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A Derivation of Bias Formula
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ŵKAKHK,ψH

T
K,β

) {
E
(
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ŵKAKHK,ψH

T
K,ψ

)


−1

.

If we denote  E
(
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ŵKAKHK,ψH

T
K,ψ

)
− E

(
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ŵKAKHK,ψ

(
βuU +HT

K,ββK + AKH
T
K,ψψK + ϵ

)}
−

E
(
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ŵKAKHK,ψH

T
K,β

) {
E
(
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We then have that the bias is given by
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ŵKAKHK,ψH

T
K,ψ

) ]−1[
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B Simulations with Binary U

We conducted a simulation study of the proposed Monte Carlo sensitivity analysis with a

binary unmeasured confounder that closely resembles the study in the main paper. We will

consider both a one-stage and a two-stage study. For the one-stage study, the data generating
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models were given by:

X1 ∼ N(0, σ2
x1
),

X2 ∼ N(0, σ2
x2
),

P(U = 1|X = x) = [1 + exp {−(ζ0 + ζ1x1 + ζ2x2)}]−1 ,

P(A = 1|X = x, U = u) = [1 + exp {−(α0 + α1x1 + α2x2 + α3u)}]−1 ,

Y = β0 + β1X1 + β2X2 + βuU + A(ψ0 + ψ1X1 + ψ2X2) + ϵy, ϵy ∼ N(0, σ2
y).

We again conducted 1000 repetitions for the simulation study with a sample size of n = 1000.

For the sensitivity analysis, we conducted B = 500 Monte Carlo repetitions. The parameter

values for the data generating models were given by:

ψ = (ψ0, ψ1, ψ2) = (−1, 0.5, 0.5), β = (β0, β1, β2, βu) = (1, 1, 1, 2),

ζ = (0, 1,−1), α = (α0, α1, α2, α3) = (0, 1, 1, 2),

σ2
u = σ2

x1
= σ2

x2
= σ2

y = 1.

We posited four different sets of distributions for the parameters in the unmeasured con-

founder models given by: (i) narrow normal, correctly centered; (ii) wide normal, correctly

centered; (iii) narrow normal, off-center; (iv) wide normal, off-center. As with the simula-

tions for the continuous U in the main paper, for scenario (i), we posited models given by

β
(b)
u ∼ N(βu, 0.1) and ζ

(b)
j ∼ N(ζj, 0.1) for j = 0, 1, 2. For the wide distribution settings, the

variance was increased to 0.5 and for the off-center scenarios the distribution was centered

at the true mean plus 0.1.

Figure 1 shows boxplots of the point estimates of ψ across 1000 simulation repetitions

before and after adjusting for the unmeasured confounder using Monte Carlo sensitivity

analysis with different distributions for the bias parameters. When we did not adjust for

bias due to the unmeasured confounder, the estimate of ψ0 is biased with a root mean
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squared error (rMSE) of 0.692. When we adjusted for the unmeasured confounder, the rMSE

was reduced to 0.110 and 0.126 for the narrow and wide correctly centered bias parameter

distributions, respectively. When the parameter distributions were not centered on the true

value we saw a similar reduction in the rMSE to 0.115 and 0.104 for the narrow and wide

distributions for the bias parameters. The unadjusted estimates of ψ1 and ψ2 were unbiased

so the adjusted estimates using Monte Carlo sensitivity analysis were very similar to the

unadjusted results.

Figure 1: Boxplots of the point estimates for ψ under an unadjusted model and when using
Monte Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the
1-stage data generating model with a binary unmeasured confounder.

