Supplementary Methods

Protein homology searches

A variety of publicly available and commercial databases were used to search for homologues to the *RMI1* gene and protein sequences, including NCBI (http://www.ncbi.nlm.nih.gov); SGD (Saccharomyces Genome Database, (Christie et al., 2004)); Ensembl (http://www.ensembl.org, (Hubbard et al., 2002)) genome assemblies; Celera (http://www.celera.com, (Kerlavage et al., 2002)) human and mouse genome assemblies; DOE Joint Genome Institute fugu genome assembly (http://www.jgi.doe.gov/fugu/index.html); tetraodon (Tetraodon nigroviridis) reads and genome assembly at GENOSCOPE (http://www.genoscope.cns.fr/externe/tetraodon/); and the sea squirt (*Ciona savignyi*) genome at the Center for Genome Research at Whitehead institute (http://www-genome.wi.mit.edu/annotation/ciona/background.html) and at the DOE Joint Genome Institute (http://www.jgi.doe.gov/programs/ciona.htm).

Programs used for homology searches were: BLAST (local generic and on the Paracel Blaster system (Paracel, Inc.), and web implementations), Smith-Waterman algorithm for identifying remote homologues (implemented at Paracel GeneMatcher2), and BLAT (web implementation). GeneMatcher2 was also used for Hidden Markov Model searches. Alignments were produced using ClustalW (Chenna et al., 2003) and ClustalX, and shaded using BOXSHADE. The OB-fold nucleic acid binding domain family is Pfam accession number PF01336.

REFERENCES

- Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D. (2003) Multiple sequence alignment with the Clustal series of programs. *Nucleic Acids Res*, **31**, 3497-3500.
- Christie, K.R., Weng, S., Balakrishnan, R., Costanzo, M.C., Dolinski, K., Dwight, S.S.,
 Engel, S.R., Feierbach, B., Fisk, D.G., Hirschman, J.E., Hong, E.L., Issel-Tarver,
 L., Nash, R., Sethuraman, A., Starr, B., Theesfeld, C.L., Andrada, R., Binkley, G.,
 Dong, Q., Lane, C., Schroeder, M., Botstein, D. and Cherry, J.M. (2004)
 Saccharomyces Genome Database (SGD) provides tools to identify and analyze
 sequences from Saccharomyces cerevisiae and related sequences from other
 organisms. *Nucleic Acids Res*, **32**, D311-314.
- Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I. and Clamp, M. (2002) The Ensembl genome database project. *Nucleic Acids Res*, **30**, 38-41.
- Kerlavage, A., Bonazzi, V., di Tommaso, M., Lawrence, C., Li, P., Mayberry, F., Mural,
 R., Nodell, M., Yandell, M., Zhang, J. and Thomas, P. (2002) The Celera
 Discovery System. *Nucleic Acids Res*, **30**, 129-136.

