Supplementary Data

Figure 1-figure supplement 1. Alr1 and Dat are the primary routes of D-Ala production in *S. aureus.* (A) Schematic of the predicted D-Ala-D-Ala generating pathways in *S. aureus*. Growth curves of various *S. aureus* strains grown in the (B) absence or (C) presence of 5 mM D-Ala (n=3, mean \pm SD).

Figure 2-figure supplement 1. Overexpression of *dat* **rescues the growth defect of the** *alr1* **mutant (A)** *dat* was cloned in a multicopy vector (pSP4) controlled by its native promoter. The *S. aureus* strains containing pSP4 and pLI50 (empty vector) were grown in TSB supplemented with 20 mM acetate (B) RT-qPCR analysis of *dat* expression in the *alr1* mutant in the presence or absence of 20 mM acetic acid (n=3, mean ± SD).

Figure 3-figure supplement 1. Increased *dat* **expression causes a fitness defect.** The mean competitive fitness (*w*) was determined by co-culturing the WT strain with an isogenic mutant that contained either the empty pAQ59 vector integrated into the SaPI chromosomal site (WT^{EV}) or the pAS8 vector containing *dat* under the control of its native promoter (WT^{*dat*}) (n=18, the dotted lines indicate the median and quartiles). **, P value <0.01.

Figure 4-figure supplement 1. Muropeptide analysis. Representative chromatograms of muropeptide extracts from (A-C) WT, *alr1* and *dat* mutants, and following (D-F) acetate intoxication. A unique peak corresponding to NAG-NAM-AEK (M3, m/z, Da: 826.4080) was identified in the *alr1* mutant. The peak area of M3 was normalized to the total area of peaks observed in the chromatogram and expressed as percent (see inset figure in **B**, n=3, mean ± SD). M, monomer; D, dimer; T, trimer, Tt, tetramer.

Figure 6-figure supplement 1. Overexpression of *ddl* rescues the growth defect of the *alr*1 mutant The growth (OD_{600}) of the WT and *alr*1 mutants overexpressing Ddl (pSP36; cadmium inducible expression of *ddl*) in TSB supplemented with (A) lactic acid (40 mM), (B) propionic acid (20 mM) and (C) Itaconic acid (20 mM) in the presence or absence of 5 mM D-Ala (n=3, mean ± SD).

Table S1: Effect of acetate on Ddl activity

Substrate	Condition	K _m (mM)	V _{max} (µM min⁻¹)	k _{cat} (min⁻¹)
D- Ala	0 mM Acetate	7.0 ± 0.6	16.0 ± 0.4	80.1 ± 2.1
	100 mM Acetate	6.8 ± 0.6	10.9 ± 0.3	54.4 ± 1.6
	300 mM Acetate	8.4 ± 0.6	6.3 ± 0.1	31.5 ± 0.7
ΑΤΡ	0 mM Acetate	0.6 ± 0.1	12.3 ± 1.1	61.7 ± 5.7
	200 mM Acetate	0.8 ± 0.2	6.9 ± 0.8	34.4 ± 3.8
	300 mM Acetate	0.8 ± 0.3	4.0 ± 0.7	19.9 ± 3.6

Sample	Tm D (°C)	ΔTm D (°C)*
Ddl	45.0 ± 0.0	-
Ddl + Sodium acetate (Ac)	48.7 ± 0.0	3.7
Ddl + ATP	46.4 ± 0.0	1.4
Ddl + ATP + Ac	48.9 ± 0.1	3.9
Ddl + ADP	41.9 ± 0.1	-3.2
Ddl + ADP + Ac	49.7 ± 0.1	4.0
Ddl + D-Ala	49.2 ± 0.1	4.2
Ddl + D-Ala + Ac	49.6 ± 0.0	4.5
Ddl + D-Ala + ATP + Ac	47.1 ± 0.1	2.0
Ddl + D-Ala + ADP + Ac	49.8 ± 0.0	4.8

Table S2: Impact of acetate on Ddl stability assessed by DSF

*The Δ Tm D values are calculated as the difference in melting temperature of the Ddl apo protein to Ddl with added substrates or acetate inhibitor.