Table 1 contains the proportion of new patients whose recommended treatment matched

the true optimal treatment regime for each of the estimated unadjusted and adjusted treat-

ment regimes. This was found by simulating 10000 additional patients for each simulation

repetition and examining the treatment recommend by the estimated regimes. For this data

generating model, the unadjusted regime matched the optimal 75.7% of the time. This in-
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creased after adjusting for the bias to 95.9% for the narrow, correctly centered distributions

and 96.1% for the wide, off-center distributions for the bias parameters. Table 2 contains

the coverage and average width of 95% confidence intervals for the parameters in the blip

model. When the unmeasured confounding was not taken into account, the coverage for each

of the confidence intervals was below the nominal rate. After adjusting for the unmeasured

confounding, the coverage was close to 95% for ψ1 and ψ2 while being conservative for ψ0

under all of the parameter distributions. The wide parameter distributions produced wider

confidence intervals as expected since there is more uncertainty in the distribution and effect

of the unmeasured confounder.

Table 1: Proportion of patients whose recommended treatment when following each of the
estimated regime matches the recommendation of the true optimal regime for the 1-stage
data generating model with a binary unmeasured confounder.

Parameter Distr. Proportion Optimal
Unadjusted 0.757

Narrow, Centered 0.959
Wide, Centered 0.957

Narrow, Off-center 0.963
Wide, Off-center 0.961

Table 2: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for
ψ for the unadjusted analysis and sensitivity analysis under each of the posited parameter
distributions for the 1-stage data generating model with a binary unmeasured confounder.
* indicates coverages that are significantly different than 95%.

Parameter Distr. Cvr. (Wth.) ψ0 Cvr. (Wth.) ψ1 Cvr. (Wth.) ψ2

Unadjusted 0* (0.337) 0.878* (0.401) 0.871* (0.337)
Narrow, Centered 0.998* (0.735) 0.947 (0.497) 0.975* (0.43)
Wide, Centered 1* (1.351) 0.976* (0.578) 0.989* (0.56)

Narrow, Off-center 0.998* (0.764) 0.962 (0.507) 0.97* (0.44)
Wide, Off-center 1* (1.409) 0.987* (0.608) 0.994* (0.578)

We conducted a similar simulation study for a 2-stage study with a binary unmeasured
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confounder. The data generating models were given by:

X11 ∼ N(0, σ2
x11

), X12 ∼ N(0, σ2
x12

),

P(U = 1|X1 = x1) = [1 + exp {−(ζ0 + ζ1x11 + ζ2x12)}]−1 ,

P(A1 = 1|X1 = x1, U = u) = [1 + exp {−(α10 + α11x11 + α12x12 + α13u)}]−1 ,

X2 = ϖ0 +ϖ1X11 +ϖ2X12 + ϵx2 , ϵx2 ∼ N(0, σ2
x2
),

P(A2 = 1|H2 = h2, U = u) = [1 + exp {−(α20 + α21x11 + α22x12 + α23a1 + α24x2 + α25u)}]−1 ,

Y = β20 + β21X11 + β22X12 + β23A1 + β24A1X11 + β25A1X12

+β26X2 + βuU + A2(ψ20 + ψ21X11 + ψ22X12 + ψ23X2) + ϵy, ϵy ∼ N(0, σ2
y).

As with the one-stage study, we conducted 1000 repetitions for the simulation study, let the

sample size equal n = 1000, and conducted the sensitivity analysis with B = 500 Monte

Carlo repetitions. The parameter values used for the data generating process were:

ψ2 = (ψ20, ψ21, ψ22, ψ23) = (−1, 0.5, 0.5, 0.5),

β2 = (β20, β21, β22, β23, β24, β25, β26, βu) = (1,−1, 1,−1, 1, 1, 1, 2),

ζ = (0, 1,−1),

ϖ = (ϖ0, ϖ1, ϖ2) = (0, 1, 1),

α1 = (α10, α11, α12, α13) = (0, 1, 1, 2),

α2 = (α20, α21, α22, α23, α24, α25) = (0, 1, 1, 1, 1, 3),

σ2
u = σ2

x11
= σ2

x12
= σ2

x2
= σ2

y = 1.

We again varied the posited distributions for the bias parameters using the same posited

distributions as in the one-stage study.

