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S1 Proof for the Generalized Adder

Consider a cell born at time t = t0 with initial size s(t0) = sb.
Throughout the cell cycle, the monotonically increasing cell size
s(t) is given as the solution to (1). The cell division event oc-
curs, at any point in the cell cycle, stochastically with a propensity
given by f (s, t−t0)h(∆(t−t0)). Consequently, the cell-cycle dura-
tion τd is a random variable with the cumulative density function
(CDF) [1] satisfying:

P(τd < x |sb) = 1 − e−
∫ t0+x

t0
f (s,t−t0)h(∆(t−t0))dt . (S1)

Using the transformation z = ∆(t − t0) = s(t) − s(t0), it follows
that

dz
dt

=
ds
dt

= f (s, t − t0). (S2)

Using ∆(0) = 0, (S1) can be rewritten as

P(τd < x |sb) = 1 − e−
∫ ∆(x)

0 h(z)dz . (S3)

Since ∆(τ ) is a strictly monotonically increasing function of τ ,

P(∆d < ∆(x)|sb) = P(∆(τd ) < ∆(x)|sb) = P(τd < x |sb), (S4)

which, from (S3), implies

P(∆d < ∆(x)|sb) = 1 − e−
∫ ∆(x)

0 h(z)dz . (S5)

This results in the CDF

P∆d (y ) = P(∆d < y |sb) = 1 − e−
∫ y

0 h(z)dz , (S6)

with the probability density function (PDF)

p∆d (y ) =
dP∆d (y )

d∆d
= h(y )e−

∫ y
0 h(z)dz . (S7)

Data: CV 2
∆d

, ⟨∆d⟩, tmax > 0, sb, µ
Result: {times = [τ 1

d , τ 2
d , · · · , τN

d ],
sizes = [s1, s2, · · · , sN ]}
∆1

d ∼ p∆d ;
s1 = sb;
τ 1

d = {τ |∆(τ ) = ∆1
d};

times = [τ 1
d ];

sizes = [s1];
τmin = τ 1

d ;
τ = τmin;
if τ < tmax then

while τ < tmax do
i∗ = argmin(times);
τmin = min(times);
for i = 0; i < length(times); i = i + 1 do

times[i ] = times[i ] − τmin;

sizes[i ] = sizes[i ] +
∫ τmin

0
dsi

dt dt ;
end
sizes[i∗] = sizes[i∗]/2;
∆i∗

d ∼ p∆d ;
times[i∗] = {τ |∆(τ ) = ∆i∗

d };
N = length(times);
∆N+1

d ∼ p∆d ;
sizes[N + 1] = sizes[i∗];
times[N + 1] = {τ |∆(τ ) = ∆N+1

d };
i∗ = argmin(times);
τmin = min(times);
τ = τ + τmin;

end
end
for i = 0; i < length(times); i = i + 1 do

times[i ] = times[i ] − (tmax − (τ − τmin));

sizes[i ] = sizes[i ] +
∫ tmax−(τ−τmin)

0
dsi

dt dt ;
end

Algorithm 1: The algorithm simulates the proliferation of a single
colony using the adder division strategy. It takes into account the
mean added size, ⟨∆d⟩, the variability of this size, represented by
CV 2

∆d
, and the maximum simulation time, tmax . The algorithm cal-

culates the array times, which indicates the time remaining until the
next division for all cells in the colony. Simultaneously, it generates
the array sizes, which contains the sizes at the time of division. The
population is estimated by counting the number of elements in the
times array. ∆d is an independent identically gamma-distributed with
its parameters detailed in equation (S9).
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Figure S1: Dynamics of population noise for different nonlinearities in the cell size growth law. (A) Examples of cell size trajectories for
different growth laws. We consider four cases of ds

dt = µ s
1+sα , with α ∈ {0, 1, 2, 3}. (B) Noise in cell population (CV 2

N ) vs. time (t) for CV 2
∆d

= 0.1
and different nonlinear growth laws explained in (A). (C) Noise in cell biomass (CV 2

B ) vs. time (t) for CV 2
∆d

= 0.1 and different nonlinear growth laws.