Table S1. Saccharomyces cerevisiae strains used in this study.				
Strain	Genotype	Source		
Y5646	$MAT\alpha rmil\Delta::natR lypl\Delta canl\Delta::MFA1pr-HIS3-MF\alpha1pr-$	This study		
	LEU2 his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0 LYS2			
BY4741	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$	(Brachmann et al. 1998)		
BY4742	$MAT\alpha$ his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ lys2 $\Delta 0$	(Brachmann et al. 1998)		
MCY304	BY4742 with MATa rmi1A::kanMX6	This study		
MCY16	$MAT\alpha$ rad 53-11-URA3 can 1Λ :: MFApr-HIS3 his 3Λ 1 leu 2Λ 0	(Chang et al. 2002)		
	$ura3\Lambda 0$ lvs2 $\Lambda 0$	(chang to an 2002)		
MCY352	BY4742 with SGS1-3HA-LFU2	This study		
MCY312	BY4741 with <i>RMI1-TAP-HIS3</i>	This study		
MCY353	BY4741 with MATa SGS1-3HA-I FU2 RMI1-TAP-HIS3	This study		
MCY348	BY4742 with TOP3-V5-VSV-kanMX6	I Stagliar		
MCV355	BV4741 with MET15 TOP3 V5 VSV-kanMY6 RMI1-TAP HIS3	This study		
MCV256				
MCY356	BY4/42 with LYS2 TOP3-V5-VSV-kanMX6 RMI1-TAP-HIS3	This study		
	sgs12::kanMX6			
MCY365	BY4741 with MATα SGS1-3HA-LEU2 TOP3-TAP-HIS3	This study		
	rmi1A::kanMX6			
MCY367	BY4741 with MATα SGS1-3HA-LEU2 RMI1-TAP-HIS3	This study		
	top3∆::kanMX6			
MCY372	BY4741 with <i>sgs1::kanMX6</i> (pRS415)	This study		
MCY373	BY4741 with sgs1::kanMX6 (pSM100-HA)	This study		
MCY374	BY4741 with sgs1::kanMX6 (pSM100-hd-HA)	This study		
MCY375	MCY356 (pSM100-HA)	This study		
MCY376	MCY356 (pSM100-hd-HA)	This study		
MCY377	BY4742 with LYS2 TOP3-V5-VSV-kanMX6 rmi1\Delta::natMX6	This study		
	sgs1∆::kanMX6 (pSM100-HA)			
MCY378	BY4742 with LYS2 TOP3-V5-VSV-kanMX6 rmi1∆::natMX6	This study		
	sgs1∆::kanMX6 (pSM100-hd-HA)			
MCY379	BY4742 with LYS2 top3Δ::natMX6 RMI1-TAP-HIS3	This study		
	sgs1∆::kanMX6 (pSM100-HA)			
MCY380	BY4742 with LYS2 top3∆::natMX6 RMI1-TAP-HIS3	This study		
	sgs1\Delta::kanMX6 (pSM100-hd-HA)			
MCY357	BY4741 (pWJ1344)	This study		
MCY358	MCY304 (pWJ1344)	This study		
MCY328	BY4741 with $top3\Delta$::kanMX6	This study		
MCY359	MCY328 (pWJ1344)	This study		
MCY360	BY4741 with $sgs1\Delta$::kanMX6 (pWJ1344)	This study		
RDY9	MATa mfa1::MFA1pr-HIS3 can1 Δ ::natR leu2 Δ EcoRI::URA3-	This study		
	$HOcs::leu2\Delta BstII leu2\Delta 0 his3\Delta 0 ura3\Delta 0 met15\Delta 0 lvp1\Delta$	5		
RDY10	$MATa \ sgs1\Delta::kanMX6 \ mfa1::MFA1pr-HIS3 \ can1\Delta::natR$	This study		
	$leu2\Delta EcoRI::URA3-HOcs::leu2\Delta BstII leu2\Delta0 his3\Delta0 ura3\Delta0$	5		
	$met15\Delta0 \ lvp1\Delta$			
RDY14	MATa $rmil\Delta$::kanMX6 mfa1::MFA1pr-HIS3 can1 Δ ::natR	This study		
	$leu2\Delta EcoRI::URA3-HOcs::leu2\Delta BstII leu2\Delta0 his3\Delta0 ura3\Delta0$			
	$met15\Delta0$ lvn1 Δ			
RDY15	$MATa top 3\Delta$::kanMX6 mfa1::MFA1pr-HIS3 can1 Δ ::natR	This study		
	$leu2\Lambda EcoRI::URA3-HOcs::leu2\Lambda BstII leu2\Lambda0 his3\Lambda0 ura3\Lambda0$			
	$met15\Lambda0$ lvn1 Λ			
CZY106	$MATa mfa1 \cdots MFA1 mr - HIS3 hxt13 \Lambda \cdots URA3 his3 \Lambda 1 ura3 \Lambda 0$	This study		
21100	$lvn1\Lambda$ leu2 $\Lambda0$ met15 $\Lambda0$			
CZY211	$MATa sgs1\Delta$::kanMX6 mfa1::MFA1pr-HIS3 hxt13AURA3	This study		
JE 1 2 1 1	$his3\Lambda1 \ ura3\Lambda0 \ lyn1\Lambda \ leu2\Lambda0 \ met15\Lambda0$			
CZY232	$MATa sgs1\Lambda$::natR mfa1···MFA1nr-HIS3 hxt13A···IIRA3 his3A1	This study		
221232	$ura3\Delta0$ lvn1 Δ leu2 $\Delta0$ met15 $\Delta0$			
		I		

