many DK gyri will mostly 

be a combination of Destrieux gyri and sulci. Using this transformed data (Fig. S11A and B), we 

recalculated the first step of our regression analysis workflow (c.f., Figs. 3 and 4). 

Using the DK parcellation, the overall explained modeled CT change pattern remained con-

sistent with the Destrieux-based results (Fig. S11C and D). Most notably, R2 values were overall 

considerably higher in the DK analyses regarding both univariate regression results (ranging up to 

R2 = 70% for individual markers, e.g., ni9-D2) and multivariate regression results (approaching R2 

= 90%). As also the null values (grey shades in Fig. S11C and D) were distributed around a much 

higher range (median at about R2 = 30% for univariate analyses), it appeared that this increase in 

explained variance was largely due to overparameterization or low degrees of freedom, 
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respectively, in the regression models. These results speak to our focus on the more fine-grained 

parcellation. 

1.3.3. Potential confounding effects of Braincharts and neurobiological marker cohort ages 

We performed exploratory correlation analyses to exclude potential confounds brought 

about by the age distributions of the independent cohorts in regard to the explained modeled CT 

change patterns. First, to exclude potential biases due to model precision and dominance of single 

original cohorts, we tested if the explained modeled CT change across time windows was correlated 

to the number of subjects that went into model estimation per time window. A concerning case 

would have been negative correlations, pointing to high explained modeled CT change in time 

windows in which only few subjects went into model estimation (i.e., childhood and very late 

adulthood, see Fig. S5). Second, to exclude potential bias introduced by the average age of each 

neurobiological marker’s source cohort, we correlated explained modeled CT change with the dis-

tance in years to the approximate average cohort age for each neurobiological marker (Data S1). 

Here, positive correlation would have been most concerning, possibly indicating cases in which, 

e.g., high explained modeled CT change in adolescence and aging was a result of using marker 

templates from the intermediate early and mid-adulthood age period. We performed these analyses 

with the univariate marker-wise explained modeled CT change (21 markers) as well as the multi-

variate explained CT change based on (i) only neuroimaging markers, (ii) only cell markers, and 

(iii) all combined markers. For the second analysis, we calculated the distance between each time 

window and each source age associated with the neurobiological markers by taking the mean of 

each time window [e.g., 7.5 for Δ(5,10) years] for all time windows, and calculating the absolute 

distance between each time window and the marker’s age for a given marker (e.g., if marker age is 

40 years: |7.5 – 40| = 32.5 years). As we worked with the factor level markers, we approximated 

factor-level marker ages by scaling the factor loadings for each marker to (0,1) and calculating, for 

each factor-level marker, the weighted mean of all original markers. Explained modeled CT change 

and age-related vectors were correlated using Spearman correlations and exact p values were cal-

culated based the explained modeled CT change null distributions already calculated for the main 

analyses (n = 10,000). 

We did not find evidence for the outlined confounds of Braincharts and neurobiological 

marker source cohorts ages on explained modeled CT change. For the Braincharts age analysis, we 

observed only one significant negative correlation (uncorrected) for a neurobiological marker (ce6) 

that did not turn out relevant for our following analyses (Fig. S12). Regarding the neurobiological 



 10 

marker age analysis, we only found significant negative correlations for the combined molecular 

markers, ni1, and ni6 (uncorrected) but no significant positive correlations (see above) and no sys-

tematic association pattern (Fig. S13).  

1.3.4. Brain-regional contributions to CT association patterns 

We evaluated brain-regional contributions to the overall explained modeled CT change by 

calculating the residual difference for each brain atlas as the difference in prediction errors resulting 

from a multivariate regression with and without the brain atlas included as predictor.  

Generally, medial occipital, medial temporal, sensorimotor, and cingulate cortices influ-

enced the explained modeled CT change patterns strongly. For ce9-In8, the premotor cortex, cu-

neus, and multiple frontopolar sulci were the most influential regions. ce3-Micro-OPC showed a 

similar pattern, while ni9-D2 showed the strongest residual differences in the middle cingulate 

cortex, precuneus, insula, and temporal pole. The two metabolism factors (ni4 and ni6) showed 

less pronounced patterns with generally occipitotemporal regions having the strongest influences. 

