Science Advances

Supplementary Materials for

Inorganic interpretation of luminescent materials encountered by the Perseverance rover on Mars

Eva L. Scheller *et al*.

Corresponding author: Eva L. Scheller, eschelle@mit.edu

Sci. Adv. **10**, eadm8241 (2024) DOI: 10.1126/sciadv.adm8241

This PDF file includes:

Supplementary Text Figs. S1 to S13 Tables S1 to S3

Supplementary Text

This document includes the following:

(1) Further description of laboratory spectra of NWA 10922 in section: Unmixing Ce3+ and organic contamination in Northwest Africa (NWA) 10922.

(2) Detailed file list for all data used in the manuscript in section: List of data files available on the PDS.

(3) Fig. S1 to S3 include further data analysis figures from NWA 10922.

(4) Fig. S4 to S13 and Table S1 to S3 include supplementary data analysis results and methodology figures from processing of the SHERLOC dataset mentioned in the main text.

Unmixing Ce3+ and organic contamination in Northwest Africa (NWA) 10922

In this section, we summarize further analyses performed to constrain the organic versus inorganic nature of luminescence in the NWA 10922 meteorite. All spectra taken from NWA 10922 contain a G-band related to terrestrial organic contamination (Fig. S2). This is expected due to terrestrial organic contamination. We discuss what luminescence features were found in NWA 10922 and whether these were organic or inorganic.

Phosphate grains and FTP clasts: Through the following series of arguments, we find clear evidence of inorganic 330-350 nm luminescence from Ce^{3+} in all phosphate grains measured in the meteorite. The main 330-350 nm broad luminescence from phosphate grains is resulting from Ce^{3+} and not terrestrial organic contamination through the following arguments: (1) The luminescence is markedly stronger when compared with luminescence from matrix, feldspars, and pyroxenes (Fig. S1). (2) The luminescence matches that of phosphate standards measured in (13). (3) The luminescence is also consistent with the expected two Ce^{3+} electron transition bands ($5d \rightarrow {}^{2}F_{5/2}$, ${}^{2}F_{7/2}$ (4f)) that are expected for the Ca(I) site in apatite (39-40,49-50) (Fig. S2-S3). (4) Furthermore, the 330-350 nm luminescence intensity is linearly correlated with phosphate Raman peak intensity (Fig. 4D) and occurred when high phosphorous content was measured by XRF (Fig. 4A). 330-350 nm luminescence had no linear correlation with G-band intensity ($R^{2} = 0.03$).

Given the asymmetry of the luminescence band, it is possible that there are additional bands ~450 nm (Fig. S3). Such a ~450 nm band would pose a degeneracy in the dataset due to the fact that macromolecular organic compounds, typical of terrestrial organic contamination, fluoresce in that wavelength (41), and the fact that a ~450 nm band is also expected for Ce³⁺ luminescence in the Ca(II) site in apatite (39). The intensity of the luminescence at 450 nm did not have a linear correlation with G-band intensity ($R^2 = 0.2$) or phosphate intensity ($R^2 = 0.1$). Hence, it cannot be resolved what is responsible for ~450 nm luminescence in phosphate grains,

although we prefer the interpretation that it is predominantly due to the terrestrial organic contamination (read below). There is also a minor unassigned 280 nm luminescence band, which appears similar to that observed in the Martian targets when low-intensity 280-290 nm luminescence and high-intensity 330-350 nm luminescence co-occurs.

Matrix, pyroxene, feldspar: Weak luminescence signals from matrix materials, pyroxenes, and feldspar are more difficult to constrain. We discuss possibilities for their origin in the below. Luminescence spectral profiles of matrix, plagioclase, and pyroxenes were largely similar and showed a band at both 330-350 nm and 410-430 nm (Fig. S2). The position of the 330-350 nm luminescence band is downshifted to \sim 330 nm. This is more typical of Ce³⁺ in monazite than in apatite (50) but can also occur in other minerals depending on the exact chemistry (e.g., Fig. 1). The 330-350 nm luminescence intensity showed no linear correlation to G-band intensity for any of these phases (R^2 =0.08). Hence, we suggest that this less intense 330-350 nm luminescence is likely not related to terrestrial organic contamination but instead arises from small components of phosphates and/or other unresolved Ce³⁺-containing minerals included in the matrix. The shift in wavelength position would suggest that the chemistry of the matrix Ce-bearing phase is different when compared with the phosphate grains (Fig. S2). In the case of measured pyroxene and plagioclase grains, we pose that the laser cannot avoid interaction with matrix phosphates when considering the \sim 75 um spot size. The 410-430 nm luminescence intensity showed a slight correlation with G-band intensity in both matrix, pyroxenes, and feldspar ($R^2 = 0.4-0.5$). Hence, we suggest that at least part of 410-430 nm luminescence is from terrestrial organic contamination like observations in (41).

List of data files available on the PDS

The Mars 2020 filename scheme is described in the EDR and RDR Software Interface Specification documents for PIXL and SHERLOC: https://pds-geosciences.wustl.edu/m2020/urn-nasa-pds-mars2020_pixl/document/ https://pds-geosciences.wustl.edu/m2020/urn-nasa-pds-mars2020_sherloc/document/ Importantly, the filename product ID (characters 24-26) describe the content of the file. PIXL files with the RXL product ID contain X-ray beam location data. PIXL files with the RFS product ID contain the PIXL histograms. PIXL quantification results are located in PIXL files with the RQC product ID. SHERLOC files with the RLS product ID contain data on the SHERLOC laser spot locations. SHERLOC files with the ERA and ERB product IDs contain the raw active and dark frame spectral data. SHERLOC files with the EPA product ID contain the laser photodiode data used to conduct laser normalization. A full list of data files can be found in the supplement.

PIXL Data Files (https://pds-geosciences.wustl.edu/m2020/urn-nasa-pdsmars2020_pixl/): Bellegarde pe 0186 0683483744 000rx1 00700000699274310005 j07.csv ps 0186 0683484569 000rfs 00700000699274310006 j02.csv ps 0187 0683484569 000rqc 00700000699274310000 j01.csv

Montpezat

pe 0347 0697753955 000rx1 00929821225528370003 j06.csv ps 0347 0697754703 000rfs 00929821225528370004 j04.csv ps 0347 0697754703 000rqc 00929821225528370000 j01.csv pe 0349 0697957194 000rxl 00929821235358790003 j05.csv ps 0349 0697957949 000rfs 00929821235358790004 j02.csv ps 0349 0697957949 000rgc 00929821235358790000 j01.csv

Alfalfa

pe 0369 0699718372 000rx1 01101081307448340003 j04.csv ps 0369 0699719245 000rfs 01101081307448340004 j02.csv 0369 0699719245 000rgc 01101081307448340000 j01.csv ps

Dourbes

pe 0257 0689790062 000rxl 00800000890639430006 j07.csv ps 0257 0689790785 000rfs 0080000890639430007 j02.csv ps 0257 0689790785 000rqc 00800000890639430000 j01.csv pe 0269 0690860057 000rxl 00800000932582450003 j08.csv ps 0269 0690861528 000rfs j04.csv 00800000932582450004 ps 0270 0690861528 000rgc 00800000932582450000 j01.csv

Quartier

pe 0293 0692986008 000rxl 00900001013847110008 j06.csv j02.csv 0293 0692986818 000rfs 00900001013847110009 ps ps 0294 0692986818 000rqc 00900001013847110000 j01.csv 0300 0693591971 000rxl 00900001042027530003 j04.csv pe 0300 0693593437 000rfs 00900001042027530004 j02.csv ps j01.csv 0301 0693593437 000rqc 00900001042027530000 ps