Resolution Range	48.21 – 1.92 (1.989 – 1.92)
Space group	P 2 21 21
Unit cell	55.123 65.817 99.423 90 90 90
Total reflections	173526 (12202)
Unique reflections	20366 (2806)
Multiplicity	8.5 (9.3)
Completeness (%)	94.80 (50.46)
Mean I/sigma(I)	10.99 (1.72)
Wilson B-factor	37.29
R-merge	0.097 (0.33)
R-meas	0.104 (0.35)
R-pim	0.036 (0.12)
CC1/2	0.998 (0.95)
CC*	0.999 (0.99)
Reflections used in refinement	26870 (1416)
Reflections used for R-free	1601 (92)
R-work	0.21 (0.42)
R-free	0.27 (0.47)
CC (work)	0.223 (0.07)
CC (free)	0.217 (-0.16)
Number of non-hydrogen atoms	2963
macromolecules	2777
ligands	10
solvent	176
Protein residues	355
RMS(bonds)	0.009
RMS(angles)	1.10
Ramachandran favored (%)	93.70
Ramachandran allowed (%)	6.02
Ramachandran outliers (%)	0.29
Rotamer outliers (%)	0.00

Table S3: Refinement statistics of Ddl/Acetate structure

Clashscore	6.88
Average B-factor	43.60
macromolecules	43.60
ligands	45.09
solvent	43.64

Organic Anion	ATP binding site	D-Ala binding site
L-lactate	-4.851	-4.431
Propionate	-2.317	-1.883
Itaconate	-3.572	-3.575

Table S4: Glide scores from molecular docking studies of organic anions

Table S5: Strains used in this study

Strains	Description	Source
E. coli Electro-Ten-Blue	General plasmid maintenance strain	Stratagene
S. aureus RN4220	Restriction-deficient strain is routinely used as a transformation intermediate	(59)
<i>S. aureus</i> RN4220: pRN7023	Restriction deficient strain carrying pRN7023 plasmid containing integrase gene routinely used as a transformation intermediate	(43)
E. coli DH5a	General plasmid maintenance strain	Thermo Fisher
<i>E</i> . coli BL21(DE3)	Protein over-expression and purification strain	Novagen
S. aureus JE2	S. aureus USA300 LAC cured of all 3 native plasmids	(41)
JE2 alr1	<i>bursa aureali</i> s transposon mutant, Erm ^R	NTML
JE2 alr1::alr1	WT copy of <i>alr1</i> complemented at the SaPI1 site of <i>bursa aurealis</i> transposon mutant, Erm ^R	This study
JE2 citZ	<i>bursa aurealis</i> transposon mutant, Erm ^R	NTML
JE2 citZalr1	<i>bursa aurealis</i> transposon mutant, Erm ^R , Kan ^R	This study
JE2 dat	<i>bursa aurealis</i> transposon mutant, Erm ^R	NTML
JE2 Δalr2	Inframe isogenic deletion mutant of JE2	This study
JE2 alr1∆alr2	<i>bursa aurealis</i> transposon mutant, Erm ^R , transduced into inframe isogenic deletion mutant JE2 Δ <i>alr2</i>	This study
JE2 ∆alr2dat	<i>bursa aurealis</i> transposon mutant, Erm ^R , transduced into inframe isogenic deletion mutant JE2 Δ <i>alr2</i>	This study
JE2 alr1∆alr2dat	<i>bursa aurealis</i> transposon mutant, Tet ^R , transduced into inframe isogenic deletion mutant JE2 alr1 Δ alr2	This study
JE2 alr1dat	<i>bursa aurealis</i> transposon mutant, Erm ^R , Tet ^R	This study
JE2 alr1: dat	pLI50 <i>dat</i> plasmid (pSP4) transduced into <i>bursa</i> <i>aurealis</i> transposon mutant, Erm ^R	
JE2 pepV ^{∆SD1-467}	Isogenic deletion mutant of SD1 and <i>pepV</i>	This study
JE2 alr1pepV ^{∆SD1-467}	<i>bursa aureali</i> s transposon mutant, Erm ^R transduced into isogenic deletion mutant of SD1 and <i>pepV</i>	This study
ЈЕ2 <i>Дрер</i> V	Inframe isogenic deletion mutant of JE2	This study
JE2 alr1∆pepV	<i>bursa aurealis</i> transposon mutant, Erm ^R transduced into inframe isogenic deletion mutant JE2 Δ <i>pepV</i>	This study

