Supplementary Table 1. A list of foundational and recent studies utilizing patient-derived/human iPSC-CMs to uncover the functional role of cardiac ion channels and dyad proteins in eliciting arrhythmogenesis.

				Characteristics of mutant human iPSC-CMs
	Condition	Study	Gene Variant	compared to healthy controls
Foundational studies on				1. Significantly reduced V_{max}
specific gene		(Kosmidis et al	SCN54	2. Reduced peak I_{Na} density
induced iPSC- CM-based arrhythmia models	BrS	2016)	p.(Arg1638X)	3. Reduced cardiac AP upstroke velocity
				1. Increased DADs and arrhythmias when exposed to adrenergic agonists
	CPVT	(Fatima et al., 2011)	RYR2 p.(Phe2483Ile)	2. Higher amplitudes and longer durations of spontaneous local Ca ²⁺ release events
				1. Prolonged APD
				2. Reduction of I_{Ks}
	LQTS	(Moretti et al., 2010)	KCNQ1 p.(Arg190Gln)	3. Enhanced vulnerability to catecholamine- induced tachyarrhythmia, which is reduced with beta blockers
		(Fl-Battrawy et	KCNH2	1. Shortened APD
	SQTS	al., 2018)	p.(Asn588Lys)	2. Increased I_{Kr} and hERG
Expansion and optimization				1. Reduction in I_{Na} peak current density
of gene- variant				2. Accelerated recovery from Na channel inactivation
induced iPSC- CM-based arrhythmia models		(Selga et al., 2018)	SCN5A p.(Arg367His)	4. Similar changes I _{Na} properties observed across different iPSC-CM differentiation procedures
				1. Reduced cardiac AP upstroke velocity due to reduced I_{Na} inward
		(de la Roche et al., 2019)	SCN5A p.(Ala735Val)	2. Right shift of Na activation curve, prolonged recovery from inactivation
				1. Reduced peak I _{Na} density
				2. Irregular Nav1.5 localization and decreased colocalization of Nav1.5 and Cx43
			SCN5A	3. Reduced Nav1.5 expression
	BrS	(Li et al., 2020)	p.(Ser1812X)	4. Reduced cardiac AP upstroke velocity

				5. Abnormal AP profile, including EADs and DADs
				6. First demonstration of conduction slowing in BrS-CMs
			SCN5A p.(Arg620His)+	1. I_{Na} density reduced, lower NaV1.5
		(Lu et al., 2023)	p.(Arg811His)	2. Beating interval variation
				1. No observed difference in AP properties
				2. Increased occurrence of DADs
		(Itzhaki et al., 2012)	RYR2 p.(Met4109Arg)	3. Significant whole-cell Ca^{2+} transient abnormalities, which aggravated upon adrenergic stimulation but improved with β - blockers
				1. Prolonged APD
		(Novak et al., 2012)	CASQ2 p.(Asp307His)	2. DADs and diastolic Ca^{2+} increase caused by β -adrenergic stimulation
				1. Caffeine-induced Ca^{2+} transients produced smaller I_{NCX} , showing smaller Ca^{2+} stores
				2. Higher CICR gain
		(Zhang et al., 2013)	RYR2 p.(Phe2483Ileu)	3. Increased diastolic Ca ²⁺ level and spontaneous Ca ²⁺ release
				1. Abnormal Ca ²⁺ release under stress
				2. Decreased Ca ²⁺ transient amplitude under stress
				3. Increase in systolic and diastolic aberrant Ca ²⁺ events under stress
	CPVT	(Acimovic et al., 2018)	RYR2 p.(Asp3638Ala)	4. Leaky RYR2 channels under stress
				1. Prolonged APD
		(Itzhaki et al., 2011)		2. Reduction of I_{kr} peak amplitudes at depolarization steps
			KCNH2 p.(Ala614Val)	3. Development of EADs
				1. Prolonged Field potential duration (FPD)
	LQTS	(Egashira et al., 2012)	KCNQ1 1893delC	2. Treatment of LQTS-iPSC-CMs with isoproterenol induces ventricular tachycardia-

		like arrhythmia, which was blocked by β -blocker
(Ma et al., 2013,	SCN5A	1. Increased late I_{Na} and APD prolongation
p. 3)	p.(Val1763Met)	2. Shortened I _{Na} inactivation recovery
		1. Prolonged APD
		2. High incidence of EADs
(Malan et al., 2016)	SCN5A p.(Arg1644His)	3. Accelerated recovery from Na current inactivation
	KOND	1. I_{kr} density reduced
(Garg et al., 2018b)	p.(Thr983Ile)	2. High diastolic Ca ²⁺