The two neurobiological markers relevant for midlife modeled CT change, ni3-FDOPA-DAT-D1-

NMDA and ni5-VAChT-NET, again displayed a high relevance of lateral and medial somatosensory 

cortices as well as the precuneus, middle to anterior cingulate, and medial temporal regions. One 

marker associated to late adulthood modeled CT aging patterns, ce4-In3-In2-Astro, displayed the 

strongest influences by middle and anterior cingulate cortices and medial motor areas. Fig. 6 shows 

the respective patterns at each marker’s maximum explained modeled CT change, Movie S2 illus-

trates how the observed patterns develop longitudinally, and Fig. S11 provides an overview for the 

complete lifespan. 

1.3.5. Evaluation of original in comparison to dimensionality-reduced neurobiological markers 

To demonstrate that the factor-level atlases were appropriately representing the original 

neurobiological brain atlases, we performed additional sets of (i) dominance analyses and (ii) uni-

variate linear regressions for each factor-level atlas, using as predictors the 5 original atlases with 

the highest factor loadings if the absolute loading exceeded 0.3. FDR correction was performed 

across (i) all dominance analyses and (ii) all individual univariate regression separately. 

All factors explained modeled CT change significantly (nominal p < 0.05). In all cases, the 

total explained modeled CT change R2 peaks arising from each original atlas set occurred at the 

same time in life as observed for the factor-level atlases. For some factor-level atlases, we discov-

ered that their peak contribution to explained modeled CT change was driven by a certain original 
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atlas, while other original atlases were of lesser relevance. For ni3-FDOPA-DAT-D1-NMDA, we 

showed that the midlife peak was mostly driven by NMDA and DAT. Other strongly loading at-

lases – DOPA, D1, and NET – explained more modeled CT change before 25 and after 50 years. 

The contribution to early explained modeled CT change of ni4-GI-5HT1b-MU-A4B2 was driven 

by GI, capturing aerobic glycolysis. For ni5-VACht-NET, VAChT indeed accounted for most of 

the modeled CT change explained by the factor-level atlas during midlife. Furthermore, the A4B2 

nicotinic receptor contributed to this factor. The relevance of ni9-D2 for early explained modeled 

CT change was indeed driven by the D2 receptor, however the D1 receptor additionally loaded on 

the factor and accounted for around 15% of explained early modeled CT change. For ce3-Micro-

OPC, the microglia distribution contributed more strongly, although explaining less modeled CT 

change in comparison to other predictors. Finally, ce5-In6-Ex2 was dominated by Ex2 (layer 3/4 

granule neurons), and we observed an additional contribution of Ex3 (layer 4 granule neurons) to 

ce9-In8. Fig. S14 illustrates detailed results, Fig. S15 shows the peak region-wise residual differ-

ences for each original atlas.  

1.4. Validation analyses based on ABCD and IMAGEN single-subject data 

1.4.1. ABCD and IMAGEN cohort demographics and quality control 

We obtained single-subject CT data from the ABCD Study®42 and the IMAGEN43 cohort 

studies to validate our findings. Data quality was ensured based on the manual ratings included in 

the ABCD dataset and on FreeSurfer’s “number of surface defects” metric. Data S1 lists age and 

sex distributions (self-reported sex) for both cohorts and each timepoint. Fig. S18 shows the quality 

control metric distributions.  

Regarding the ABCD dataset, initially, baseline data for 11,760 subjects and 2-year follow-

up data for 7,829 subjects was available. After dropping one study site without longitudinal data 

and subjects with missing CT data, 11,716 and 7,818 datasets were retained. Subjects with low 

data quality were excluded, leading to 10,697 and 6,789 subjects. Concerning the IMAGEN da-

taset, 4,990 observations from 2,158 subjects were initially available. For 3,975 observations from 

1,528 subjects, structural MRI data was available and successfully FreeSurfer-processed. After ex-

clusion of subjects because of low data quality, 3,732 observations from 1,522 subjects were re-

tained. From these 1,522 subjects, 1,412 had longitudinal data available. 

Main analyses on these observed ABCD (T0–T2: n = 6,789) and IMAGEN (overall n = 

1,412; T0–T8: n = 951; T0–T5: n = 1,142; T5–T8: n = 915) longitudinal datasets were performed 
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independently from the Braincharts CT model after removing site-effects using ComBat-GAM44. 