Thornton Gap

pe 0484 0709915608 000rxl 02610041686246450004 j06.csv j02.csv ps 0484 0709916480 000rfs 02610041686246450005 ps 0484 0709916378 000rqc 02610041686246450000 j01.csv pe 0490 0710394319 000rx1 02610041707217930003 j04.csv ps 0490 0710395021 000rfs 02610041707217930004 j02.csv ps 0490 0710394904 000rgc 02610041707217930000 j01.csv **Berry Hollow** pe 0505 0711805127 000rxl 02612221760302130003 j04.csv ps 0505 0711805999 000rfs 02612221760302130004 j02.csv

ps 0505 0711805893 000rqc 02612221760302130000 j01.csv pe 0507 0711981970 000rxl 02612221768821770004 j03.csv ps 0507 0711982738 000rfs 02612221768821770006 j03.csv

SHERLOC Data Files (https://pds-geosciences.wustl.edu/m2020/urn-nasa-pds-mars2020_sherloc):

Bellegarde

HDR 1:

Survey:

Montpezat

HDR (part a):

HDR (part b):

survey:

Alfalfa

HDR (part a):

SS__0186_0683476721_690EPA__0070000SRLC10500_108__J04.CSV SS__0186_0683476721_690ERA__0070000SRLC10500_108__J04.CSV SS__0186_0683476721_690ERB__0070000SRLC10500_108__J04.CSV ss__0186_0683476721_690rls__0070000srlc10500_108__j04.csv HDR 2:

 SS_0186_0683477446_620EPA_0070000SRLC10500_208__J04.CSV

 SS_0186_0683477446_620ERA_0070000SRLC10500_208__J04.CSV

 SS_0186_0683477446_620ERB_0070000SRLC10500_208__J04.CSV

 ss_0186_0683477446_620ERB_0070000SRLC10500_208__J04.CSV

 ss_0186_0683477446_620ERB_0070000SRLC10500_208__J04.CSV

J10.CSV

J10.CSV

J10.CSV

J02.CSV

J02.CSV

J02.CSV

J02.CSV

J02.CSV

J02.CSV

J07.CSV

J07.CSV

J07.CSV

J02.CSV

J02.CSV

SS 0186 0683478599 650EPA 0070000SRLC11420 108

SS 0186 0683478599 650ERA 0070000SRLC11420 108

SS 0186 0683478599 650ERB 0070000SRLC11420 108

SS 0349 0697951251 495EPA 0092982SRLC11360 108

SS 0349 0697951251 495ERA 0092982SRLC11360 108

SS 0349 0697951251 495ERB 0092982SRLC11360 108

SS 0349 0697951900 355EPA 0092982SRLC11360 208

SS 0349 0697951900 355ERA 0092982SRLC11360 208

SS 0349 0697951900 355ERB 0092982SRLC11360 208

SS 0349 0697952686 570EPA 0092982SRLC11420 108

SS 0349 0697952686 570ERA 0092982SRLC11420 108

SS 0349 0697952686 570ERB 0092982SRLC11420 108

SS 0370 0699813450 405EPA 0110108SRLC11360 108

SS 0370 0699813450 405ERA 0110108SRLC11360 108

ss 0349 0697952686 570rls 0092982srlc11420 108 j07.csv

ss 0349 0697951900 355rls 0092982srlc11360 208 j02.csv

ss 0349 0697951251 495rls 0092982srlc11360 108 j02.csv

s 0186 0683478599 650rls 0070000srlc11420 108 j10.csv

SS_0370_0699813450_405ERB_0110108SRLC11360_108_J02.CSV

ss_0370_0699813450_405rls_0110108srlc11360_108_j02.csv HDR (part b):

SS_0370_0699814099_215EPA_0110108SRLC11360_208__J02.CSV SS_0370_0699814099_215ERA_0110108SRLC11360_208__J02.CSV SS_0370_0699814099_215ERB_0110108SRLC11360_208__J02.CSV ss_0370_0699814099_215rls_0110108srlc11360_208__j02.csv

survey:

SS_0370_0699814879_265EPA_0110108SRLC11420_108_J07.CSV SS_0370_0699814879_265ERA_0110108SRLC11420_108_J07.CSV SS_0370_0699814879_265ERB_0110108SRLC11420_108_J07.CSV ss_0370_0699814879_265rls_0110108srlc11420_108_j07.csv

Garde

HDR 1 (part a):

 SS_0207_0685346165_825EPA_0071836SRLC10501_108__J03.CSV

 SS_0207_0685346165_825ERA_0071836SRLC10501_108__J03.CSV

 SS_0207_0685346165_825ERB_0071836SRLC10501_108__J03.CSV

 ss_0207_0685346165_825ERB_0071836SRLC10501_108__J03.CSV

HDR 1 (part b):

SS_0207_0685346814_725EPA_0071836SRLC10501_208__J03.CSV

SS_0207_0685346814_725ERA_0071836SRLC10501_208__J03.CSV

SS_0207_0685346814_725ERB_0071836SRLC10501_208_J03.CSV

ss_0207_0685346814_725rls_0071836srlc10501_208__j03.csv HDR 2 (part a):

SS_0207_0685347508_570EPA_0071836SRLC10501_108_J03.CSV SS_0207_0685347508_570ERA_0071836SRLC10501_108_J03.CSV

SS 0207 0685347508 570ERB 0071836SRLC10501 108 J03.CSV

ss_0207_0685347508_570rls_0071836srlc10501_108__j03.csv

HDR 2 (part b):

SS_0207_0685348158_025EPA_0071836SRLC10501_208_J03.CSV SS_0207_0685348158_025ERA_0071836SRLC10501_208_J03.CSV SS_0207_0685348158_025ERB_0071836SRLC10501_208_J03.CSV ss_0207_0685348158_025rls_0071836srlc10501_208_j03.csv Survey:

 SS_0207_0685348936_600EPA_0071836SRLC11421_108
 J09.CSV

 SS_0207_0685348936_600ERA_0071836SRLC11421_108
 J09.CSV

 SS_0207_0685348936_600ERB_0071836SRLC11421_108
 J09.CSV

 ss_0207_0685348936_600ERB_0071836SRLC11421_108
 J09.CSV

 ss_0207_0685348936_600ERB_0071836SRLC11421_108
 J09.CSV

Detail 1 (part a):

SS_0208_0685432333_690EPA_0071836SRLC11370_108_J03.CSV

SS_0208_0685432333_690ERA_0071836SRLC11370_108_J03.CSV

SS_0208_0685432333_690ERB_0071836SRLC11370_108__J03.CSV

ss_0208_0685432333_690rls_0071836srlc11370_108__j03.csv Detail 1 (part b):

SS_0208_0685432982_755EPA_0071836SRLC11370_208_J03.CSV SS_0208_0685432982_755ERA_0071836SRLC11370_208_J03.CSV SS_0208_0685432982_755ERB_0071836SRLC11370_208_J03.CSV ss_0208_0685432982_755rls_0071836srlc11370_208_j03.csv Detail 2 (part a):

SS_0208_0685433804_710EPA_0071836SRLC11371_108__J03.CSV SS_0208_0685433804_710ERA_0071836SRLC11371_108__J03.CSV SS_0208_0685433804_710ERB_0071836SRLC11371_108__J03.CSV ss_0208_0685433804_710rls_0071836srlc11371_108__j03.csv

Detail 2 (part b):

SS_0208_0685434454_680EPA_0071836SRLC11371_208__J03.CSV SS_0208_0685434454_680ERA_0071836SRLC11371_208__J03.CSV SS_0208_0685434454_680ERB_0071836SRLC11371_208__J03.CSV ss_0208_0685434454_680rls_0071836srlc11371_208__j03.csv

