Model	No. of demes (sampling among demes)	Parameters of population size change, migration, and divergence among demes
Two-epoch	1 (100)	τ=0.02, υ=0.1
	ms 100 300 -t 108 -eN 0.01 0.1	
Bottleneck	1 (100)	$\tau_1=0.2, \ \upsilon_1=1; \ \tau_2=0.1, \ \upsilon_2=0.1; \ \upsilon_3=0.5$
ms 100 300 -t 4		N 0.1 0.1 -eN 0.15 0.5
Island	10 (30 30 30 10 0 0 0 0 0 0) $M_{ij}=5.0$ for all <i>i</i> , <i>j</i> , $i\neq j$, equal population sizes	
ms 100 300 -t 2.35 -I 1		-I 10 30 30 30 10 0 0 0 0 0 0 5.0
Complex	4 (30 30 30 10)	deme 1: τ_1 =0.1, υ_1 =1; υ_2 =0.1
		deme 2: $\tau_3=0.1$, $\nu_3=1$; $\tau_4=0.1$, $\nu_4=0.1$; $\tau_5=0.8$, $\nu_5=0.5$
		deme 3: $\tau_6=0.1$, $\upsilon_6=1$; $\tau_7=0.1$, $\upsilon_7=0.1$; $\tau_8=0.8$, $\upsilon_8=0.5$
		deme 4: $\tau_9=0.02$, $\upsilon_9=1$; $\tau_{10}=0.004$, $\upsilon_{10}=0.05$; $\tau_{11}=0$
		<i>M_{ij}</i> =5.0 for current populations <i>i</i> , <i>j</i> , <i>i≠j</i> ; for past populations, <i>M_{ij}</i> scaled by past population sizes
	0.1 3 0.5 -en 0.	4 30 30 30 10 5.0 -en 0.05 3 0.1 -en 05 2 0.1 -en 0.1 2 0.5 -en 0.05 1 0.1 - ej 0.012 4 3 -ej 0.5 2 1 -ej 0.5 3 1
For each model we simulated 2,000 data sets, each composed of 100 loci sequenced at		

 Table 3. Conditions for neutral coalescent simulation under alternative demographic models

For each model we simulated 2,000 data sets, each composed of 100 loci sequenced at 300 unlinked genes, with complete linkage within genes, known ancestral states for each SNP, and a mutation rates selected to produce, on average, ~37,000 SNPs, which were randomly divided into putatively neutral (97.5% of SNPs) and potentially selected (2.5% of SNPs) categories. Times are scaled $2N_1$ generations, where N_1 is the current size of the first deme. For each historical population size N_i , we define $\upsilon_i = N_i/N_1$. The MS command line input for each iteration of each model is also shown (note that MS scales time in $4N_1$ generations so all times are divided by 2).