JE2 pepV ^{Q12STOP}	Glutamine to STOP codon substitution at 12 th amino acid position in PepV	This study
JE2 alr1pepV ^{Q12STOP}	<i>Bursa aurealis</i> transposon mutant, Erm ^R transduced into glutamine to STOP codon substitution at 12 th amino acid position in PepV	This study
JE2 WT: pJB68	pJB68 transduced into WT JE2	This study
JE2 WT: pSP36	pSP36 transduced into WT JE2	This study
JE2 <i>alr1</i> : pJB68	pJB68 transduced into JE2 alr1	This study
JE2 <i>alr1</i> : pSP36	pSP36 transduced into WT alr1	This study
JE2 WT::pAQ59	pAQ59 empty vector inserted at the SaPI1 site of WT JE2	This study
JE2 WT::pAS8	<i>dat</i> (under its native promoter) inserted at the SaPI1 site of WT JE2	This study

Plasmids	Description	Source
pLI50	E. coli- S. aureus shuttle vector	(60)
pJB38	E. coli-S. aureus allelic exchange vector	(42)
pJC1111	E. coli-S. aureus SaPI1 site integration vector	(43)
pJB68	E. coli-S. aureus cadmium inducible shuttle vector	(42)
pET28a	Expression vector for purification of protein in <i>E. coli</i> BL21 (DE3)	Novagen
pAS3	pJC1111 based vector for integration of WT copy of <i>alr1</i> at the SaPI1 site	This study
pAS2	pJB38 based vector for alr2 chromosomal deletion	This study
pSP4	pLI50 dat (under control of its native promoter)	This study
pSP19	pJB38 based vector for <i>pepV</i> SD1 chromosomal deletion	This study
pSP20	pJB38 based vector for <i>pepV</i> SD1-467 chromosomal deletion	This study
pSP16	pJB38 based vector for <i>pepV</i> chromosomal deletion	This study
pSP15	pJB38 based vector for substitution of chromosomal <i>pepV</i> with <i>pepV</i> ^{Q12STOP}	This study
pSP36	pJB68 based vector for overexpression of <i>ddl</i>	This study
pSP32	pET28a based vector for purification of full length Ddl (C-terminal his tag)	This study
pAQ59	E. coli-S. aureus SaPI1 site integration vector with pSC101 ori region	(61)
pAS8	pAQ59 based vector for integration of <i>dat</i> gene under its native promoter at the SaPI1 site	This study

Table S6: Plasmids used in this study

Gene/Modification	Primer name	Primer sequence (5' – 3')			
alr1	alr1_F	TGCTGACGAACCAGGAGATA			
	alr1_R	TGTAGTTGGGTCAGTAGCTG			
alr1 complementation	alr1_comp_F	CGGCCGCTGCATGCCTGCAGACATGAGCAACGTAAA ATTG			
	alr1_comp_R	AGCTCGGTACCCGGGGATCCAATGACCTTTAATTACT CTAATGATAAC			
citZ	1641_F	CAGCGGAGACTAAAATAAGTTC			
	1641_R	CCCAATCTCAGATAACATCGTC			
dat	dat_F	ACTATAGGTGGCGGTACTTA			
	dat_R	ACCATCGGATATCTTCAACG			
alr2 deletion	alr2_UP_F	CGAGGCCCTTTCGTCTTCAATACTTAGAAGGTAATGG CTC			
	alr2_UP2_R	TCATAGCACTTGCTGTCAATGTATTACAC			
	alr2_DN2_F	ATTGACAGCAAGTGCTATGAATCATGATTC			
	alr2_DN_R	TTGCATGCCTGCAGGTCGACGCTTCTTCATTTCTATTA ACAAG			
dat complementation	dat promoter_F	CCTTTCGTCTTCAAGAATTCGATGTGAGTAGGACAGA AATG			
	dat promoter_R	TTTTTTCCATTCGAAATCGACTTCCTTTTTTC			
	dat_pLI50_F	TCGATTTCGAATGGAAAAAATTTTTTTAAATGGTG			
	dat_pLI50_R	TTGCATGCCTGCAGGTCGACCGAAAGTTGATAAATTT AAGTAATTTAATC			
TSS identification of dat operon	pepV_TSS_R1	P-CCATCTCTATGTGCAATTTC			