Detail 3 (part a):

SS_0208_0685435280_635EPA_0071836SRLC11372_108__J03.CSV

SS_0208_0685435280_635ERA_0071836SRLC11372_108__J03.CSV

SS_0208_0685435280_635ERB_0071836SRLC11372_108_J03.CSV

ss_0208_0685435280_635rls_0071836srlc11372_108_j03.csv Detail 3 (part b):

 SS_0208_0685435929_750EPA_0071836SRLC11372_208_J03.CSV

 SS_0208_0685435929_750ERA_0071836SRLC11372_208_J03.CSV

 SS_0208_0685435929_750ERB_0071836SRLC11372_208_J03.CSV

 ss_0208_0685435929_750ERB_0071836SRLC11372_208_J03.CSV

 ss_0208_0685435929_750ERB_0071836SRLC11372_208_J03.CSV

 ss_0208_0685435929_750ERB_0071836SRLC11372_208_J03.CSV

Dourbes

HDR (part a):

SS_0257_0689783904_065EPA_0080000SRLC11360_108_J03.CSV SS_0257_0689783904_065ERA_0080000SRLC11360_108_J03.CSV SS_0257_0689783904_065ERB_0080000SRLC11360_108_J03.CSV ss_0257_0689783904_065rls_0080000srlc11360_108_j03.csv HDR (part b):

SS_0257_0689784553_585EPA_0080000SRLC11360_208_J03.CSV SS_0257_0689784553_585ERA_0080000SRLC11360_208_J03.CSV SS_0257_0689784553_585ERB_0080000SRLC11360_208_J03.CSV ss_0257_0689784553_585rls_0080000srlc11360_208_j03.csv Survey 1: SS_0257_0689785335_515EPA_0080000SRLC11421_108_J06.CSV SS_0257_0689785335_515ERA_0080000SRLC11421_108_J06.CSV SS_0257_0689785335_515ERB_0080000SRLC11421_108_J06.CSV ss_0257_0689785335_515rls_0080000srlc11421_108_j06.csv Survey 2:

SS_0269_0690848406_825EPA_0080000SRLC11421_108__J06.CSV SS_0269_0690848406_825ERA_0080000SRLC11421_108__J06.CSV SS_0269_0690848406_825ERB_0080000SRLC11421_108__J06.CSV

ss_0269_0690848406_825rls_0080000srlc11421_108_j06.csv Detail 1 (part a):

SS_0269_0690849690_630EPA_0080000SRLC11370_108_J04.CSV SS_0269_0690849690_630ERA_0080000SRLC11370_108_J04.CSV SS_0269_0690849690_630ERB_0080000SRLC11370_108_J04.CSV

ss_0269_0690849690_630rls_0080000srlc11370_108__j04.csv Detail 1 (part b):

SS_0269_0690850340_585EPA_0080000SRLC11370_208_J04.CSV

SS_0269_0690850340_585ERA_0080000SRLC11370_208__J04.CSV

SS_0269_0690850340_585ERB_0080000SRLC11370_208__J04.CSV

ss_0269_0690850340_585rls_0080000srlc11370_208_j04.csv Detail 2 (part a):

SS 0269 0690851164 255EPA 0080000SRLC11373 108 J04.CSV

SS 0269 0690851164 255ERA 0080000SRLC11373 108 J04.CSV

SS 0269 0690851164 255ERB 0080000SRLC11373 108 J04.CSV

ss_0269_0690851164_255rls_0080000srlc11373_108_j04.csv Detail 2 (part b):

SS_0269_0690851813_405EPA_0080000SRLC11373_208__J04.CSV

SS_0269_0690851813_405ERA_0080000SRLC11373_208__J04.CSV

SS_0269_0690851813_405ERB_0080000SRLC11373_208__J04.CSV

ss_0269_0690851813_405rls_0080000srlc11373_208_j04.csv Detail 3 (part a):

SS_0269_0690852635_600EPA_0080000SRLC11374_108_J04.CSV SS_0269_0690852635_600ERA_0080000SRLC11374_108_J04.CSV SS_0269_0690852635_600ERB_0080000SRLC11374_108_J04.CSV ss_0269_0690852635_600rls_0080000srlc11374_108_j04.csv Detail 3 (part b):

SS_0269_0690853284_920EPA_0080000SRLC11374_208_J03.CSV SS_0269_0690853284_920ERA_0080000SRLC11374_208_J03.CSV SS_0269_0690853284_920ERB_0080000SRLC11374_208_J03.CSV ss_0269_0690853284_920rls_0080000srlc11374_208_j03.csv

Quartier

HDR (part a):

SS 0293 0692979640 115EPA 0090000SRLC11360 108 J03.CSV SS 0293 0692979640 115ERA 0090000SRLC11360 108 J03.CSV SS 0293 0692979640 115ERB 0090000SRLC11360 108 J03.CSV ss 0293 0692979640 115rls 0090000srlc11360 108 j03.csv

HDR (part b):

SS 0293 0692980289 265EPA 0090000SRLC11360 208 J03.CSV SS 0293 0692980289 265ERA 0090000SRLC11360 208 J03.CSV

SS 0293 0692980289 265ERB 0090000SRLC11360 208 J03.CSV

ss 0293 0692980289 265rls 0090000srlc11360 208 j03.csv Survey 1:

SS 0293 0692981070 175EPA 0090000SRLC11420 108 J06.CSV SS 0293 0692981070 175ERA 0090000SRLC11420 108 J06.CSV

SS 0293 0692981070 175ERB 0090000SRLC11420 108 J06.CSV

ss 0293 0692981070 175rls 0090000srlc11420_108___j06.csv Survey 2:

SS 0304 0693959951 875EPA 0090000SRLC11451 108 J05.CSV

SS 0304 0693959951 875ERA 0090000SRLC11451 108 J05.CSV

SS 0304 0693959951 875ERB 0090000SRLC11451 108 J05.CSV

ss 0304 0693959951 875rls 0090000srlc11451 108 j05.csv Detail 1 (part a):

SS 0304 0693961008 675EPA 0090000SRLC11372 108 J02.CSV

SS 0304 0693961008 675ERA 0090000SRLC11372 108 J02.CSV

SS 0304 0693961008 675ERB 0090000SRLC11372 108 J02.CSV

ss 0304 0693961008 675rls 0090000srlc11372 108 j02.csv Detail 1 (part b):

SS 0304 0693961658 010EPA 0090000SRLC11372 208 J02.CSV SS 0304 0693961658 010ERA 0090000SRLC11372 208

J02.CSV

SS 0304 0693961658 010ERB 0090000SRLC11372 208 J02.CSV

ss 0304 0693961658 010rls 0090000srlc11372 208 j02.csv Detail 2 (part a):

SS 0304 0693962475 780EPA 0090000SRLC11373 108 J02.CSV SS 0304 0693962475 780ERA 0090000SRLC11373 108 J02.CSV SS 0304 0693962475 780ERB 0090000SRLC11373 108 J02.CSV ss 0304 0693962475 780rls 0090000srlc11373 108 j02.csv

Detail 2 (part b):

SS 0304 0693963125 235EPA 0090000SRLC11373 208 J02.CSV SS 0304 0693963125 235ERA 0090000SRLC11373 208 J02.CSV SS 0304 0693963125 235ERB 0090000SRLC11373 208 J02.CSV ss 0304 0693963125 235rls 0090000srlc11373 208 j02.csv

Detail 3 (part a):

SS_0304_0693963943_980EPA_0090000SRLC11374_108_J02.CSV SS_0304_0693963943_980ERA_0090000SRLC11374_108_J02.CSV SS_0304_0693963943_980ERB_0090000SRLC11374_108_J02.CSV ss_0304_0693963943_980rls_0090000srlc11374_108_j02.csv