For all analyses including subject-level predictions by the Braincharts model, the data was pro-

jected into the Braincharts model using healthy subsamples of both dataset’s baseline data (n = 20 

per site, 50% female, distributed across baseline age ranges) as “adaptation” cohorts according to 

Rutherford et al.40. For this purpose, “healthy” was defined as: no psychiatric diagnoses according 

to KSADS-parent (ABCD) or DAWBA (IMAGEN); no medical diagnoses according to 

“abcd_mx01.txt” (ABCD-only), and no history of traumatic brain injury (ABCD-only). As this 

adaptation cohort was then dropped from further analyses, sample sizes reduced for the IMAGEN 

cohort (overall n = 1,252; T0–T8: n = 842; T0–T5: n = 1,007; T5–T8: n = 826). This was not the 

case for the ABCD cohort as, here, baseline-only subjects were used for adaptation. 

1.4.2. Generalizability of individual CT prediction models  

We asked if the prediction of individual CT change patterns was generalizable from the 

median predictions of the normative model to the observed single subject data, i.e., we asked if a 

“one-size-fits-all” approach would have performed equally well. This was done by applying the 

parameters of the regression models estimated to predict each subject’s normative CT change pat-

terns to the same subject’s observed change patterns, calculating the Pearson correlation between 

observed and predicted CT change patterns, and comparing these model fit metrics between the 

different models. To estimate the effect size, results were contrasted to null analyses in which each 

regression model was estimated using 1,000 permuted neurobiological marker maps. 

While these one-size-fits-all models generally exceeded the predictive performance of per-

muted null models, they did not provide good fit for many individuals, thus highlighting the value 

of our individual differences-focused approach (Fig. S24). 

1.4.3. Effects of sex and site on explained CT change 

After having assessed how CT development on the single-subject level was explained from 

neurobiological markers, we evaluated whether the amount to which it was explained, varied with 

sex and study site.  

ANCOVA models corrected for follow-up duration and site showed significantly more ex-

plained CT change in males as compared to females only in the IMAGEN dataset (timespans T0–

T5 and T0–T8), but not in the ABCD data. Furthermore, we observed effects of site on explained 

CT change in ANCOVA models corrected for sex and follow-up duration in both datasets (all 

timespans). Note that this was done albite successful site-harmonization of the cross-sectional CT 
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data (Data S3): For ABCD, ComBat-GAM harmonization removed site effects for all Destrieux 

parcels. For IMAGEN, harmonization reduced differences between sites but ANCOVAs controlled 

for sex, intracranial volume, and age still revealed significant differences for many parcels. For CT 

change, site effects were only slightly reduced due to harmonization of the underlying cross-sec-

tional CT data and could be observed for most parcels (Data S4). Given that the main goal of the 

current analysis was to establish the feasibility of capturing associations between CT development 

and neurobiological markers on the individual level, clarification of the sources of sex- and site-

effects will be a task for future investigations. Given the pattern of results, we assume that the 

observed differences by site, which notably grow stronger when looking at CT change, might not 

only be due to scanner variance, but possibly also biological, social, or behavioral differences, 

leading to diverging individual cortex development. Fig. S26 visualizes the observed group differ-

ences, Tabs. S3 and S4 show ANCOVA results. 

1.4.4. Effects of reference model predictive performance, subject-level deviations, and data 

quality on explained CT change 

We conducted correlational analyses to provide general indications of which factors influ-

enced the extents to which CT change was explained in single-subject data.  

First, CT change patterns of subjects who had more “normative” CT patterns at baseline 

(i.e., stronger correlation between observed and Braincharts-predicted baseline CT) were not con-

sistently better explained. In contrast, subjects whose CT change patterns were more in line with 

the change patterns predicted by the Braincharts model showed higher explained CT change. Sim-

ilarly, while we did not observe consistent relationships between metrics capturing how a subject 

deviated from the model-predictions (count of deviation Z scores > 2 and average absolute Z 

scores) and explained CT change, the longitudinal change in deviation metrics showed an associa-

tion in all IMAGEN timespans: As expected, most subjects did not show strong changes in their 

deviations between timepoints, but subjects who showed more or stronger deviations at follow-up 

as compared to baseline tended towards more explained CT change. Whether such patterns could 

represent a potentially pathophysiological involvement of a certain neurobiological marker in neu-

rodevelopment remains to be investigated. Finally, we observed that less CT change was explained 

in subjects with more surface defects (i.e., worse reconstruction quality) at follow-up (ABCD and 