Parameters: ⟨sb⟩ = ⟨∆d⟩ = 1, CV 2
sb =

CV 2
∆d
3 according to (10) since CV 2

β = 0. ∆d follows a gamma distribution. All cells have the same µ, chosen
depending on α such that ⟨N⟩ doubles every unit of time. Division is considered to be perfectly symmetric with probability one (⟨β⟩ = 0.5, CV 2

β = 0).

S2 Simulation details for the cell proliferation us-
ing the adder division

In this section, we present the algorithm used to simulate cell
proliferation according to the adder division strategy. The pseu-
docode for this simulation is provided in Algorithm 1. The key pa-
rameters involved include the growth rate, denoted by µ (which
represents the growth rate for exponential increases in cell size),
the progenitor cell size sb, the maximum simulation time tmax , the
mean added size ⟨∆d⟩, and its associated noise CV 2

∆d
.

An important input for the simulation is the progenitor cell size
sb, which follows similar statistics to any other newborn cell and
is characterized by a size variability CV 2

sb
and a mean size ⟨sb⟩.

We set ⟨sb⟩ and ⟨∆d⟩ to a value of 1.
To focus our simulation on the implications of the adder di-

vision strategy without delving into the specifics of the underly-
ing mechanism, we parameterize the simulation using the added
size statistics: the mean ⟨∆d⟩ and the noise CV 2

∆d
. We assume

that the added size, ∆d , follows a gamma distribution:

p∆d (y ) =
1

Γ(γ)θ

(y
θ

)γ−1
e− y

θ , (S8)

where Γ(γ) is the gamma function, and the shape γ and scale
θ parameters are estimated from ⟨∆d⟩ and CV 2

∆d
using the fol-

lowing equations:

γ =
1

CV 2
∆d

, θ = ⟨∆d⟩ · CV 2
∆d

. (S9)

Given ∆d for a particular cell cycle, we estimate the cycle du-
ration τd based on the growth law. This is done from the size at
birth, sb, and the growth law. Once the added size evolves ac-
cording to the dynamics described by equation (3) and ds

dt > 0,

the cycle duration can be uniquely determined as the solution to
τd := {τ |∆(τ ) = ∆d}, where ∆(τ ) is defined in (2).

For example, if we assume that cells grow at an exponential
rate µ, the division size sd follows the relationship sd = sbeµτd .
In terms of the added size ∆d , this relationship can also be ex-
pressed as sd = sb + ∆d . Consequently, cell cycle duration τd

can be determined in terms of ∆d and sb as:

τd := {τ |∆(τ ) = ∆d} =
1
µ

ln

(
sb + ∆d

sb

)
. (S10)

For more complex growth laws, this equation would need to be
solved numerically.

The durations of all N cell cycles, denoted as τ i
d for each cell

i ∈ {1, ... , N}, are stored in an array called times. Similarly, all
cell sizes at division, si

d , are stored in an array called sizes. Dur-
ing each iteration, the minimum cycle duration, τmin, correspond-
ing to a specific cell i∗, is identified. This τmin is then subtracted
from all τ i

d , and a new cell is generated with a birth size of si∗
d /2.

The new cell is assigned a label N + 1.

After generating the corresponding added size ∆N+1
d , the cell

cycle duration τN+1
d is estimated and stored in the times array. A

similar process of cell division and cycle duration estimation is
performed for the original cell i∗ that just divided. The simula-
tion time is then incremented by τmin, and the process repeats
until the time to the next division exceeds tmax . At that point, the
remaining time to tmax is subtracted from all times to division. Fi-
nally, the number of cells is determined by the length of the times
array.
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Figure S2: Effect of different noise sources and cell size control on the dynamics of clonal size variability. (A) Examples of cell size dynamics
considering different sources of noise. For better illustration, the added size is deterministic ⟨∆d⟩ = 1, CV 2

∆d
= 0. Different colors represent different

cells neglegting their descendants. (B) Dynamics of the variability of the population number CV 2
N vs. time (t) for different sources of noise and

CV 2
∆d

= 0.1. (C) Variability in biomass CV 2
B vs. time (t) for different sources of noise and CV 2

∆d
= 0.1. (left) Dynamics considering different noise

in progenitor cell size CV 2
sb . (center) Dynamics for different noise in cell partioning CV 2

β . (right) Dynamics considering different noise in progenitor
cell size CV 2

µ. Parameters: ⟨µ⟩ = ln(2), ⟨sb⟩ = ⟨∆d⟩ = 1, ⟨β⟩ = 0.5. The progenitor size (sb) is gamma-distributed with specific noise (CV 2
sb ). β is

beta-distributed with ⟨β⟩ = 0.5 and specific noise (CV 2
β). The growth rate (µ) is gamma-distributed with ⟨µ⟩ = ln(2) and specific noise (CV 2

µ).