Detail 3 (part b):

SS_0304_0693964592_870EPA_0090000SRLC11374_208_J02.CSV SS_0304_0693964592_870ERA_0090000SRLC11374_208_J02.CSV SS_0304_0693964592_870ERB_0090000SRLC11374_208_J02.CSV ss_0304_0693964592_870rls_0090000srlc11374_208_j02.csv

Detail 4 (part a):

 SS_0304_0693965408_820EPA_0090000SRLC11375_108__J02.CSV

 SS_0304_0693965408_820ERA_0090000SRLC11375_108__J02.CSV

 SS_0304_0693965408_820ERB_0090000SRLC11375_108__J02.CSV

 ss_0304_0693965408_820ERB_0090000SRLC11375_108__J02.CSV

 ss_0304_0693965408_820ERB_0090000SRLC11375_108__J02.CSV

Detail 4 (part b):

SS_0304_0693966058_170EPA_0090000SRLC11375_208__J02.CSV SS_0304_0693966058_170ERA_0090000SRLC11375_208__J02.CSV

SS 0304 0693966058 170ERB 0090000SRLC11375 208 J02.CSV

ss 0304 0693966058 170rls 0090000srlc11375 208 j02.csv

Thornton Gap

HDR 1 (part a):

SS_0489_0710377627_500EPA_0261004SRLC11360_108__J02.CSV

SS_0489_0710377627_500ERA_0261004SRLC11360_108_J02.CSV

SS_0489_0710377627_500ERB_0261004SRLC11360_108__J02.CSV

ss_0489_0710377627_500rls_0261004srlc11360_108__j02.csv

HDR 1 (part b):

SS_0489_0710378276_295EPA_0261004SRLC11360_208_J02.CSV SS_0489_0710378276_295ERA_0261004SRLC11360_208_J02.CSV SS_0489_0710378276_295ERB_0261004SRLC11360_208_J02.CSV ss_0489_0710378276_295rls_0261004srlc11360_208_j02.csv Detail 1 (part a):

SS_0489_0710379058_350EPA_0261004SRLC11370_108_J02.CSV SS_0489_0710379058_350ERA_0261004SRLC11370_108_J02.CSV SS_0489_0710379058_350ERB_0261004SRLC11370_108_J02.CSV ss_0489_0710379058_350rls_0261004srlc11370_108_j02.csv Detail 1 (part b):

SS_0489_0710379707_400EPA_0261004SRLC11370_208_J02.CSV SS_0489_0710379707_400ERA_0261004SRLC11370_208_J02.CSV SS_0489_0710379707_400ERB_0261004SRLC11370_208_J02.CSV ss_0489_0710379707_400rls_0261004srlc11370_208__j03.csv Survey 1:

SS_0489_0710380488_510EPA_0261004SRLC11420_108_J03.CSV SS_0489_0710380488_510ERA_0261004SRLC11420_108_J03.CSV SS_0489_0710380488_510ERB_0261004SRLC11420_108_J03.CSV ss_0489_0710380488_510rls_0261004srlc11420_108_j03.csv

HDR 2 (part a):

SS_0489_0710382169_545EPA_0261004SRLC11360_108_J02.CSV SS_0489_0710382169_545ERA_0261004SRLC11360_108_J02.CSV SS_0489_0710382169_545ERB_0261004SRLC11360_108_J02.CSV ss_0489_0710382169_545rls_0261004srlc11360_108_j02.csv

HDR 2 (part b):

SS_0489_0710382818_445EPA_0261004SRLC11360_208_J02.CSV SS_0489_0710382818_445ERA_0261004SRLC11360_208_J02.CSV SS_0489_0710382818_445ERB_0261004SRLC11360_208_J02.CSV ss_0489_0710382818_445rls_0261004srlc11360_208_j02.csv Detail 2 (part a):

SS_0489_0710383600_515EPA_0261004SRLC11370_108_J02.CSV SS_0489_0710383600_515ERA_0261004SRLC11370_108_J02.CSV

SS_0489_0710383600_515ERB_0261004SRLC11370_108__J02.CSV

ss_0489_0710383600_515rls_0261004srlc11370_108__j03.csv

Detail 2 (part b):

SS_0489_0710384249_650EPA_0261004SRLC11370_208_J02.CSV SS_0489_0710384249_650ERA_0261004SRLC11370_208_J02.CSV SS_0489_0710384249_650ERB_0261004SRLC11370_208_J02.CSV ss_0489_0710384249_650rls_0261004srlc11370_208_j02.csv Survey 2:

SS_0489_0710385032_565EPA_0261004SRLC11420_108_J03.CSV SS_0489_0710385032_565ERA_0261004SRLC11420_108_J03.CSV SS_0489_0710385032_565ERB_0261004SRLC11420_108_J03.CSV ss_0489_0710385032_565rls_0261004srlc11420_108_j03.csv

Berry Hollow

HDR (part a):

SS_0505_0711795172_280EPA_0261222SRLC11360_108_J02.CSV SS_0505_0711795172_280ERA_0261222SRLC11360_108_J02.CSV SS_0505_0711795172_280ERB_0261222SRLC11360_108_J02.CSV ss_0505_0711795172_280rls_0261222srlc11360_108_j02.csv

HDR (part b):

SS_0505_0711795820_880EPA_0261222SRLC11360_208_J02.CSV SS_0505_0711795820_880ERA_0261222SRLC11360_208_J02.CSV SS__0505_0711795820_880ERB__0261222SRLC11360_208__J02.CSV ss__0505_0711795820_880rls__0261222srlc11360_208__j02.csv Detail 1 (part a):

SS_0505_0711796602_020EPA_0261222SRLC11370_108__J02.CSV SS_0505_0711796602_020ERA_0261222SRLC11370_108__J02.CSV SS_0505_0711796602_020ERB_0261222SRLC11370_108__J02.CSV ss_0505_0711796602_020rls_0261222srlc11370_108__j02.csv

Detail 1 (part b):

SS_0505_0711797251_025EPA_0261222SRLC11370_208_J02.CSV SS_0505_0711797251_025ERA_0261222SRLC11370_208_J02.CSV SS_0505_0711797251_025ERB_0261222SRLC11370_208_J02.CSV ss_0505_0711797251_025rls_0261222srlc11370_208_j02.csv

Survey:

SS_0513_0712513080_580EPA_0261222SRLC11440_108_J02.CSV SS_0513_0712513080_580ERA_0261222SRLC11440_108_J02.CSV SS_0513_0712513080_580ERB_0261222SRLC11440_108_J02.CSV ss_0513_0712513080_580rls_0261222srlc11440_108_j02.csv Detail 1 (part a):

SS_0513_0712514114_395EPA_0261222SRLC11372_108_J02.CSV SS_0513_0712514114_395ERA_0261222SRLC11372_108_J02.CSV SS_0513_0712514114_395ERB_0261222SRLC11372_108_J02.CSV

ss__0513_0712514114_395rls__0261222srlc11372_108__j02.csv

Detail 1 (part b):

SS_0513_0712514763_385EPA_0261222SRLC11372_208_J02.CSV SS_0513_0712514763_385ERA_0261222SRLC11372_208_J02.CSV SS_0513_0712514763_385ERB_0261222SRLC11372_208_J02.CSV ss_0513_0712514763_385rls_0261222srlc11372_208_j02.csv

Detail 2 (part a):

SS_0513_0712515579_390EPA_0261222SRLC11373_108_J02.CSV SS_0513_0712515579_390ERA_0261222SRLC11373_108_J02.CSV SS_0513_0712515579_390ERB_0261222SRLC11373_108_J02.CSV ss_0513_0712515579_390rls_0261222srlc11373_108_j02.csv