IMAGEN) or at baseline (ABCD only). Fig. S27 shows the reported association patterns and pro-

vides Spearman correlation statistics. 
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1.5. Software 

Multimodal brain atlases were retrieved and processed from/with neuromaps (0.0.2)21, ab-

agen (0.1.3)30, JuSpace (1.3)45, or author sources. Analyses of associations between CT and cortical 

atlases were conducted using JuSpyce 0.0.246 in a Python 3.9.11 environment46. JuSpyce 

(https://github.com/LeonDLotter/JuSpyce) is a toolbox allowing for flexible assessment and sig-

nificance testing of associations between multimodal neuroimaging data, relying on imaging space 

transformations from neuromaps21, brain surrogate map generation from BrainSMASH (0.11.0)39, 

and several routines from Nilearn (0.10.2)47, scipy (1.12.0)48, NiMARE (0.0.11)49, statsmodels 

(0.14.1), pingouin (0.5.4), numpy (1.22.4), and pandas (1.5.3). Visualizations were created using 

matplotlib (3.8.3)50, seaborn (0.11.0)51, and surfplot (0.1.0)52. The PCNtoolkit (0.29.post1)53,54 was 

used to generate modeled CT data, as well as predicted CT data and deviation scores for ABCD 

and IMAGEN subjects; neuroHarmonize (2.3.1)44 was used to independently harmonize the CT 

data across sites.  

 

  

https://github.com/LeonDLotter/JuSpyce
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2. Supplementary Figures 
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Fig. S1: Multimodal nuclear imaging and neural cell type atlases 

Multimodal atlases after transformation to FreeSurfer space and parcellation into 148 cortical parcels 
(Destrieux parcellation31); yellow-violet: nuclear imaging markers, yellow-green: gene-expression, yellow-
gray: microstructural; yellow = higher density. See Data S1 for individual descriptions and sources. Source 
data are provided as a Source Data file. 
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Fig. S2: Stability of regional PET atlas ranks throughout the adult lifespan 

Comparison of PET atlases derived from independent healthy adult samples. We included all available PET 
atlases that used the same tracer but differed in regards to mean sample age, which resulted in three tracers 
for the glutamatergic, dopaminergic, and cholinergic systems. This analysis aimed to demonstrate, using the 
limited data available, that the ranks of regional tracer density across the cortex are stable during the adult 
lifespan. Left side and y-axes: Atlases used in the main analyses of this study1,25,26. Scatter points are 
colored according to the regional values. Surface plots on top of each panel and x-axes: Alternative 
atlases11,16,17,36–38. Statistics: Spearman correlations and parametric p values. Abbreviations: Alt. = 
alternative, y. = years, mGluR5 = metabotropic glutamate receptor 5, D2 = dopamine receptor 2, VAChT = 
vesicular acetylcholine receptor. Source data are provided as a Source Data file. 
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Fig. S3: Dimensionality reduction of multimodal atlases 

(A) Spearman correlation matrix of original multimodal atlases. (B) & (C): Left: Cumulative explained 
variance (red) and eigenvalues (blue) of unrotated factors in a minimum residual factor analysis on the 
nuclear imaging atlases (B) and mRNA expression atlases (C). The red vertical line marks the threshold of 
factors explaining at least 1% of variance. Right: Null distribution of total variance explained scores, if 
factor analyses estimated on permuted brain maps (n = 10,000) are used to explain variance in the original 
data. Red lines indicate the observed explained variance. (D) & (E): Factors extracted from the nuclear 
imaging (D) and mRNA expression (E) datasets after promax rotation. The heatmaps show Pearson 