S3 Effects of a non linear growth law on popula-
tion randomness

In the main article, we compare the dynamics of CV 2
N for two ex-

amples of different growth laws: µs and µs
1+s2 . Here, we extend

our analysis by using our simulator to estimate colony dynamics
under additional growth laws. To explore a range of represen-
tative cases, we consider the function ds

dt = µs
1+sα . This function

allows us to model various growth behaviors:

• For α = 0, we obtain exponential growth.

• For α = 1, the model represents exponential growth that
saturates to linear growth as cells become larger, a behavior
recently observed in some bacteria [2].

• α = 2 was previously reported in a heuristic model [3].

• For α = 3, the growth rate decreases more rapidly with in-
creasing cell size, which can be used to model organisms
such as yeast, where the growth of the mother cell slows
significantly after reaching maturation.

Figure S1A shows examples of cell size dynamics for each
selected growth scenario. The initial cell size, sb, is treated as
a random variable with statistics ⟨sb⟩ = ⟨∆d⟩ and noise CV 2

sb
,

which is related to the noise in added size according to equation
(9b), while ignoring partitioning effects:

CV 2
sb

=
1
3

CV 2
∆d

. (S11)

The dynamics of CV 2
N are illustrated in Figure S1B, where it is

evident that the behavior of CV 2
N is similar across different growth

laws before the first division, but diverges significantly in subse-
quent generations. Specifically, exponential growth leads to ro-
bust oscillations, whereas other growth scenarios exhibit damped
dynamics. A comparison between these dynamics and the dy-
namics of biomass noise, CV 2

B , is shown in Figure S1C. As de-
scribed in the main text, the noise in biomass exhibits an asymp-
totic behavior similar to the noise in population number, though
with distinct transient dynamics. Interestingly, under non-linear
growth conditions, CV 2

B initially decreases during the first gener-
ation but then increases rapidly in subsequent generations.

S4 Effects of different noise sources on the dy-
namics of CV 2

∆d

In the main article, we examine two primary sources of variabil-
ity in cell colonies that grow and divide according to the adder
model. The first source of variability is the noise in cell cycle
duration, τd . This noise can be adjusted by considering multiple
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division steps or by modeling the division propensity. The second
source of variability is the non-linearity of the growth law, ds/dt .

In this section, we explore how additional sources of noise
impact overall variability in the colony population, quantified as
CV 2

N . Specifically, we consider the noise in progenitor cell size,
partitioning noise, and growth rate noise. For simplicity, we
present examples where the growth law is proportional to cell
size, indicating exponential growth. The results can be qualita-
tively extended to non-exponential growth.

Noise in the initial progenitor cell size

Let sb be the size of the colony’s ancestor cell at t = 0. For sim-
plicity, Figure 3 assumes that this progenitor cell begins its dy-
namics with a size sb = ⟨∆d⟩ = 1 with probability one. However,
experimentally, sb exhibits variability that approximately follows
the expression (S11) [4,5].

We can extend our analysis to the more general case where sb

has any degree of noise. To understand how population growth
dynamics are influenced by variability in progenitor size, consider
that the progenitor cell size sb at t = 0 is now treated as a random
variable. The progenitor will grow exponentially at a rate µ. We
define the sequence of division event times as t1, t2, ... , tJ , where
0 < t1 < t2 < · · · < tJ < t , measured from the beginning of the
experiment, with J ∈ N representing the total number of division
events before time t . From this sequence, we can show that the
size of a cell at time t is given by [6]:

s(t ; J, sb) = sb
exp (µt)

2J
. (S12)