Detail 2 (part b):

SS__0513_0712516228_405EPA__0261222SRLC11373_208__J02.CSV SS__0513_0712516228_405ERA__0261222SRLC11373_208__J02.CSV SS__0513_0712516228_405ERB__0261222SRLC11373_208__J02.CSV ss__0513_0712516228_405rls__0261222srlc11373_208__j02.csv

Detail 3 (part a):

SS_0513_0712517045_550EPA_0261222SRLC11374_108_J02.CSV SS_0513_0712517045_550ERA_0261222SRLC11374_108_J02.CSV SS__0513_0712517045_550ERB__0261222SRLC11374_108__J02.CSV ss__0513_0712517045_550rls__0261222srlc11374_108__j02.csv Detail 3 (part b):

SS__0513_0712517694_430EPA__0261222SRLC11374_208__J02.CSV SS__0513_0712517694_430ERA__0261222SRLC11374_208__J02.CSV SS__0513_0712517694_430ERB__0261222SRLC11374_208__J02.CSV ss__0513_0712517694_430rls__0261222srlc11374_208__j02.csv

Detail 4 (part a):

SS__0513_0712518509_495EPA__0261222SRLC11375_108__J02.CSV SS__0513_0712518509_495ERA__0261222SRLC11375_108__J02.CSV SS__0513_0712518509_495ERB__0261222SRLC11375_108__J02.CSV ss__0513_0712518509_495rls__0261222srlc11375_108__j02.csv Detail 4 (part b):

SS__0513_0712519158_660EPA__0261222SRLC11375_208__J02.CSV SS__0513_0712519158_660ERA__0261222SRLC11375_208__J02.CSV SS__0513_0712519158_660ERB__0261222SRLC11375_208__J02.CSV ss__0513_0712519158_660rls_0261222srlc11375_208__j02.csv **Table S1.** Bulk composition of rock targets from PIXL compared to number (n) of luminescence features found in SHERLOC survey and HDR scans (see section 2 for definitions). We track the bulk P_2O_5 wt% as relevant proxies for phosphate contents. We track SiO₂ wt% as a proxy for more high-Si phases that may contain silica or silicate defects. We track K₂O wt% as a proxy for more felsic compositions. We can track FeO_T wt% as a proxy for phases that would be strongly UV absorbing and therefore lead to false non-detections.

Target	Lithology	SiO ₂ (wt%)	FeO _T (wt%)	P2O5 (wt%)	K2O (wt%)	n330-350 <i>survey</i>	n330-350 HDR	n330-350 <i>detail</i>	n270-290 <i>survey</i>	n ₂₇₀₋₂₉₀ HDR	n ₂₇₀₋₂₉₀ detail
Bellegarde	Basalt	43.8±2.2	23.3±1.2	2.8±0.6	1.1±0.3	227	57	N/A	55	25	N/A
Alfalfa	Basalt	56.1±2.8	11.1±0.6	1.0±0.3	1.9±0.5	111	78	N/A	90	58	N/A
Montpezat	Basalt	44.8±2.2	18.3±0.9	1.2±0.4	0.8±0.3	55	51	N/A	9	12	N/A
Dourbes scan 1	Olivine cumulate	39.4±2.0	29.3±1.6	0.3±0.2	0.1±0.1	23	8	N/A	0	4	N/A
Dourbes scan 2	Olivine cumulate	37.2±1.9	29.3±1.5	0.8±0.3	0.3±0.2	47	N/A	48	1	N/A	3
Quartier	Olivine cumulate	33.3±1.7	29.4±1.5	0.4±0.2	0.1±0.1	22	2	13	0	0	2
Thornton Gap	Lower Delta Sediment	22.8±1.1	23.8±1.2	0.3±0.2	0.3±0.2	4	2	13	0	4	0
Berry Hollow	Lower Delta Sediment	32.2±1.6	17.6±0.9	0.8±0.3	0.2±0.2	1	1	N/A	0	0	0

N/A means that an HDR or detail dataset was not obtained for that scan.

Fig. S1. Example of gentle positive slope luminescence expected from macromolecular carbon co-occurring with Raman G-band in the meteorite caltarget, SaU008, measured on SHERLOC. These organic compounds occur in calcite crystals, suggesting that they arise from terrestrial contamination.

Fig. S2. Raman and luminescence spectra of phosphate grains compared with Raman and luminescence spectra of matrix (wherein sub-micron μ m phosphate grains are common), feldspar grains, and pyroxene grains within NWA 10922. Spot numbers refer to locations in the XRF image from Fig. 4A.

Fig. S3. Example of Gaussian modeling utilized for three meteorite measurements shown in Fig. S2 and Fig. 4. Spot 2 and spot 14 are from phosphate grains and exhibit a high intensity 330-350 nm signal matching the expected Ce^{3+} transitions. Spot 9 is from the matrix region. We note that a doublet is present at 330-350 nm but the spectral positions and intensity ratios change. Note much lower intensity signal in spot 9 in comparison to the phosphate grains. This allows the ~430 nm band to be observed directly in the data. We prefer assignment of ~430 nm band to macromolecular carbon terrestrial contamination that is omnipresent in the meteorite. This figure exemplifies gaussian mixture modeling methodology used for all experiment and SHERLOC flight data for investigation of spectral positions and shapes.

Fig. S4. Histogram of peak positions of analyzed 950-970 cm⁻¹ Raman peaks from SHERLOC data across all scans. All peak positions have on average ± 5 cm⁻¹ uncertainty. Grey bars show the spread in SHERLOC Raman peak positions across scans. Orange and red bars show the spread in Raman peak positions of chlorapatites and hydroxy/fluorapatite, respectively, measured on the ACRONM laboratory instrument.

Fig. S5: Left panels show luminescence identifications (stars) superposed on Raman peak identifications (circles) in analyzed HDR scans from rock targets in the Máaz fm. Open white circles indicate no detections. Right panels show 330-350 nm luminescence (and coinciding 270-290 nm luminescence) superposed on co-registered P_2O_5 PIXL maps; only features that coincide with the PIXL map are displayed. As the co-registration between maps have inherent uncertainty and the spacing of SHERLOC HDR grid points are so far apart compared to the spacing of PIXL spots, the datasets cannot be quantitatively compared. However, we note that the HDR grid scans are just a down-sampled version of survey scans shown in Fig. 5 as they cover the same area in the rock. Spectra in these HDR scans that do not obviously correlate with phosphate or P_2O_5 were explored in Fig. S11.

Fig. S6: Left panels show luminescence identifications (stars) superposed on Raman peak identifications (circles) in analyzed HDR scans from rock targets in the Máaz fm. Open white circles indicate no detections. Right panels show 270-290 nm luminescence (and coinciding 330-350 nm luminescence) superposed on co-registered PIXL SiO₂, Al₂O₃, and FeO_T composite maps; only features that coincide with the PIXL map are displayed. Correlations are not easily explored with the HDR scans where the grid spacing is on a different scale compared to PIXL maps, however, HDR detections of 270-290 nm luminescence are found with high-Si phases as well as a variety of silicate compositions not explored at depth in this study.

Fig. S7. Data from detail scans of the Dourbes scan 2 abraded rock in the Séítah fm. Top panel shows Raman and luminescence detections are symbolized with colored circles and stars respectively on colorized ACI-WATSON image merge. Open white circles indicate that no Raman features were detected. Middle panel shows the 330-350 nm luminescence detection locations on co-registered PIXL P_2O_5 wt% map. Lowermost panel shows luminescence heatmap processed through the same methodology as Fig. 5-6. High intensity luminescence occurs with the highest P_2O_5 wt%. Note the spatial association between P_2O_5 and both 340-350 nm and 330 nm luminescence, despite a lack of phosphate Raman peak identifications. Spectra in these detail scans that do not obviously correlate with phosphate or P_2O_5 were explored in Fig. S11.