A: Original atlas intercorrelation

B: Explained variance: nuclear imaging

C: Explained variance: mRNA cell type markers

D: Factor loadings: nuclear imaging

E: Factor loadings: mRNA cell type markers

F: Combined factor-level atlas intercorrelation
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correlations between the original atlases before factor analysis. Stacked bar plots show factor loadings for 
each original atlas on each factor. Factor names were derived from assigning each original atlas to the factor 
it loaded on most so that each original atlas appears exactly once in the overall factor names. (F) Spearman 
correlation matrix of the 20 derived factors and the microstructural atlas. Source data are provided as a 
Source Data file. 
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Fig. S4: Neurobiological markers after factor analysis 

Parcellated brain atlases after dimensionality reduction, mapped to the cortex; yellow-violet: nuclear 
imaging markers, yellow-green: gene-expression, yellow-gray: microstructural; yellow = higher density. 
Source data are provided as a Source Data file.  
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Fig. S5: Age distributions of the Braincharts cohort 

Age distribution in Braincharts model, displayed as stacked histograms (blue: training data, orange: 
testing data) with 1-year bins (bin “0–1”: ³ 0 to < 1 years, bin “1–2”: ³ 1 to < 2 years, …). The lower panel 
is a copy of the upper panel with scaled y axis to visualize smaller bins. Black vertical lines show 
descriptive statistics for the whole dataset. The sharp peak at 9 to 11 years is caused by the ABCD study 
dataset, the smoother peak at 50 to 75 years is related to the UK Biobank study. Source data are provided 
as a Source Data file. 
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Fig. S6: Modeled lifespan cortical thickness development  

Modeled cortical thickness data extracted from the reference model by Rutherford et al.40, as well as 
ABCD42 and IMAGEN cohorts43. (A) Exemplary modeled developmental trajectories of cortical thickness 
of two single bilateral brain regions for females (blue) and males (green). The thickest line represents the 
median, the lighter lines show the .01th, .05th, .25th as well as the .75th, .95th, and .99th centiles. The clouds 
of lines show ABCD and IMAGEN subjects after adaptation to the Braincharts model at each study time 
point. See Movie S1 for all brain regions. (B) Left-hemispheric region-wise relative cortical thickness 
differences in percent-change from 5 to 30 years (upper row) and from 5 to 90 years, estimated using a 
sliding window with 1-year steps and 5-year window length. (C) Modeled cortical thickness development 
in 5-year steps, plotted are region-wise percent-change values. Source data are provided as a Source Data 
file. 

  

A

B
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Fig. S7: Spatial colocalization between modeled cross-sectional CT and neurobiological 
markers, including validation cohort data 

Lifespan trajectories of colocalization between neurobiological markers and modeled cross-sectional CT. 
Equivalent to Fig. 2 but with added individual subjects from ABCD and IMAGEN cohorts (lines connecting 
individual timepoints) with mean colocalization strength and standard deviations indicated by the thick 
lines and shaded areas. Source data are provided as a Source Data file. 
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B: Female only C: Male only

A: Comparison of colocalization trajectories
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Fig. S8: Spatial colocalization between cross-sectional modeled CT and neurobiological 
markers, compared between sexes 

Lifespan trajectories of colocalization between neurobiological markers and modeled cross-sectional CT. 
(A) Comparison of LOESS lines as in Figs. 2 and S7 but estimated on either female or male subjects only. 
(B) and (C): Results for modeled CT and ABCD/IMAGEN data, separately by sex. Plot elements as in Fig. 
S7. Abbreviations: CT = cortical thickness, MRI = magnetic resonance imaging, LOESS = locally 
estimated scatterplot smoothing. Source data are provided as a Source Data file. 
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A: Female-Male, 5-year window, 50th percentile (main) B: Female-Male, 5-year window, 50th percentile (baseline)

C: Female, 5-year window, 50th percentile Male, 5-year window, 50th percentile

D: Female-Male, 1-year window, 50th percentile Female-Male, 2-year window, 50th percentile

E: Female-Male, 5-year window, 1th percentile Female-Male, 5-year window, 99th percentile
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Fig. S9: Joint multivariate regression result in different analysis cases 

(A) Multivariate regression on cortical thickness change across the lifespan using all predictors, 
neuroimaging and mRNA expression combined, settings as in main analyses. (B) Results after correcting 
the change data for baseline modeled CT. (C) Results for only male or only female modeled CT data. (D) 
Results with sliding window length of 1 or 2 years instead of 5 years. (E) Results for first or 99th instead of 
50th percentile modeled CT data. Please refer to main Fig. 3 for descriptions of the panel elements. Source 
data are provided as a Source Data file. 
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Female, 5-year window, 50th percentile Male, 5-year window, 50th percentile