CZY212	MATa top3\Delta::kanMX6 mfa1::MFA1pr-HIS3 hxt13Δ::URA3	This study
	his3 Δ 1 ura3 Δ 0 lyp1 Δ leu2 Δ 0 met15 Δ 0	
CZY213	MATa rmi1∆::kanMX6 mfa1::MFA1pr-HIS3 hxt13∆::URA3	This study
	his $3\Delta 1$ ura $3\Delta 0$ lyp 1Δ leu $2\Delta 0$ met $15\Delta 0$	
MCY340	BY4741 with can1 Δ ::MFA1-HIS3 rmi1 Δ ::natMX6	This study
MCY323	BY4741 with $lyp1\Delta$ rmi1 Δ ::natMX6 sgs1 Δ ::kanMX6	This study
MCY335	BY4741 with sgs1 Δ ::kanMX6 top3 Δ ::natMX6	This study
MCY345	BY4741 with sgs1 Δ ::kanMX6 top3 Δ ::kanMX6 rmi1 Δ ::natMX6	This study
MCY297	MATa/MATα his3 Δ 1/his3 Δ 1 leu2 Δ 0/leu2 Δ 0 ura3 Δ 0/ura3 Δ 0	This study
	$MET15/met15\Delta0 LYS2/lys2\Delta0$	-
MCY370	MATa/MAT α rmi1 Δ ::kanMX6/rmi1 Δ ::natMX6 his3 Δ 1/his3 Δ 1	This study
	$leu2\Delta0/leu2\Delta0$ ura3 $\Delta0/ura3\Delta0$ met15 $\Delta0/met15\Delta0$ LYS2/lvs2 $\Delta0$	2
	$LYP1/lyp1\Lambda0$	
GBY635	SGS1-3HA-LEU2 TOP3-V5-VSV-kanMX6 RMI1-TAP-HIS3	This study
001000	$leu 2\Lambda 0$ his $3\Lambda 1$ ura $3\Lambda 0$	This study
		1

Figure S1. Two-dimensional hierarchical clustering of synthetic genetic interactions determined by SGA analysis (Tong et al., 2004). (*A*) Synthetic genetic interactions are represented as red lines. Rows, 132 query genes; columns, 1007 array genes. The cluster trees organize query (y-axis) and array genes (x-axis) that show similar patterns of genetic interactions. (*B*) The relevant section (yellow outline in *A*) is expanded to allow visualization of the *RMI1/SGS1/TOP3* array gene cluster. Synthetic genetic interactions are represented as red squares.

Figure S2. $rmi1\Delta/rmi1\Delta$ diploids are sporulation defective. Sporulation efficiency was determined following 5 days in sporulation medium at 30°C. The value presented for each strain is the average of three trials.

Figure S3. The Rmi1-Sgs1 and Rmi1-Top3 interactions are not mediated by DNA. Extract from a yeast strain expressing Sgs1-HA, Top3-VSV, and Rmi1-TAP was immunoprecipitated with IgG agarose following incubation for 15 minutes in the presence (+) or absence (-) of 10U of DNase I and 10 mM MgCl₂. Ten percent of the input extract (E) and the entire immunoprecipitate (IP) were fractionated by SDS-PAGE. Immunoblots were probed with anti-HA antibody to detect Sgs1 and with anti-VSV antibody to detect Top3.

Figure S4. Wild-type or *rmi1* Δ cells were arrested in G1 (t = 0) and released synchronously into fresh YPD medium. Samples were removed at the indicated times and analyzed by flow cytometry. The positions of cells with 1C and 2C DNA contents are indicated.