Figures 2 and 3 show boxplots of the point estimates for ψ2 and ψ1, respectively, across

1000 simulation repetitions. These results were similar to the 2-stage results with a contin-

uous unmeasured confounder that can be found in the main paper. For the second stage,
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the estimate of ψ20 was biased in the unadjusted analysis with an rMSE of 0.808. Monte

Carlo sensitivity analysis reduced the bias to 0.207 for the narrow and correctly centered

bias parameter distributions. The results were similar for the other bias parameter distribu-

tions with the largest rMSE being 0.251 for the wide, correctly centered distributions. The

unmeasured confounder did not bias the estimates of ψ21, ψ22, and ψ23 which caused the

unadjusted and adjusted results to be similar. For the first stage models, the unmeasured

confounder biased the estimate of ψ10 resulting in the unadjusted analysis having an rMSE of

0.536. The sensitivity analysis reduced the rMSE to 0.149 for the narrow, correctly centered

bias parameter distributions and 0.153 for the wide, off-center distributions.

Figure 2: Boxplots of the point estimates for ψ2 under an unadjusted model and when using
Monte Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the
2-stage data generating model with a binary unmeasured confounder.

Table 3 displays the proportion of new patients whose recommended treatment matched

the treatment recommended by the true optimal regime. The bias in the unadjusted regime

led to patients being treated optimally 86.9% of the time during the first stage and 81.2%

during the second stage. Adjusting for the bias increased the optimal proportion to 95.4%
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Figure 3: Boxplots of the point estimates for ψ1 under an unadjusted model and when using
Monte Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the
2-stage data generating model with a binary unmeasured confounder.

at the first stage and 94.4% at the second stage for the narrow, correctly centered bias

parameter distributions. Tables 4 and 5 contain the coverage and average width of 95%

confidence intervals for the parameters indexing the optimal treatment regime for the second

stage and first stage, respectively. The unadjusted confidence intervals were far below the

nominal rate for all the parameters at each stage. Monte Carlo sensitivity analysis produced

wider confidence intervals that had a coverage of 94.9% or greater for all of the parameters

when positing narrow, correctly centered bias parameter distributions. Wider distributions

for the bias parameters produced more conservative confidence intervals as expected.
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Table 3: Proportion of patients whose recommended treatment when following each of the
estimated regime matches the recommendation of the true optimal regime at each stage for
the 2-stage data generating model with a binary unmeasured confounder.

Parameter Distr. Stage 1 Stage 2
Unadjusted 0.869 0.812

Narrow, Centered 0.954 0.944
Wide, Centered 0.950 0.939

Narrow, Off-center 0.955 0.946
Wide, Off-center 0.954 0.942

Table 4: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for
ψ2 for the unadjusted analysis and sensitivity analysis under each of the posited parameter
distributions for the 2-stage data generating model with a binary unmeasured confounder.
* indicates coverages that are significantly different than 95%.

Parameter Distr. Cvr. (Wth.) ψ20 Cvr. (Wth.) ψ21 Cvr. (Wth.) ψ22 Cvr. (Wth.) ψ23

Unadjusted 0.000* (0.391) 0.765* (0.498) 0.773* (0.442) 0.794* (0.333)
Narrow, Centered 0.972* (0.832) 0.950 (0.788) 0.956 (0.699) 0.949 (0.513)
Wide, Centered 1.000* (1.360) 0.962 (0.847) 0.968* (0.777) 0.971* (0.567)

Narrow, Off-center 0.992* (0.858) 0.951 (0.798) 0.951 (0.701) 0.943 (0.513)
Wide, Off-center 1.000* (1.418) 0.962 (0.871) 0.967* (0.781) 0.952 (0.576)

Table 5: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ1

for the unadjusted analysis and sensitivity analysis under each of the posited parameter dis-
tributions for the 2-stage data generating model. * indicates coverages that are significantly
different than 95%.