Female-Male, 1-year window, 50th percentile Female-Male, 2-year window, 50th percentile

Female-Male, 5-year window, 1th percentile Female-Male, 5-year window, 99th percentile

Female-Male, 5-year window, 50th percentile (main) Female-Male, 5-year window, 50th percentile (baseline)
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Fig. S10: Influence of modeled sex, sliding window length, and cortical thickness reference 
percentile on main regression results 

Univariate and multivariate regression results for the cases outlined in Fig. S9. Please refer to main Fig. 3 
for descriptions of the panel elements. Source data are provided as a Source Data file. 
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Fig. S11: Replication of explained modeled CT change results using the Desikan-Killiany 
parcellation 

As the Desikan-Killiany parcellation41 is the used more often in the literature, we transformed the Destrieux-
parcellated data used in our study to the Desikan-Killiany parcels and repeated the first step of our regression 
analyses workflow. (A) and (B) show the Desikan-Killiany-transformed modeled CT change and factor-
level neurobiological marker maps, respectively. (C) and (D) correspond to results shown in Figs. 3, 4, S9, 
and S10. Source data are provided as a Source Data file. 
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Fig. S12: Potential influence of the non-uniform Braincharts age distribution on modeled CT 
change variance explained 

To test if the non-uniform age distribution of the Braincharts cohort could have influenced our results 
regarding the extent to which modeled CT change patterns were explained, we correlated the number of 
Braincharts subjects that fell into each studied age window (5-year windows, 1-year steps; upper panel) 
with the variance explained by CT change regression models across age windows. Spearman’s rho estimates 
are shown in the lower panel, with colors marking the exact p value of each orrelation obtained from a 
correlation null distribution based on the same set of null maps from which the modeled CT change p values 
were estimated (n = 10,000). No CT change association with FDR-significant markers (c.f., Figs. 3 and 4; 
marked with bold font) was correlated to the age distribution. Source data are provided as a Source Data 
file. 
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Fig. S13: Potential influence of approximated neurobiological marker source age on modeled 
CT change variance explained 

To test if the neurobiological marker source ages could have influenced our results regarding the extent to 
which modeled CT change patterns were explained, we correlated the absolute distance of each marker’s 
approximated age to each time window with the variance explained by modeled CT change regression 
models across age windows. Resulting Spearman’s rho estimates are shown in the lower panel, with colors 
marking the exact p value of each orrelation obtained from a correlation null distribution based on the same 
set of null maps from which the modeled CT change p values were estimated (n = 10,000). We only found 
significant negative correlations and no systematic pattern, providing no evidence for concerning confounds. 
Source data are provided as a Source Data file. 
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Fig. S14: Contribution of individual brain regions to explained lifespan cortical thickness change  

Parcellated brain plots show residual differences as estimated in the main dominance analyses. Residual differences were calculated for each predictor x as 
the difference between prediction errors resulting from a multivariate linear regression with all 7 predictors included and the prediction errors under 
exclusion of x. Source data are provided as a Source Data file.  

  



 38 

 



 39 

Fig. S15: Individual dominance analyses using original neurobiological atlases  

To determine if the factor-level predictors appropriately captured the original multimodal atlases, sets of spatial association analyses were calculated, 
predicting modeled CT change across the lifespan from the original maps most closely associated to each factor. For each factor, the 5 original atlases that 
loaded most strongly on the factor were selected if their loading exceeded a threshold of .3. The first column shows the result of stepwise dominance 
analyses (black line = combined R2), the second column shows independent single linear regressions, and the third column depicts the colocalization 
pattern between modeled CT change and original predictors to illustrate the sign of the spatial association. Gray shades in the first two columns show the 
null distributions associated with the individual factor-level R2 values. Source data are provided as a Source Data file. 
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Fig. S16: Cortical distributions of residual differences, cortical thickness changes, and average values of the original atlases associated 
to each selected predictor 

This figure corresponds to each row of Fig. S15 and mirrors the layout of Fig. 6. Please see these for descriptions of the panel elements. Source data are 
provided as a Source Data file. 
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Fig. S17: Null trajectories and test null distributions for developmental gene expression data 