Table S7: Primers used in this study

	pepV_TSS_R2	GCGTCTTCTGATGCTTTTGC
	pepV_TSS_F3	GTCCTCGTAAGGCATTAGAC
	M13F (-20)	GTAAAACGACGGCCAG
	M13R	CAGGAAACAGCTATGAC
pepV∆SD1-467	RBS1pepV_UP_F	CCTTTCGTCTTCAAGAATTCAGCGACGCAATTAGGAA C
	RBS1pepV_UP_R	TTATTCCTCCTTTTTCTATAAGTTAAATTCTATTTTACAT GAAAAG
	RBS1pepV_DN_F	TATAGAAAAAGGAGGAATAATATATGGAAAAAATTTTT TTAAATG
	RBS1pepV_DN_R	TATAGAAAAAGGAGGAATAATATATGGAAAAAATTTTT TTAAATG
pepV deletion	pepV_UP2_F	CCTTTCGTCTTCAAGAATTCAACAATTAAAGAAGTAAA AACAAATC
	pepV_UP2_R	TTTTTCCATTCGAAATCGACTTCCTTTTTTC
	pepV_DN2_F	TCGATTTCGAATGGAAAAAATTTTTTTAAATGGTG
	pepV_DN2_R	TTGCATGCCTGCAGGTCGACTTTCAACTGAAAATGAG AAAC
pepVQ12STOP	pepV_STOP_UP _F	CCTTTCGTCTTCAAGAATTCCAAATCCGAAAGAATATG C
	pepV_STOP_UP_R	TAATGATTTAATCTTCGTATTGTTGAACTTTTTC
	pepV_STOP_D N_F	ATACGAAGATTAAATCATTAATGACTTAAAAGGATTATT AG
	pepV_STOP_D N_F	R TTGCATGCCTGCAGGTCGACAAAGACCTGCGTTTTCA TTATC
<i>ddl</i> overexpression plasmid	ddl_pJB68_F	TTTATAAGGAGGAAAAACATATGACAAAAGAAAATATT TGTATCG
	ddl_pJB68_R	GAATAGGCGCGCCTGAATTCATCCATGATTGAATTTG CTTTAATG

Ddl purification plasmid	ddl_C_Histag_F	CTTTAAGAAGGAGATATACCATGACAAAAGAAAATATT TGTATCG
	ddl_C_Histag_R	CAGTGGTGGTGGTGGTGGTGGTCAATTTTGTATTTAT TTTTCTGTTTATC
ddl RT-qPCR	ddl_RT_F	GGGCTTTTTGAAGTTTTGGA
	ddl_RT_R	TGGTAACCCTCGATGTTCAA
<i>murF</i> RT-qPCR	murF_RT_F	TCACAATTGATTCACGAGCA
	murF_RT_R	CCCAGCACCATCTTGTAATG
dat RT-qPCR	dat RT_F	GATGGTTACGTTGCGACATT
	dat RT_R	CACCTCGATGTTGAATTGCT
sigA RT-qPCR	JE2_RT_sigA_F	AACTGAATCCAAGTGATCTTAGTG
	JE2_RT_sigA_R	TCATCACCTTGTTCAATACGTTTG
<i>dat</i> insertion at the SaPI1 site (pAS8)	dat_UP2_F	GAGCCGCTGCATGCCTGCAGGATGTGAGTAGGACAG AAATG
	dat_UP_R	TTTTTTCCATTCGAAATCGACTTCCTTTTTTC
	dat_DN_F	TCGATTTCGAATGGAAAAAATTTTTTTAAATGGTG
	dat_DN_R	AGCTCGGTACCCGGGGATCCCGAAAGTTGATAAATTT AAGTAATTTAATC