Parameter Distr. Cvr. (Wth.) ψ10 Cvr. (Wth.) ψ11 Cvr. (Wth.) ψ12

Unadjusted 0.027* (0.446) 0.826* (0.531) 0.873* (0.447)
Narrow, Centered 0.958 (2.706) 0.995* (2.612) 0.994* (2.525)
Wide, Centered 0.988* (3.039) 0.999* (2.594) 0.997* (2.511)

Narrow, Off-center 0.984* (2.754) 0.999* (2.656) 0.996* (2.564)
Wide, Off-center 0.994* (3.120) 0.999* (2.658) 0.998* (2.557)
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C Simulations with Limited Bias

We conducted additional simulations using the same data generating model as the main

paper with different parameter values. These simulations demonstrate situations where the

bias in ψ due to unmeasured confounding does not significantly effect the performance of the

unadjusted treatment regime. For the single stage simulations, the parameter values were

given by:

ψ = (ψ0, ψ1, ψ2) = (1, 0.5, 0.5), α = (α0, α1, α2, α3) = (0, 1, 1, 2),

ϕ1 = (ϕ10, ϕ11) = (0, 1), β = (β0, β1, β2, βu) = (1, 1, 1, 1),

ϕ2 = (ϕ20, ϕ21) = (0,−1), σ2
u = σ2

x1
= σ2

x2
= σ2

y = 1.

We again varied the posited distributions for the parameters of the unmeasured confounder

model and the effect of the unmeasured confounder using the same posited distributions as

in the main paper.

Figure 4 show boxplots of the estimate of ψ across the 1000 repetitions of the simulation

study. As before the unadjusted estimate of ψ0 was biased with an rMSE of 0.552. Table 6

displays the proportion of patients that were recommended the same treatment as the true

optimal regime for the different estimated treatment regimes. The unadjusted regime still

matched the true optimal regime 93.9% of the time despite the bias in ψ0. Since the true

value of ψ0 equaled 1 and the mean of X1 and X2 were 0, we have that treatment A = 1 was

the better treatment on average. Therefore, since the bias in ψ0 was positive, the bias tended

to push patients towards the generally better treatment and only a small subset of patients

were negatively impacted by the bias due to the unmeasured confounder. The coverage and

width of the confidence intervals for ψ are displayed in Table 7.
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Figure 4: Boxplots of the point estimates for ψ under an unadjusted model and when using
Monte Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the
1-stage data generating model.

Table 6: Proportion of patients whose recommended treatment when following each of the
estimated regime matches the recommendation of the true optimal regime for the 1-stage
data generating model.

Parameter Distr. Proportion Optimal
Unadjusted 0.939

Narrow, Centered 0.967
Wide, Centered 0.968

Narrow, Off-center 0.949
Wide, Off-center 0.948

For the 2-stage study, the parameter values were given by:

β2 = (β20, β21, β22, β23, β24, β25, β26, βu) = (1,−1, 1,−1, 1, 1, 1, 1), ϖ = (ϖ0, ϖ1, ϖ2) = (0, 1, 1)

ψ2 = (ψ20, ψ21, ψ22, ψ23) = (1, 0.5, 0.5, 0.5), ϕ1 = (ϕ10, ϕ11) = (0, 1),

α1 = (α10, α11, α12, α13) = (0, 1, 1, 2), ϕ2 = (ϕ10, ϕ11) = (0,−1),

α2 = (α20, α21, α22, α23, α24, α25) = (0, 1, 1, 1, 1, 3), σ2
u = σ2

x11
= σ2

x12
= σ2

x2
= σ2

y = 1
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Table 7: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ
for the unadjusted analysis and sensitivity analysis under each of the posited parameter dis-
tributions for the 1-stage data generating model. * indicates coverages that are significantly
different than 95%.