Figure S2A (left) illustrates several cell size trajectories with
different initial sizes. To simplify the concept, the trajectories
shown in Figure S2A (left) assume a deterministic added size
with CV 2

∆d
= 0. However, this explanation can be extended to

the general case where CV 2
∆d

> 0. Notice that the primary ef-
fect of a noisy progenitor cell size is a variation in the phase of
the cells. This means that while the cells exhibit similar periodic
dynamics, the time of division varies, maintaining approximately
the same interval between divisions for cells with ancestors of
different sizes. Specifically, smaller progenitors typically experi-
ence a longer delay before their first division compared to larger
progenitors. After this initial division, the cell population grows
asymptotically at an exponential rate. As a result, colonies de-
rived from smaller cells generally have a smaller population than
those derived from larger cells.

We consider the size of the progenitor cell to be drawn from
a gamma distribution with a mean ⟨sb⟩ and random variability
quantified by the squared coefficient of variation, CV 2

sb
. A key

consequence of increasing CV 2
sb

is an amplification of noise in
population fluctuations. Specifically, CV 2

N does not converge to
zero, but instead oscillates and stabilizes at a finite value close
to CV 2

sb
as t approaches infinity (Figure S2B, left). In contrast,

biomass variability does not change over time, as biomass in all
colonies grows deterministically according to equation (13). The
corresponding biomass noise is illustrated in Figure S2C, left.

Noise in cell size partitioning

Another source of noise that can influence the dynamics of CV 2
N

is the variability in size partitioning, where cells are not divided
exactly in half. As illustrated in Figure 1A (center), we can simu-
late this by multiplying the cell size by a random variable β after

each division, where ⟨β⟩ = 0.5 and the variability is quantified by
CV 2

β > 0. This implies that the size of a particular cell after J
divisions follows:

s(t ; J, sb) = sb exp (µt)
J∏

j=1

βj , (S13)

where βj is the division parameter for the j-th division. In our
simulation, we assume that β follows a beta distribution with
⟨β⟩ = 0.5 and the desired CV 2

β .
Although this partitioning noise affects cell size statistics, it

does not alter the total biomass, and therefore the asymptotic
value of CV 2

N still approaches zero as t → ∞ (Figure 1B, cen-
ter). As CV 2

β increases, the oscillations in CV 2
N become more

damped, but CV 2
N continues to trend towards zero over time. The

example trajectories in Figure 1A (center) show how cells lose
their cell cycle syncronization over time after a division with parti-
tioning noise. However, while one of the descendant cells may be
smaller than expected due to noise, other cells tend to be larger.
In general, the effects on each descendant cell seem to balance
each other out, leaving the noise in the biomass negligible (Fig-
ure 1C, center).

Noise in growth rate

In general, cells in a population grow at different rates. There-
fore, the observed population growth rate is an average. In the
main text, for illustration, we assume that cells grow at a constant
deterministic rate µ throughout all cell cycles. This deterministic
growth assumption provides a baseline for our analysis. To in-
corporate stochasticity from various sources, we now consider
the growth rate to be a random variable. Specifically, after each
division j , a cell grows during that cycle at a rate µj , where µj is
an independent and identically distributed (i.i.d.) variable drawn
from a gamma distribution centered on µ with variability quanti-
fied by CV 2

µ. We neglect any correlations in growth rate between
successive cycles [4,7,8] or correlations with other variables such
as size at birth [7]. In the scenario of zero partitioning noise, the
size s at time t after J divisions, each occurring at time tj , is given
by:

s(t , J, sb) =
sb

2J

(
J−1∏
j=0

exp
(
µj (tj+1 − tj )

))
exp (µJ (t − tJ )) .

(S14)
Figure S2A (right) shows examples of cell size trajectories over

time under this type of stochastic growth. Notice that not only do
cells lose synchronization in their division times, but cells that
grow more slowly also proliferate at a slower rate. The effect
of this noise in growth rate on CV 2

N is depicted in Figure S2B
(right), where CV 2

µ is increased while keeping the mean added
size ⟨∆d⟩ constant. The main observation is that population fluc-
tuations, CV 2

N , exhibit damped oscillations, and CV 2
µ influences

the asymptotic limit of CV 2
N as t → ∞.
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