Metabolite	Polarity	MRM (Q1/Q3)	CE (V)	DP (V)	RT	Column
L-Ala	(+)	90.1 / 44.0	17	65	6.4	С
D-Ala	(+)	90.1 / 44.0	17	65	9.5	С
D-Ala-D-Ala	(+)	161.0 / 44.2	30.5	65	3.4	XB
UDP-NAG	(-)	606.0 / 79.0	-149	-80	12.7	XB
UDP-NAM	(-)	678.1 / 79.0	-120	-80	13.2	XB
UDP-NAM-A	(-)	749.1 / 403.0	-42	-90	13.4	XB
UDP-NAM-AE	(-)	878.2 / 403.0	-48	-105	14.3	XB
UDP-NAM-AEK	(-)	1006.2 / 403.0	-50	-130	14.9	XB
UDP-NAM-AEKAA	(-)	1148.5 / 403.0	-55	-140	14.6	XB
NAM	(-)	292.0 / 89.0	-16	-30	6.2	XB
NAG	(+)	204.0 / 138.1	18.9	30	5.6	XB
Br-ATP (IS)	(-)	588.0 / 159.0	-38.9	-60	6.0	XB
Ribitol (IS)	(-)	151.1 / 89.0	-14.8	-60	5.3	XB

Table S8: Table of Multiple Reaction Monitoring (MRM) transitions

CE: Collision energy ;DP: Declustering potential; RT: Retention Time; C: CHIROBIOTIC® T column; XB: XBridge Amide column

	Metabolite	Isotopologues(¹³ C ¹⁵ N)	Base peak (m/z)
D-Ala-D-Ala (Positive mode)			
1	C6H12N2O3	C_0N_0	161.0921
2	[13]C1C5H12N2O3	C_1N_0	162.0954
3	[13]C2C4H12N2O3	C_2N_0	163.0988
4	[13]C3C3H12N2O3	C ₃ N ₀	164.1021
5	[13]C3C3H12[15]N1N1O3	C ₃ N ₁	165.09917
6	[13]C3C3H12[15]N2O3	C_3N_2	166.0962
7	[13]C4C2H12N2O3	C ₄ N ₀	165.10549
8	[13]C5C1H12N2O3	C ₅ N ₀	166.10884
9	[13]C6H12N2O3	C ₆ N ₀	167.1122
10	[13]C6H12[15]N1N1O3	C ₆ N ₁	168.1092
11	[13]C6H12[15]N2O3	C ₆ N ₂	169.1063
12	[13]C1C5H12[15]N1N1O3	C_1N_1	163.09246
13	[13]C1C5H12[15]N2O3	C_1N_2	164.0895
14	[13]C2C4H12[15]N1N1O3	C_2N_1	164.0958
15	[13]C2C4H12[15]N2O3	C_2N_2	165.09285
16	[13]C4C2H12[15]N1N1O3	C_4N_1	166.1025
17	[13]C4C2H12[15]N2O3	C_4N_2	167.09956
18	[13]C5C1H12[15]N1N1O3	C ₅ N ₁	167.10588
19	[13]C5C1H12[15]N2O3	C ₅ N ₂	168.1029
20	C6H12[15]N1N1O3	C ₀ N ₁	162.0891
21	C6H12[15]N2O3	C_0N_2	163.0861
D-Glu (Negative mode)			
1	C5H9NO4	C _o N _o	146.04588
2	C5H9[15]NO4	C ₀ N ₁	147.04292
3	[13]C1C4H9NO4	C_1N_0	147.04924
4	[13]C2C3H9NO4	C_2N_0	148.05259
5	[13]C2C3H9[15]NO4	C_2N_1	149.04963
6	[13]C1C4H9[15]NO4	C_1N_1	148.04627
7	[13]C3C2H9[15]NO4	C ₃ N ₁	150.05298
8	[13]C4C1H9[15]NO4	C ₄ N ₁	151.05634
9	[13]C5H9[15]NO4	C ₅ N ₁	152.05969
10	[13]C3C2H9NO4	C ₃ N ₀	149.05595
11	[13]C4C1H9NO4	C_4N_0	150.0593
12	[13]C5H9NO4	C_5N_0	151.06266

Table S9: HRMS base peak identification of isotopologues

RT: D-Ala-D-Ala, 3.4 mins on 10 cm XBridge amide column; D-Glu, 6.4 mins on CHIROBIOTIC® T column