Parameter Distr. Cvr. (Wth.) ψ0 Cvr. (Wth.) ψ1 Cvr. (Wth.) ψ2

Unadjusted 0.000* (0.280) 0.899* (0.332) 0.874* (0.234)
Narrow, Centered 1.000* (1.485) 0.954 (0.404) 0.932* (0.286)
Wide, Centered 1.000* (3.836) 0.942 (0.404) 0.950 (0.285)

Narrow, Off-center 1.000* (1.633) 0.944 (0.404) 0.951 (0.286)
Wide, Off-center 1.000* (4.103) 0.943 (0.404) 0.932* (0.287)

Figures 5 and 6 show boxplots of the estimate of ψ2 and ψ1 across the 1000 repetitions,

respectively. As before the unmeasured confounder caused the estimate of ψ20 and ψ10 to

be biased with an rMSE of 0.614 for ψ20 and 0.392 for ψ10. Table 8 displays the proportion

of patients that received the same treatment as the true optimal regime under each of the

estimation methods. Note the unadjusted regime still recommended the same treatment as

the optimal regime 90.5% of the time at the first stage and 89.0% of the time during the

second stage. As with the single stage case above, this is due to the direction of the bias.

The coverage and width of the confidence intervals for ψ2 and ψ1 are displayed in Tables 9

and 10, respectively.

Table 8: Proportion of patients whose recommended treatment when following each of the
estimated regime matches the recommendation of the true optimal regime at each stage for
the 2-stage data generating model.

Parameter Distr. Stage 1 Stage 2
Unadjusted 0.905 0.890

Narrow, Centered 0.955 0.958
Wide, Centered 0.954 0.957

Narrow, Off-center 0.957 0.960
Wide, Off-center 0.956 0.958
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Figure 5: Boxplots of the point estimates for ψ2 under an unadjusted model and when using
Monte Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the
2-stage data generating model.

Table 9: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ2

for the unadjusted analysis and sensitivity analysis under each of the posited parameter dis-
tributions for the 2-stage data generating model. * indicates coverages that are significantly
different than 95%.

Parameter Distr. Cvr. (Wth.) ψ20 Cvr. (Wth.) ψ21 Cvr. (Wth.) ψ22 Cvr. (Wth.) ψ23

Unadjusted 0.000* (0.276) 0.779* (0.430) 0.810* (0.354) 0.797* (0.292)
Narrow, Centered 1.000* (1.494) 0.947 (0.660) 0.960 (0.541) 0.947 (0.443)
Wide, Centered 1.000* (3.823) 0.943 (0.656) 0.945 (0.538) 0.942 (0.439)

Narrow, Off-center 1.000* (1.644) 0.939 (0.655) 0.947 (0.539) 0.954 (0.439)
Wide, Off-center 1.000* (4.088) 0.949 (0.656) 0.953 (0.538) 0.941 (0.439)
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Figure 6: Boxplots of the point estimates for ψ1 under an unadjusted model and when using
Monte Carlo sensitivity analysis to adjust for bias due to unmeasured confounding for the
2-stage data generating model.

Table 10: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ1

for the unadjusted analysis and sensitivity analysis under each of the posited parameter dis-
tributions for the 2-stage data generating model. * indicates coverages that are significantly
different than 95%.

Parameter Distr. Cvr. (Wth.) ψ10 Cvr. (Wth.) ψ11 Cvr. (Wth.) ψ12

Unadjusted 0.140* (0.441) 0.880* (0.524) 0.887* (0.370)
Narrow, Centered 1.000* (3.311) 0.997* (2.559) 0.978* (2.401)
Wide, Centered 1.000* (5.166) 1.000* (2.650) 0.998* (2.470)

Narrow, Off-center 1.000* (3.582) 0.998* (2.675) 0.985* (2.525)
Wide, Off-center 1.000* (5.592) 1.000* (2.789) 0.996* (2.608)
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D Sensitivity Analysis with G-estimation

G-estimation is an alternative approach to estimating DTRs that focuses on estimating the

blip functions (Robins, 2004). We will restrict attention to only one-stage treatment regimes

in this section. Recall that for a one-stage study the blip function is defined as

γ1(h1, a1) = E{Y ∗(a1)− Y ∗(0)|H1 = h1}.

As before, we assume that the blip function is linear so we have that a model for the blip is

given by γ1(h1, a1;ψ) = a1h
T
1,ψψ such that ψ∗ denotes the true value of ψ. Under the stable

unit treatment value assumption (SUTVA) we have that

Y ∗(0) = Y − γ1(H1, A1;ψ
∗).