Detailed test results corresponding to main Fig. 7. For each neurobiological marker (rows) and each gene/ 
gene set associated to the original brain atlases (columns per row), we show the observed gene expression 
trajectory (colored, left y axis), and n = 10,000 null trajectories (grey, right y axis). The histograms below 
show null distribution for the mean expression during the significant CT period (left) and the ratio of mean 
expression during vs. outside the significant modeled CT period (right). The red lines and numbers 
indicate observed mean/ ratio values; p and q indicate nominal and FDR-corrected empirical p values. 
Source data are provided as a Source Data file. 
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Fig. S18: Euler number-based quality control of ABCD and IMAGEN data 

Distributions of Euler number-related metrics in ABCD (A) and IMAGEN (B) datasets at different study 
time points. The upper and lower sub-panels of A and B visualize the distributions of the quality control 
metrics in different ways. For IMAGEN, the sum of the two hemispheric Euler numbers, and for ABCD, 
the variable “apqc_smri_topo_ndefect” was used. Subjects were excluded if they exceeded a threshold of 
Q3 + 1.5 * IQR calculated across study time points within each study. Group-level source data are provided 
as a Source Data file. 
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Fig. S19: Observed and predicted ABCD and IMAGEN cohort-average cortical thickness change  

Average relative CT change in percent across four time periods in the ABCD and IMAGEN datasets as observed, after ComBat harmonization (left), as 
observed after adaptation to the Braincharts model (middle), and as predicted by the Braincharts model based on subject sex and age (right). Sample sizes 
vary for IMAGEN subjects between ComBat-harmonized and Braincharts-adjusted/predicted data as some subjects were used for model adaptation and 
then dropped from the analyses. This is not the case for ABCD subjects as, here, solely baseline-only subjects were used for model adaptation. Source data 
are provided as a Source Data file. 
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Fig. S20: Region-wise correlation between predicted and observed cortical thickness change 

Regional correlation (Spearman’s rho) between relative CT changes as predicted by the Braincharts model (percent-change of predicted CT values from 
timepoint one to timepoint two) and relative CT change as observed in ABCD and IMAGEN datasets across each time period, after adaptation to the 
Braincharts model. Predicted CT change was calculated for each subject individually based on their age and sex. Source data are provided as a Source Data 
file. 
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Fig. S21: Spatial colocalization between cross-sectional ABCD and IMAGEN cortical 
thickness data and multimodal neurobiological markers 

Spatial colocalization with multimodal predictors quantified as Z-transformed Spearman correlation for 
each ABCD and IMAGEN subject at each study time point (rows) based on the original CT data without 
harmonization (first column), observed CT data after ComBat-harmonization (second column), observed 
CT data after site-correction using the Braincharts model (third column, note the smaller sample sizes for 
the IMAGEN data), and CT data as predicted by the Braincharts model (fourth column). See also the 
trajectory plots (Figs. S7 and S8). Group-level source data are provided as a Source Data file. 
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Fig. S22: Detailed results of ABCD and IMAGEN validation analyses 

Explained CT change in ABCD and IMAGEN cohorts across 4 study time periods (rows) in different analysis settings. Raincloud plots and scatters show 
distributions of R2 values resulting from cohort- or subject-wise dominance analyses. The leftmost gray elements depict the full model explained variance, 
the right-sided colored elements show the predictor-wise estimated total dominance statistics. For each subject- or cohort-wise analysis, the sum of 
predictor-wise R2 values equals the full model value. Stars indicate statistical significance determined based on null distributions of R2 values as estimated 
by rerunning regression analyses with predictor null maps (FDR-correction within each analysis/panel). See Fig. S23 for equivalent plots showing Spearman 
correlations. (Column 1) prediction result based on CT change as predicted by the Braincharts model. (Column 2) average CT change across each cohort, 
data after ComBat harmonization. (Column 3) average CT change across each site within each cohort, data after ComBar harmonization. (Column 4) CT 
change in single subjects, data after ComBat harmonization. (Column 5, 6, and 7) sensitivity analyses on subject-level data; (5) original values without 
site-correction to estimate effects of overfitting, (6) data after total intracranial volume was regressed from timepoint-wise estimates after ComBat 
harmonization, (7) change between deviation Z scores as estimated by the normative model. Group-level source data are provided as a Source Data file. 
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Fig. S23: Detailed Spearman correlation results showing colocalization patterns between ABCD and IMAGEN CT change and 
multimodal predictors 

Add-on to Fig. S22. Instead of multivariate regression analyses, Spearman correlations were calculated, to capture the sign of the spatial associations. As 
of this demonstrational purpose, no significance tests were performed. Group-level source data are provided as a Source Data file. 