330-350 nm lum. on PIXL P,O, wt% map

330-350 nm lum. intensity in SHERLOC survey

Fig. S8: Data from detail scans of the Garde abraded rock in the Séítah fm. Here, no PIXL data was obtained for this abraded rock. Left panels show colorized ACI-WATSON image merges. Middle panels show Raman and luminescence detections symbolized with colored circles and stars. Right panels show greyscale heatmaps of 330-350 nm luminescence and 270-290 nm luminescence with same processed through the same methodology as Figs. 5-6. Note that the correlation between 330-350 nm luminescence, 270-290 nm luminescence, and Raman identifications of phosphate are unusually strong in this scan.

Fig. S9: Processing methodology to co-register and examine cross-correlation of PIXL elemental maps with SHERLOC luminescence maps. The ENVI software correlation method is used for all results and figures. However, the correlation statistics methodology is only used for comparisons between SHERLOC survey luminescence maps and PIXL elemental maps where the grid spacing and amount of data points are sufficient for quantitative correlations.

Table S2. Summary of correlation statistics between all other PIXL elemental maps and SHERLOC 330-350 nm luminescence intensity maps following same methods as in Table 3. We evaluate the same statistical metrics, *r*, *p*-value, and *SSIM*, for 330-350 nm luminescence intensity correlations to all PIXL elemental wt% maps. When *r* is 0.4 or *r* is -0.4 and the associated *p*-value is $<10^{-3}$, we indicate that there is a correlation as strong as the weakest P₂O₅ correlation (in the Alfalfa target).

Target	r	p-value	SSIM	Correlation
Bellegarde				
SiO ₂	0.1	10-2	0	None
Al ₂ O ₃	0	10-1	0	None
CaO	0.2	10-15	0.2	None
Na ₂ O	0	10-1	0.2	None
K ₂ O	0.1	10-5	0.1	None
FeO _T	-0.2	10-7	-0.1	None
MgO	-0.1	10-2	0	None
SO ₃	-0.2	10-7	0	None
Cl	0	10-1	0	None
Alfalfa				
SiO ₂	0	10-1	0	None
Al ₂ O ₃	-0.1	10-3	0	None
CaO	0	10-1	-0.1	None
Na ₂ O	-0.1	10-3	0	None
K ₂ O	0.1	10-3	0.1	None
FeO _T	0	10-1	0.1	None
MgO	0	10-1	0.1	None
SO ₃	0	10-1	0	None
Cl	0.1	10-2	0.1	None
Montpezat				
SiO ₂	0.1	10-1	0	None