Define

H(ψ) = Y − γ1(H1, A1;ψ)

and let

logit [P{A1 = 1|H(ψ),H1 = h1}] = ξ0 +H(ψ)(hT1,ψξ1) + hT1 ξ2.

G-estimation assumes that sequential ignorability holds which implies that ξ1 = 0. There-

fore, to estimate the true value of ψ, we can find the value of ψ for H(ψ) that leads to

ξ̂1 = 0 when fitting the logistic regression model. If there is an unmeasured confounder, we

have that ξ1 ̸= 0. Therefore, we can conduct sensitivity analysis by setting ξ1 to a range of

different fixed values and estimating ψ to see how sensitive the estimated treatment regime

is to unmeasured confounding. Refer to Robins et al. (1999) and Hernan and Robins (2020)

for additional details on G-estimation and this approach to conducting sensitivity analysis

for unmeasured confounding.
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We conducted a simulation study to examine the performance of this method using the

same generative model as the one-stage study in the main paper. Therefore, the generative

modes were given by:

U ∼ N(0, σ2
u),

X1 = ϕ10 + ϕ11U + ϵx1 , ϵx1 ∼ N(0, σ2
x1
),

X2 = ϕ20 + ϕ21U + ϵx2 , ϵx2 ∼ N(0, σ2
x2
),

P(A = 1|X = x, U = u) = [1 + exp {−(α0 + α1x1 + α2x2 + α3u)}]−1 ,

Y = β0 + β1X1 + β2X2 + βuU + A(ψ0 + ψ1X1 + ψ2X2) + ϵy, ϵy ∼ N(0, σ2
y),

and the parameter values used were again given by:

ψ = (ψ0, ψ1, ψ2) = (−1, 0.5, 0.5), α = (α0, α1, α2, α3) = (0, 1, 1, 2),

ϕ1 = (ϕ10, ϕ11) = (0, 1), β = (β0, β1, β2, βu) = (1, 1, 1, 2),

ϕ2 = (ϕ20, ϕ21) = (0,−1), σ2
u = σ2

x1
= σ2

x2
= σ2

y = 1.

To compare this procedure to our proposed sensitivity analysis we will again use a Monte

Carlo approach and posit distributions for the bias parameter ξ1. For each Monte Carlo

repetition, we take a bootstrap sample and sample ξ1 from the posited distributions. We

then calculate a bias adjusted estimate of ψ using G-estimation. A point estimate for ψ is

then given by the mean across the Monte Carlo repetition and we construct a confidence

interval by taking percentiles across the repetitions.

As before, we will use four different simulation settings given by (i) narrow normal,

centered properly; (ii) wide normal, centered properly; (iii) narrow normal, off-center; (iv)

wide normal, off-center. For scenario (i), we posited distributions for ξ1j given by ξ
(b)
1j ∼

N(ξ1j, 0.1) for j = 0, 1, 2. For the wide distributions settings we increased the variance to

0.5 and for the off-center simulations we centered the distribution at the true value of ξ1j
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plus 0.1. For this data generating model, ξ1 = (ξ10, ξ11, ξ12) is given by (0.52, 0, 0). We will

conduct two different simulation studies. The first will assume we know ξ11 and ξ12 and only

sample ξ10 from the posited distribution. The bias parameters used at each Monte Carlo

repetition is then given by ξ
(b)
1 = (ξ

(b)
10 , 0, 0). The second will sample all three bias parameters,

(ξ
(b)
10 , ξ

(b)
11 , ξ

(b)
12 ), to calculate a bias adjusted estimate for each Monte Carlo repetition.

Figure 7 displays boxplots for the estimate of ψ under each of the simulation settings

when we assume we know ξ11 and ξ12. For ψ0, adjusting for the unmeasured confounder

using a narrow, correctly centered distribution for ξ10 reduces the rMSE from 1.104 to 0.188.

