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Probabilistic volumetric speckle
suppression in OCT using deep
learning: supplemental document

The Tomographic Non-local-means despeckling (TNode) technique we previously published [1]
for reducing speckle in Optical Coherence Tomography (OCT) is based on constructing a weighted
similarity criterion that follows the statistics of speckle within a three-dimensional similarity
window. Significant improvements have been introduced since the first implementation up to the
present day regarding computational efficiency, despeckling performance, and implementation
versatility. This document outlines the improvements made in the current implementation of
TNode that will be publicly accessible after the review of this article.

1. IMPROVEMENTS IN COMPUTATIONAL EFFICIENCY

One of the most significant changes in the new implementation of TNode is its computational
efficiency, which was greatly improved by implementing GPU-based processing. We extended
the B-scan-wise processing to a subvolume-wise processing with a user-defined size, which can
be tuned to optimize the memory overhead. Additionally, a wrapper function is now available to
use multiple GPUs simultaneously.

The compounded probability of the similarity criterion is computed via summation of the
logarithmic probabilities over the similarity window. In the original version TNode2018, this
compounded probability is computed via convolution with a kernel using MATLAB’s built-in
function. In the updated version TNode2023, we use for loops to compute the convolution, which
we found to perform faster given the relatively small similarity windows.

To illustrate the difference in computational efficiency, Table S1 displays the processing time
of the TNode2018 and TNode2023 necessary to despeckle one retinal volume acquired with the
ophthalmic system. The volume had dimensions 400×896×960 (depth samples×A-lines per
Bscan×B-scans per volume) with two polarization detection channels. We processed it with two
computer systems; a laptop with standard capabilities having an AMD Ryzen 9 processor and a
6 GB NVIDIA RTX 2060 GPU, and a server with advanced capabilities having an AMD Ryzen
Threadripper PRO 5975WX and a 20 GB NVIDIA RTX A4500 GPU. The search and similarity
windows were set to 17 × 17 × 17 px3 and 7 × 7 × 7 px3 respectively. For TNode2018, an A-line
block size of 90 was used, which required a minimum of 28 GB of free RAM. For TNode2023, a
subvolume block size of 16 × 32 × 32 px3 was used, which required at least 14.3 GB of free GPU
memory.

It is worth noting that the processing time shown in Table S1 for the tomogram used in the
example is significantly lower with TNode version 2023 compared to version 2018 by one order
of magnitude making it more practical to use.

Table S1. Comparison of the processing times of TNode version 2018 and 2023

Computer system TNode2018 TNode2023

Laptop 5136 min 655 min

Server 1996 min 230 min

Ease of testing different h0 and h1 parameters
Tuning the hyperparameters h0 and h1 is important to obtain optimal results; they control the
overall speckle reduction and regularize the speckle reduction as a function of signal-to-noise
ratio (SNR), respectively, as explained in detailed in Ref. [1]. In order to speed up the manual
tuning of h0 and h1, TNode2023 can receive multiple values of h0 and h1 at a time, which are
used independently to despeckle the input tomogram in a single run, ultimately providing an
output tomogram for each pair of input hyperparameters. We found this approach to be less
time-consuming than making multiple individual runs.



2. IMPROVEMENTS IN DESPECKLING PERFORMANCE

Apodization
We integrated new features that improve the performance of TNode. First, we added a new
apodization kernel to pre-shape the similarity window, which can have a default shape such as
unitary (equivalent to TNode2018), triangular, or Gaussian, or can be provided by the user as a
vector. The apodization kernel is separable by construction.

Additional compounding
Input tomograms in TNode2023 can be five-dimensional. The similarity criterion is by default
compounded along the entire 4th dimension. In practice, the tomograms from the two polarization
detection channels of a system with polarization-diverse detection can be concatenated along
the 4th dimension for compounding their probabilities. The 5th dimension is managed in the
same way as the three spatial dimensions, therefore the similarity and search windows are now
extended to be four-dimensional. Alternatively, if the similarity and search widows are 3D, then
no compounding is performed along the 5th dimension. This feature can be used to process
multiple independent tomograms in parallel in a single run.

Pruning
We added a pruning functionality to TNode2023 which was introduced in the past and shown
to improve the performance of non-local means denoising without increasing processing time
significantly [2]. Pruning consists of setting to zero the weights within a user-defined percentile
value, thus maintaining only the voxels with significant similarity. This helps to avoid the
over-filtering caused by the presence of a large number of voxels with low similarity.

Definition of noise floor level
The hyperparameter h1 regulates the speckle reduction as a function of SNR. The computation
of the SNR requires the user to input the level of the noise in the absence of a signal, commonly
known as noise floor, which in TNode2018 consists of a scalar value. However, it is known that
the noise floor can be depth-dependent, therefore, in TNode2023, the input noise floor can be a
vector with the same number of depth samples per A-line as the input tomogram to account for a
depth-dependent noise floor.

Visual comparison of TNode versions
Figure S1 shows a comparison of speckle suppression with TNode2018 and TNode2023 for an
en-face image of the fovea of an eye acquired with the ophthalmic system. The images display
capillaries that are more clearly observed in the image with TNode2023, a benefit that we mostly
attribute to the pruning functionally in this particular example.

3. SPECKLE REDUCTION IN RETINAL NERVE FIBER LAYER USING DL-TNODE-3D

Figure. S2 shows speckle reduction in retinal nerve fiber layer for the same volume shown in
Figure.3 of the manuscript. DL-TNode-3D enhanced the contrast and nerve fiber bundles became
much clearer and easier to identify, similar to ground-truth TNode.

4. DL-TNODE-3D TRAINING

Typical training loss plots that we obtained during DLTNode-3D training are plotted in Figure. S3.
DL-TNode-3D model trained on the three OCT systems showed similar stable learning curves,
where the discriminator loss exponentially reduced and converged to 2ln 2. And the generator
loss, showed similar behaviour with epochs. We selected model weights corresponding to the
discriminator loss 2ln 2 with lower generator loss for inference in the later stages.
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(a) TNode2018 (b) TNode2023

Original

Fig. S1. Comparison of speckle reduction with TNode in an en-face image of the fovea of
a healthy volunteer using (a) the original version TNode2018 and (b) the updated version
TNode2023. The capillaries in the densely populated areas that are shown in the insets are
better preserved with TNode2023, furthermore, the contrast with respect to the background
is slightly higher with TNode2023. We also included insets from the original tomogram.
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Fig. S2. En-face views of retinal nerve fiber layer before and after despeckling using TNode
(i.e.Ground Truth) and DL-TNode-3D. DL-TNode-3D produces OCT volumes close to the
ground truth without any visible artifacts, y. z is the depth and x(y) is the fast- (slow-) scan
axis direction. Directions: S: Superior, T: Temporal, N: Nasal, I: Inferior. Scale bars = 0.5 mm.
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Fig. S3. The typical generator and discriminator loss curves of DL-TNode-3D training.
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