KlRmi1 AgRmi1 CaRmi1 NcRmi1 MgRmi1 SpRmi1	1 1 1 1 1	MTSDLRKVDITTVTNVLEDPNSLIVKAFN MGSGVTVLSADITQLTEEQVNAGPDGAVGTLLKEAYQ MSFSSILSQDITDDITPPAYSATLGSREQIVFRAYQ METARTLHRQLTTDSHTTFLPIPSLSWLTTTIPSTTSRNIPPLPSLLATARLRLSSDLS MDEAASQIRASLISQCLPPPSQNWLSKTLS-TRPQPLPPLPSLTATAKARLAADLT MNQTTTLSTELTELGVRVQNRWLQSTLDYLAKKHSTGANTTPQLVMQYLVASDIR
KlRmi1 AgRmi1 CaRmi1 NcRmi1 MgRmi1 SpRmi1	30 38 37 1 61 57 56	NETWPTKDIFQRKLITVNRPLLFQVCMIENISRSKLTQVDE SAVWGGEGREQQRCQAVNRKLLFQVCMVENVSRSRLAQVDE NEPWLAGTASNLILDKKLVIVDRELLFQVLMVENITKSKLTQIDD
KlRmi1 AgRmi1 Rmi1 CaRmi1 NcRmi1 MgRmi1 SpRmi1	71 79 82 31 121 108 101	LQVVI DPRRQKVDRLSTSRD RQQLISEVNLDDDDDDDTSYHNNSGVGNGDS YHVRL APRKQMVDRVGAG KELVSSVDVDSDSNQ - PAADERQ - AP IKTKL DPKKQKVDRLRSGAQGNGAKKYEVITQVDMEDDGNVADNNCAKENNSNNNSS WKQLD NPNKSSVDRLNRK IITEVNLNNDDEDNDESGRPSRANTQDTY LESIERGEQTRGREVIRLPTTSNS - SDPNDPNDGVDMGDGGTQTQAAQQQAATAQAQQQ LEAVARGELTKGRQIIRLRDDG AEEEEGEGVGDVPPEEGARRQQRSGGDAAAA LNDLEELKKLKGQKVIRLVHD ESGDEEQNDDDGLTEAQDAVQKGSE
KlRmi1 AgRmi1 Rmi1 CaRmi1 NcRmi1 MgRmi1 SpRmi1	123 121 139 78 179 161 147	NYTNNKDAGNLNQHVYKLILQDKKCNLFYAINLDPTPALKTCFLGSKII TVMLQAKLVQDKSGGLFYAMNVEAIGALKTVMLGAKLV AAKNKAVFKLTLQSKSGDVFFAINSTPISWSSCMLGSKIV KLYSCMLQSKSGDVFFAINSTPISWSSCMLGSKIV KLYDRKNATHKITQAYENEPLRFIRTENTGTPLSCMLGSKIV AQQAKDRKNATHKITLQDCSGQRLYALELKRIEEIAVPQFVNGKMVGGTPIGCKLL RATAGGPAVSDKNATHKLVVQDCAGNKFFALELRRIERLGIGKANIGEKML LKKMCRLILEDSNGQRFWGLERKPIKGIQLSTKLGTKLL
KlRmi1 AgRmi1 Rmi1 CaRmi1 NcRmi1 MgRmi1 SpRmi1	172 157 179 120 235 212 186	ILPGAKFNRGMFTFNNSTVKLMYGLIQQWNDGKLQKVTEYLQNELDSQNPTLNANGKRNS ILPGAVFNRGIFILTASTVRLIFGLIPSWNGGKEHKVCAYLECLLEEER - VATGSGKRKR ILPGTVFNRGVFILKDSQVIFLGGINRVWNENRDQKFCDYLESKLQRDKQLVNGGSKKRK VLKGASIYNGVLLLTNKNCEYHG IHADDASYVSILNDGVIKKQIELLQL LRKGTKVARGVVLLEPGRVKVLGGRVEGWGRVWEQGRFERVRGEVQAQRG KAGTVIARGTVLLEPEKCVILGGRVEVWHKAWLEGRLARLKEAAGTSGSENGR VKN - VLVRRGVLMLDPNNTTILGGSIEEWDKDYFPKRLIEELKGELSKTKA
KlRmi1 AgRmi1 Rmi1 CaRmi1 NcRmi1 MgRmi1 SpRmi1	232 216 239	 AND

Figure S5. ClustalW alignment of yeast Rmi1 homologues. *Saccharomyces cerevisiae* Rmi1 (ScRmi1, Accession number NP_015301) is aligned with Rmi1 homologues from *Kluveromyces* lactis (KIRmi1, XP_453604), *Ashbya gossypii* (AgRmi1, AAS53829), *Candida albicans* (CaRmi1, EAK98148), *Neurospora crassa* (NcRmi1, EAA29355), *Magnaporthe grisea* (MgRmi1, EAA51673), and *Schizosaccharomyces pombe* (SpRmi1, CAA93226). Identical amino acids are shaded black and similar amino acids are shaded grey, at positions where the identity or similarity is shared by at least four of the homologues. Regions of extensive sequence similarity are designated I, II, and III.