The estimate of ψ0 is sensitive to misspecification of the parameter distribution with the

incorrectly centered distribution resulting in an rMSE of 0.383 and 0.488 for the narrow

and wide distributions, respectively. The bias adjusted estimates of ψ1 and ψ2 were worse

than the unadjusted estimate with the rMSE increasing from 0.204 to 0.316 for ψ1 and

0.125 to 0.184 for ψ2 with the narrow, correctly centered bias parameter distribution. Table

11 shows the coverage and width of confidence intervals for the G-estimation sensitivity

analysis. The confidence intervals were overly conservative with coverage above the nominal

rate of 95% and far wider than those produced by our proposed Monte Carlo sensitivity

analysis for all parameters and bias parameter distributions. Table 12 contains the proportion

of new patients whose treatment recommendation under each of the estimated treatment

regimes matches that of the true optimal regime. The adjusted treatment regime significantly

improves upon the unadjusted regime with 93% of patients receiving the optimal treatment

for the narrow, centered bias distribution. The performace was worse than our proposed

Monte Carlo sensitivity analysis in which 95.6% of new patients were recommended the

same treatment as the true optimal regime.

Figure 8 shows boxplots for the estimates of ψ when we do not assume we know the

true value of any of the bias parameters and therefore posit distributions and sample from

them for ξ10, ξ11, and ξ12. The results for this method were poor with the bias adjusted
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Figure 7: Boxplots of the point estimates for ψ under an unadjusted model and when using
G-estimation sensitivity analysis to adjust for bias due to unmeasured confounding for the
1-stage data generating model when we assume we know ξ11 and ξ12.

Table 11: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ
for the G-estimation sensitivity analysis under each of the posited parameter distributions
for the 1-stage data generating model when we assume we know ξ11 and ξ12. * indicates
coverages that are significantly different than 95%.

Parameter Distr. Cvr. (Wth.) ψ0 Cvr. (Wth.) ψ1 Cvr. (Wth.) ψ2

Narrow, Centered 1.000* (3.382) 0.969* (1.708) 0.969* (1.064)
Wide, Centered 1.000* (8.076) 0.984* (2.122) 0.993* (1.899)

Narrow, Off-center 1.000* (3.889) 0.968* (1.990) 0.971* (1.295)
Wide, Off-center 1.000* (8.316) 0.986* (2.277) 0.994* (2.057)

estimates having a larger rMSE than the undjusted estimates for each of the parameters.

Table 14 displays the coverage and width of 95% confidence intervals for ψ for each of the

simulation settings. The coverage for all confidence intervals was 100% with intervals that

were significantly wider than those generated by our proposed sensitivity analysis procedure.

This indicates that the estimated regime is far more sensitive to differences in the bias

19



Table 12: Proportion of patients whose recommended treatment when following each of the
estimated regimes resulting from G-estimation sensitivity analysis matches the recommen-
dation of the true optimal regime for the 1-stage data generating model when we assume we
know ξ11 and ξ12.

Parameter Distr. Proportion Optimal
Unadjusted 0.521

Narrow, Centered 0.930
Wide, Centered 0.923

Narrow, Off-center 0.929
Wide, Off-center 0.927

parameters for the G-estimation analysis. Table 13 displays the proportion of new patients

who receive the same treatment as the true optimal regime under each of the estimated

regimes. Even though the rMSE is greater for the estimate of ψ the estimated regime

increases the optimal proportion from 0.524 to 0.903 for the narrow, correctly centered bias

distribution. This is due to the direction of the bias in the estimate of ψ0. The optimal

proportion for the adjusted G-estimation analysis is still below the proposed Monte Carlo

sensitivity analysis which resulted in 95.6% matching the optimal when using the same bias

parameter distributions.

Table 13: Proportion of patients whose recommended treatment when following each of the
estimated regimes resulting from G-estimation sensitivity analysis matches the recommen-
dation of the true optimal regime for the 1-stage data generating model.

Parameter Distr. Proportion Optimal
Unadjusted 0.524

Narrow, Centered 0.903
Wide, Centered 0.924

Narrow, Off-center 0.916
Wide, Off-center 0.921
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Figure 8: Boxplots of the point estimates for ψ under an unadjusted model and when using
G-estimation sensitivity analysis to adjust for bias due to unmeasured confounding for the
1-stage data generating model.