AlgO3 0.2 10^4 0.1 None CaO 0.1 10^{-1} 0 None Na2O 0.2 10^{-3} 0.1 None K2O 0.2 10^{-3} 0.1 None FeO7 -0.1 10^{-2} 0 None MgO -0.2 10^{-7} -0.1 None SO3 0.1 10^{-1} 0.2 None Cl 0 1 0 None Dourbes $Sean 1$ 0 None None SiO2 0.1 10^{-4} 0 None AlgO3 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-23} 0.5 Positive FeO7 -0.2 10^{-3} 0.5 Positive MgO -0.3 10^{-15} 0.1 None SO3 0.1 10^{-1} 0.5 None Cl 0 10^{-1} 0.3 None SO3					
CaO 0.1 10^{-1} 0 None Na ₂ O 0.2 10^{-5} 0.1 None K ₂ O 0.2 10^{-3} 0.2 None FeO _T -0.1 10^{-2} 0 None MgO -0.2 10^{-7} -0.1 None SO ₃ 0.1 10^{-7} -0.1 None Cl 0 1 0.2 None Cl 0.1 10^{-7} -0.1 None Dourbes $Scan I$ 0.1 10^{-1} 0.2 None AlgO ₃ 0.1 10^{-4} 0 None 0.1 None SiO ₂ 0.1 10^{-23} 0.4 Positive FeO_T 0.2 10^{-3} 0.5 Positive FeO ₇ -0.2 10^{-3} 0.5 Positive FeO_7 0.3 None SiO ₂ 0.1 10^{-1} 0.5 None	Al ₂ O ₃	0.2	10-4	0.1	None
Na;O 0.2 10^3 0.1 None K ₂ O 0.2 10^3 0.2 None FeO _T -0.1 10^2 0 None MgO -0.2 10^7 -0.1 None SO ₃ 0.1 10^{-1} 0.2 None SO ₃ 0.1 10^{-1} 0.2 None Cl 0 1 0 None Dourbes SiO_2 0.1 10^{-1} 0.2 None Al ₂ O ₃ 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-2} 0.3 None Na ₃ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{-23} 0.5 Positive FeO ₇ -0.2 10^{-8} -0.1 None MgO -0.3 10^{-15} -0.1 None SiO ₂ 0.2 10^{-6} 0.1	CaO	0.1	10-1	0	None
K_2O 0.2 10^{-3} 0.2 None FeO _T -0.1 10^{-2} 0 None MgO -0.2 10^{-7} -0.1 None SO ₃ 0.1 10^{-1} 0.2 None CI 0 1 0 None Dourbes Scan 1 SiO ₂ 0.1 10^{-4} 0 None Al ₂ O ₃ 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-2} 0.3 None Na ₂ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{-23} 0.5 Positive FeO _T -0.2 10^{-3} 0.5 None MgO -0.3 10^{-15} 0.1 None So ₃ 0.1 10^{-1} 0.5 None C1 0 10^{-1} 0.3 None SiO ₂ 0.2 10^{-6} 0.1 None SiO ₂	Na ₂ O	0.2	10-5	0.1	None
FeO _T -0.1 10^{-2} 0 None MgO -0.2 10^{-7} -0.1 None SO ₃ 0.1 10^{-1} 0.2 None CI 0 1 0 None Dourbes Scan 1 SiO ₂ 0.1 10^{-4} 0 None Al ₂ O ₃ 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-2} 0.3 None Na ₂ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{-23} 0.5 Positive FeO _T -0.2 10^{-17} 0.5 None MgO -0.3 10^{-15} -0.1 None SO ₃ 0.1 10^{-1} 0.3 None Cl 0 10^{-1} 0.3 None GO ₃ 0.1 10^{-1} 0.3 None Cl 0 10^{-10} 0.3 None SiO ₂ 0.2 1	K ₂ O	0.2	10-3	0.2	None
MgO -0.2 10^{-7} -0.1 None SO ₃ 0.1 10^{-1} 0.2 None CI 0 1 0 None Dourbes Scan 1 1 0 None SiO ₂ 0.1 10^{-4} 0 None Al ₂ O ₃ 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-2} 0.3 None Na ₂ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{-23} 0.5 Positive FeO _T -0.2 10^{-3} -0.1 None MgO -0.3 10^{-15} -0.1 None SO ₃ 0.1 10^{-1} 0.5 None CI 0 10^{-1} 0.5 None SiO ₂ 0.2 10^{-6} 0.1 None GaO 0.5 10^{-51} 0.3 Positive Na ₂ O 0.5	FeO _T	-0.1	10-2	0	None
SO3 0.1 10^{-1} 0.2 None CI 0 1 0 None Dourbes Scan 1 Image: Comparison of the system of the syst	MgO	-0.2	10-7	-0.1	None
Cl 0 1 0 None Dourbes Scan 1 I 0 None SiO2 0.1 10^{-4} 0 None Al2O3 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-23} 0.4 Positive CaO 0.1 10^{-23} 0.5 None Na2O 0.3 10^{-17} 0.5 None K2O 0.4 10^{-23} 0.5 Positive FeOT -0.2 10^{-17} 0.5 None MgO -0.3 10^{-15} -0.1 None SO3 0.1 10^{-1} 0.5 None Cl 0 10^{-1} 0.3 None Dourbes Scan 2 10^{-1} 0.3 None SiO2 0.2 10^{-6} 0.1 None Al2O3 0.4 10^{-22} 0.3 Positive Na_2O 0.5	SO ₃	0.1	10-1	0.2	None
Dourbes Scan I Image: Mark and Mar	Cl	0	1	0	None
SiO2 0.1 10^{-4} 0 None Al2O3 0.4 10^{-23} 0.4 Positive CaO 0.1 10^{-23} 0.4 Positive Na2O 0.3 10^{-17} 0.5 None Na2O 0.3 10^{-17} 0.5 None K2O 0.4 10^{-23} 0.5 Positive FeOT -0.2 10^{-17} 0.5 None MgO -0.2 10^{-8} -0.1 None SO3 0.1 10^{-15} -0.1 None Cl 0 10^{-1} 0.5 None Cl 0 10^{-1} 0.5 None Cl 0 10^{-1} 0.3 None Dourbes $Scan 2$ 2 10^{-2} 0.3 Positive SiO2 0.2 10^{-21} 0.3 Positive Na ₂ O 0.5 10^{-47} 0.3 Positive Na ₂ O 0.6 10^{-39} -0.1 </td <td>Dourbes Scan 1</td> <td></td> <td></td> <td></td> <td></td>	Dourbes Scan 1				
Al ₂ O ₃ 0.4 10^{23} 0.4 Positive CaO 0.1 10^{23} 0.3 None Na ₂ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{23} 0.5 Positive FeO _T -0.2 10^{-83} -0.1 None MgO -0.3 10^{-15} -0.1 None SO ₃ 0.1 10^{-15} -0.1 None Cl 0 10^{-15} -0.1 None SO ₃ 0.1 10^{-1} 0.5 None Cl 0 10^{-1} 0.3 None SiO ₂ 0.2 10^{-6} 0.1 None Al ₂ O ₃ 0.4 10^{-22} 0.3 Positive KaO 0.5 10^{-47} 0.3 Positive KaO 0.6 10^{-62} 0.3 Positive MgO -0.5 10^{-44} -0.1 Negative	SiO ₂	0.1	10-4	0	None
CaO 0.1 10^{-2} 0.3 None Na ₂ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{-23} 0.5 Positive FeO _T -0.2 10^{-13} 0.5 Positive MgO -0.2 10^{-18} -0.1 None MgO -0.3 10^{-15} -0.1 None SO ₃ 0.1 10^{-1} 0.5 None Cl 0 10^{-1} 0.5 None Cl 0 10^{-1} 0.3 None Dourbes Scan 2 2 2 2 2 2 2 2 SiO ₂ 0.2 10^{-6} 0.1 None 2 2 3 Positive KaO 0.5 10^{-51} 0.4 Positive 2 3 Positive KaO 0.6 10^{-52} 0.3 Positive 2 3 2 3 3 3 3 3 3 3	Al ₂ O ₃	0.4	10-23	0.4	Positive
Na ₂ O 0.3 10^{-17} 0.5 None K ₂ O 0.4 10^{-23} 0.5 Positive FeO _T -0.2 10^{-3} -0.1 None MgO -0.3 10^{-15} -0.1 None SO ₃ 0.1 10^{-15} -0.1 None Cl 0 10^{-15} -0.1 None SO ₃ 0.1 10^{-15} -0.1 None Gl 0.1 10^{-10} 0.5 None Cl 0 10^{-1} 0.5 None Dourbes Scan 2 $$	CaO	0.1	10-2	0.3	None
K_2O 0.4 10^{-23} 0.5 Positive FeO _T -0.2 10^{-8} -0.1 None MgO -0.3 10^{-15} -0.1 None SO ₃ 0.1 10^{-1} 0.5 None C1 0 10^{-1} 0.5 None Dourbes Scan 2 None SiO ₂ 0.2 10^{-6} 0.1 None Al ₂ O ₃ 0.4 10^{-22} 0.3 Positive KaO 0.5 10^{-51} 0.4 Positive Na ₂ O 0.5 10^{-47} 0.3 Positive K ₂ O 0.6 10^{-62} 0.3 Positive FeO _T -0.5 10^{-39} -0.1 Negative MgO -0.5 10^{-44} -0.1 Negative	Na ₂ O	0.3	10-17	0.5	None
FeOT-0.2 10^{-8} -0.1NoneMgO-0.3 10^{-15} -0.1NoneSO30.1 10^{-1} 0.5NoneC10 10^{-1} 0.3NoneDourbes Scan 2SiO20.2 10^{-6} 0.1NoneAl2O30.4 10^{-22} 0.3PositiveNa2O0.5 10^{-51} 0.4PositiveK2O0.6 10^{-62} 0.3PositiveFeOT-0.5 10^{-39} -0.1NegativeMgO-0.5 10^{-44} -0.1Negative	K ₂ O	0.4	10-23	0.5	Positive
MgO-0.3 10^{-15} -0.1NoneSO30.1 10^{-1} 0.5NoneC10 10^{-1} 0.3NoneDourbes Scan 2Image: Construction of the second of t					
SO_3 0.1 10^{-1} 0.5 NoneC10 10^{-1} 0.3 NoneDourbes Scan 2SiO2 0.2 10^{-6} 0.1 NoneAl2O3 0.4 10^{-22} 0.3 PositiveCaO 0.5 10^{-51} 0.4 PositiveNa2O 0.5 10^{-47} 0.3 PositiveFeOT -0.5 10^{-39} -0.1 NegativeMgO -0.5 10^{-44} -0.1 Negative	FeO _T	-0.2	10-8	-0.1	None
Cl0 10^{-1} 0.3NoneDourbes Scan 2SiO20.2 10^{-6} 0.1NoneAl2O30.4 10^{-22} 0.3PositiveCaO0.5 10^{-51} 0.4PositiveNa2O0.5 10^{-47} 0.3PositiveK2O0.6 10^{-62} 0.3PositiveFeOT-0.5 10^{-44} -0.1NegativeMgO-0.5 10^{-44} -0.1Negative	FeO _T MgO	-0.2	10 ⁻⁸ 10 ⁻¹⁵	-0.1	None
Dourbes Scan 2 Image: Constraint of the system Image: Constraint of the system None SiO2 0.2 10^{-6} 0.1 None Al2O3 0.4 10^{-22} 0.3 Positive CaO 0.5 10^{-51} 0.4 Positive Na2O 0.5 10^{-47} 0.3 Positive K2O 0.6 10^{-62} 0.3 Positive FeOT -0.5 10^{-39} -0.1 Negative MgO -0.5 10^{-44} -0.1 Negative	FeO _T MgO SO ₃	-0.2 -0.3 0.1	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹	-0.1 -0.1 0.5	None None None
SiO2 0.2 10^{-6} 0.1 NoneAl2O3 0.4 10^{-22} 0.3 PositiveCaO 0.5 10^{-51} 0.4 PositiveNa2O 0.5 10^{-47} 0.3 PositiveK2O 0.6 10^{-62} 0.3 PositiveFeOT -0.5 10^{-39} -0.1 NegativeMgO -0.5 10^{-44} -0.1 Negative	FeO _T MgO SO ₃ Cl	-0.2 -0.3 0.1 0	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹	-0.1 -0.1 0.5 0.3	None None None None None
Al2O30.4 10^{-22} 0.3PositiveCaO0.5 10^{-51} 0.4PositiveNa2O0.5 10^{-47} 0.3PositiveK2O0.6 10^{-62} 0.3PositiveFeOT-0.5 10^{-39} -0.1NegativeMgO-0.5 10^{-44} -0.1Negative	FeO _T MgO SO ₃ Cl Dourbes Scan 2	-0.2 -0.3 0.1 0	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹	-0.1 -0.1 0.5 0.3	None None None None
CaO 0.5 10^{-51} 0.4 Positive Na ₂ O 0.5 10^{-47} 0.3 Positive K ₂ O 0.6 10^{-62} 0.3 Positive FeO _T -0.5 10^{-39} -0.1 Negative MgO -0.5 10^{-44} -0.1 Negative	FeO _T MgO SO ₃ Cl Dourbes Scan 2 SiO ₂	-0.2 -0.3 0.1 0 0	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹	-0.1 -0.1 0.5 0.3 0.1	None None None None None None None
Na2O 0.5 10 ⁻⁴⁷ 0.3 Positive K2O 0.6 10 ⁻⁶² 0.3 Positive FeOT -0.5 10 ⁻³⁹ -0.1 Negative MgO -0.5 10 ⁻⁴⁴ -0.1 Negative	FeO _T MgO SO ₃ Cl Dourbes Scan 2 SiO ₂ Al ₂ O ₃	-0.2 -0.3 0.1 0 0 0.2 0.4	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁶ 10 ⁻²²	-0.1 -0.1 0.5 0.3 0.1 0.3	None None None None None None None None
K2O 0.6 10 ⁻⁶² 0.3 Positive FeOT -0.5 10 ⁻³⁹ -0.1 Negative MgO -0.5 10 ⁻⁴⁴ -0.1 Negative	FeO _T MgO SO ₃ Cl Dourbes Scan 2 SiO ₂ Al ₂ O ₃ CaO	-0.2 -0.3 0.1 0 0 0.2 0.2 0.4 0.5	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁶ 10 ⁻²² 10 ⁻⁵¹	-0.1 -0.1 0.5 0.3 0.1 0.3 0.4	None None None None None None None None
FeO _T -0.5 10 ⁻³⁹ -0.1 Negative MgO -0.5 10 ⁻⁴⁴ -0.1 Negative	FeO _T MgO SO ₃ Cl Dourbes Scan 2 SiO ₂ Al ₂ O ₃ CaO Na ₂ O	-0.2 -0.3 0.1 0 0.2 0.4 0.5 0.5	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁶ 10 ⁻²² 10 ⁻⁵¹ 10 ⁻⁴⁷	-0.1 -0.1 0.5 0.3 0.1 0.3 0.4 0.3	None None None None None None Positive Positive Positive
MgO -0.5 10 ⁻⁴⁴ -0.1 Negative	FeO _T MgO SO ₃ Cl Dourbes Scan 2 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O	-0.2 -0.3 0.1 0 0.2 0.4 0.5 0.5 0.6	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁶ 10 ⁻²² 10 ⁻⁵¹ 10 ⁻⁴⁷ 10 ⁻⁶²	-0.1 -0.1 0.5 0.3 0.1 0.3 0.4 0.3 0.3	None None None None None Positive Positive Positive Positive Positive Positive
	FeO _T MgO SO ₃ Cl Dourbes Scan 2 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O FeO _T	-0.2 -0.3 0.1 0 0.2 0.4 0.5 0.5 0.6 -0.5	10 ⁻⁸ 10 ⁻¹⁵ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁶ 10 ⁻⁵¹ 10 ⁻⁴⁷ 10 ⁻⁶² 10 ⁻³⁹	-0.1 -0.1 0.5 0.3 0.1 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.3	None None None None None Positive Positive Positive Positive None None