HsRmi1 MmRmi1 SpRmi1 CaRmi1 ScRmi1	10 20 30 40 50 60 70 80 MNVTSIALRAGTWILTAAWHWKMPPMWILEACINWIQEENNNVNLSQAQNKCMFEQMIL-IDIRDLEHPLIPDGILFIP MSVASAVLRVETWILTATWHVKMPPMWILEACINWIQEENNNATLSQAQINKQWLEQWLL-IDIRDLEHPLIPDDISELP MNQTTTLSTELTELGVRVQNRWLQSLLDYLAKKHSTGANTTPQLVM-QYLVASDIRESTSEGAAPYIWSEQH MSFSSILSQDIIDDIIPPAYSATLGSREQIVFRAYQNEPWLAGTASNLILDKK
HsRmi1 MmRmi1 SpRmi1 CaRmi1 ScRmi1	90 100 110 120 130 140 150 160 KGELNGFYALQINSLVDVSQPAYSQIQ
HsRmi1 MmRmi1 SpRmi1 CaRmi1 ScRmi1	170 180 190 200 210 220 230 240 MLMICHTPSIVQICOMBYOFIPILHSDLFPGTKILVGNIS-FRLGVLLLKPENVKVLGGEVDALLEBYAQ MLMICHTPSVTHICOMBYOFIPALHSGLFPGTKILVGCIL-FRLGVLLLKPENVKVLGGEVDALLEBYAQ MCRLILBSNGORF-WGLBRKPIKGIQLSTKIGTKLLVKNVLV-RR-GVIMLDPNNTTILGGSIKEWDK TYKLYLEDVSTKKITGAYENEPERFLATENTGTPLPIKIGGRITVLKGASIYN-GVLLITNKNCEYHGIHADDASY NNNSSAKNKAVFKITLOSKSGDVFFAINSTPISWSSGMLGGKIMILPGTVENEGVFILDOSKIGIFGUNRWMARDO
HsRmi1 MmRmi1 SpRmi1 CaRmi1	250 260 270 280 290 300 310 320 EKVLARLISEPDLVVSVI PNNSNEN I PRVTDVLDPALGPSDEELLASLDENDELTTNNDTSSERCFTTGSSSNTI PTRQS EKVLARLIGELDPTVPVI PNNS IHNVPKVSGGLDAVLGPSDEELLASLDESEESAANNDVAMERSCFSTGTSSNTTPTNP DYFPKRIJEELKGELSKTKA VSIENDGVIKKOIBLQL
ScRmi1 HsRmi1 MmRmi1	MFCDYLESKLORDKGLMNGGSKKRKAND 330 340 350 360 370 380 390 400 .
HsRmi1 MmRmi1	410 420 430 440 450 460 470 480
HsRmi1 MmRmi1	490 500 510 520 530 540 550 550
HsRmi1 MmRmi1	570 580 590 600 610 620 530 640
	650 660

HsRmi1 MVLALQDVNMEHLENLKKRLNK MmRmi1 MEHVENLKKRLNK

Figure S6. Alignment of Rmi1 homologues. *Saccharomyces cerevisiae* Rmi1 (ScRmi1, Accession number NP_015301) is aligned with Rmi1 homologues from *Candida albicans* (CaRmi1, EAK98148), *Schizosaccharomyces pombe* (SpRmi1, CAA93226), human (HsRmi1, NP_079221), and mouse (MmRmi1, NP_0833180. Identical amino acids are boxed in black and similar amino acids are shaded grey, at positions where the identity or similarity is shared by at least three of the homologues. Regions of extensive sequence similarity from the yeast analysis are designated I, II, and III.