Table 14: Coverage (Cvr.) and average width (Wth.) of the 95% confidence intervals for ψ
for the G-estimation sensitivity analysis under each of the posited parameter distributions
for the 1-stage data generating model. * indicates coverages that are significantly different
than 95%.

Parameter Distr. Cvr. (Wth.) ψ0 Cvr. (Wth.) ψ1 Cvr. (Wth.) ψ2

Narrow, Centered 1.000* (10.430) 1.000* (9.785) 1.000* (16.789)
Wide, Centered 1.000* (18.999) 1.000* (18.419) 1.000* (19.947)

Narrow, Off-center 1.000* (10.081) 1.000* (9.552) 1.000* (16.241)
Wide, Off-center 1.000* (18.083) 1.000* (17.853) 1.000* (19.887)
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E Alternative MCSA using KPWA Data

In the main paper, we evaluated assessing the bias in the estimated regime to reduce depres-

sion symptoms when obesity is unmeasured using EHR data from KPWA. For this analysis,

we replicated using a secondary data set to posit models for the bias parameters by taking

a random sample of 250 patients. We also conducted sensitivity analysis using the same

outcome and unmeasured confounder models, but with different distributions posited for

the bias parameters. We first estimated βu and ζ using the full data. We then considered

obesity to be unmeasured and posited normal distributions for βu and ζ that are centered at

the estimated values of the parameters with standard deviations equal to 0.05 for βu, 0.05

for ζ0, and 0.1 for ζj for j = 1, . . . , 6. The smaller standard deviation for ζ0 reflects that we

have less uncertainty in the prevalence of obesity in our population of interest.

Table 15 contains estimates and confidence intervals for ψ after adjusting for the bias

using the proposed MCSA as well as from the full model and the model with obesity un-

measured. The estimates of ψ after adjusting for the unmeasured obesity were close to the

estimates from the full model with obesity included.

Table 15: Estimates and 95% confidence intervals for treatment decision rule parameters ψ
from models with and without obesity and adjusted estimates from the sensitivity analysis
for unmeasured confounding of obesity.

Covariate Full Model Obesity Unmeasured Adjusted Est.
A -1.56 (-3.11, 0.00) -1.46 (-3.02, 0.10) -1.57 (-3.33, 0.10)

A × SEX 0.72 (-0.34, 1.79) 0.69 (-0.38, 1.76) 0.73 (-0.59, 2.06)
A × AGE 0.00 (-0.03, 0.03) 0.00 (-0.03, 0.03) 0.00 (-0.04, 0.04)
A × PHQ 0.12 (0.02, 0.22) 0.12 (0.02, 0.22) 0.12 (0.01, 0.24)
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F KPWA Data

Table 16: Estimated value of β and standard errors from the KPWA data used to generate
the data for the plasmode simulation study.

Covariate Estimate Std. Error
Intercept -0.85 0.58
SEX -0.88 0.38
AGE 0.02 0.01
PHQ -0.43 0.04

OBESE -0.99 0.27

Table 17: Estimated value of ψ and standard errors from the KPWA data used to generate
the data for the plasmode simulation study.

Covariate Estimate Std. Error
A -1.56 0.79

A × SEX 0.72 0.54
A × AGE 0.00 0.01
A × PHQ 0.12 0.05
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Table 18: Estimated value of ζ and standard errors from the KPWA data used to generate
the data for the plasmode simulation study.

Covariate Estimate Std. Error
Intercept -1.26 0.33
AGE 0.01 0.00
PHQ 0.04 0.01
Black 0.86 0.40

Hispanic 0.55 0.36
Hawaiian/Pacific Islander 1.35 0.68

Indigenous 0.32 0.49
White 0.58 0.27

Other Race 1.45 0.83
Unknown Race 0.81 0.43

EDU 0.46 0.11
ANX -0.21 0.12
A -0.49 0.13
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