 53 

Fig. S24: Generalization of CT change prediction models trained on normative single-subject 
data to observed data 

Evaluation of the generalizability of normative CT change prediction (= blue violins). The y axis shows 
regression model fit as the Pearson correlation between observed and predicted responses (i.e., CT change 
patterns). The left panel shows analyses based on the actual neurobiological marker brain maps, the right 
panel shows results based on permuted maps (1,000 iterations). Green violins: Fit of regression models 
estimated on each subject’s normative CT change patterns as predicted by the Braincharts model. Orange 
violins: Fit of regression models estimated on each subject’s observed CT change patterns. Blue violins: Fit 
of models estimated on the normative CT change patterns but applied to the observed CT change. The result 
indicates how well the normative model, as the “population average”, performs in representing each 
subject’s CT associations to neurobiological markers. Group-level source data are provided as a Source 
Data file. 
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Fig. S25: Effects of follow-up duration on total explained cortical thickness change  

Correlations between follow-up duration for each dataset and at each time period (x axes) with total 
explained CT change variance (y axes); full datasets after ComBat harmonization. Boxes in the upper 
corners of each panel contain Spearman’s rho and the associated parametric p value for each bivariate 
association. Group-level source data are provided as a Source Data file. 
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Fig. S26: Effects of sex and site on total explained cortical thickness change variance 

Comparisons testing if the overall extent to which ABCD and IMAGEN CT change was explained (y axes) 
across each tested time period (rows) varied by binary sex (column 1) and site (column 2). Note that these 
analyses are done after site harmonization of the “cross-sectional” timepoint-wise CT data using ComBat. 
Raincloud plot elements as described above. Sex and site were compared using analyses of covariance 
(ANCOVAs) assessing the effect of (column 1) sex on explained CT change variance, including site and 
follow-up duration as covariates, or (column 2) site on explained CT change variance, including binary sex 
and follow-up duration as covariates. Effect sizes are expressed as eta-squared (np2). Group-level source 
data are provided as a Source Data file. 
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Fig. S27: Effects of predictive performance, subject-level atypical development, and surface reconstruction quality on explained 
cortical thickness 

Scatterplots show relationships between cohort- and time period-wise (rows) total explained CT change (y axes) as estimated in subject-wise dominance 
analyses. X axes: Columns 1 and 4: Model fit; correlation between observed and predicted baseline CT or CT change. Columns 2 and 5: CT deviations; 
absolute CT deviation Z scores or their longitudinal change. Columns 3 and 6: CT deviations; counts of extreme deviations per subject or their longitudinal 
change (defined as deviation Z > 2). Columns 7 and 8: Data quality: Total Euler number, FreeSurfer’s quality control metric for surface reconstruction. 
Blue plots indicate baseline metrics, orange plots indicate longitudinal metrics, green plots indicate associations with the Euler number at the first and 
second timepoint of each studied time period. Boxes in the upper corners of each panel contain Spearman’s rho and the associated parametric p value for 
each bivariate association. Group-level source data are provided as a Source Data file. 
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Fig. S28: Summary of previous literature on processes involved in human brain development 
and maturation 

Visualization of published results on correlates of human CT development and maturation, extention to Fig. 
10. This collection is not exhaustive and is mostly limited to in vivo and postmortem studies in humans. The 
upper left panel shows results drom the current study. Thin black lines depict the age range covered by 
each study. Thick colored bars show the time period in which the respective study target was reported to 
show developmental changes. If available, peaks of these assocations are marked by circles. Results are 
grouped by the broad area of research, colors code the applied methodology. All references can be found 
in the supplementary reference list55–75,75–82,82–105. Source data are provided as a Source Data file. 
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