SO ₃	-0.1	10-2	0.1	None
Cl	0	10-1	0	None
Quartier				
SiO ₂	-0.1	10-1	0.1	None
Al ₂ O ₃	0.2	10-7	0.3	None
CaO	0.2	10-9	0.3	None
Na ₂ O	0.1	10-3	0.2	None
K ₂ O	0.1	10-5	0.4	None
FeO _T	0	10-1	0	None
MgO	-0.2	10-7	0	None
SO ₃	-0.1	10-2	0.1	None
Cl	0.2	10-8	0.4	None

Fig. S10: Calculated Pearson's *r* index values for random permutations of each paired SHERLOC luminescence and PIXL P_2O_5 wt% image dataset. The leftmost column represents 100% permutation or completely randomized images. The rightmost column represents randomization of only 10% of the image for a sensitivity check of the method. *r* values of the measured data are written for each dataset for comparison. Note that *r* values of the measured data are well-above the distribution of index values from 100% and 10% permutation.

Fig. S11: Same as Fig. S10 but repeated for *SSIM* values. Note again that all *SSIM* values of the real data are well-above the distribution of 100% permutation, although this is not the case for some of the 10% permutation distributions.

Table S3. Correlation statistics for 270-290 nm luminescence maps and all PIXL element maps. There is no clear indication of a statistically significant correlation between 270-290 nm luminescence as reflected in Fig. 8. However, a slightly positive and statistically significant r value can be found for SiO₂ in Bellegarde and for K₂O and SiO₂ in Alfalfa, which is predicted based on Fig. 8. *SSIM* values, however, do not indicate any enhanced correlation compared with correlations to other elements.

Target	r (lumSiO ₂)	<i>p-value</i> (lumSiO ₂)	r (lumK2O)	<i>p-value</i> (lumK ₂ O)	r (lumelement)	SSIM (lumSiO ₂)	SSIM (lumK2O)	<i>SSIM</i> (lumelement)
Bellegarde	0.2	10-9	0	0.3	0	0.3	0	0-0.3
Alfalfa	0.2	10-10	0.2	10-9	<0-0.1	0.2	0.2	0-0.1
All	0.2	10 ⁻²⁰	0.1	10-9	0	N/A	N/A	N/A

Fig. S12: (A) Summary of SHERLOC 330-350 nm luminescence (stars) and phosphate Raman identifications (yellow circles) overlaid on PIXL P_2O_5 wt% abundance maps. These maps are also displayed in Figs. 6, S4, and S6. All 330-350 nm luminescence features that did not occur with a SHERLOC phosphate Raman detection and were not spatially in the vicinity of PIXL P_2O_5 detections are marked with red stars and an arrow. (B) Display of all spectra marked with a red star and arrow in panel A. (C) FWHM, wavelength position of max. intensity, and max. intensity of points associated with P_2O_5 and a phosphate Raman peak, and neither of those. The selection of points in the analysis here will be affected by uncertainties in the correlation algorithm and projection of X-ray points (Methods). Given that there is no distinguishing metrics observed for spectra here, this observation would extend to any spectra uncorrelated to phosphate Raman peaks and PIXL observed P_2O_5 missed due to uncertainties in correlation and X-ray point projection. This would be most applicable to the Alfalfa target (Methods).

Fig. S13: Correlation plots showing max intensity and the wavelength position of max intensity for spectra where a 270-295 nm and a 330-350 nm band occur together in the same spectrum from HDR and detail scans of targets in the Máaz and Séítah fms. Note no observed correlation between 270-295 nm and 330-350 nm luminescence data. Note that Séítah fm targets, Dourbes and Garde, generally have a wavelength position of max intensity at ~290-295 nm, while spectra from the Máaz fm span from 270-295 nm. All targets contain spectra that span from 325-350 nm in association with the 270-295 nm luminescence bands. The Alfalfa target contains the most 270-295 luminescence (Table S1) and the most spectra with coinciding 270-290 nm and 330-350 nm luminescence bands.

