Science Immunology

Supplementary Materials for

Ikaros is a principal regulator of Aire⁺ mTEC homeostasis, thymic mimetic cell diversity, and central tolerance

Jun Hyung Sin et al.

Corresponding author: Michael R. Waterfield, michael.waterfield@ucsf.edu

Sci. Immunol. **8**, eabq3109 (2023) DOI: 10.1126/sciimmunol.abq3109

The PDF file includes:

Figs. S1 to S15 Table S1 Legends for data S1 to S3

Other Supplementary Material for this manuscript includes the following:

Data S1 to S3 MDAR Reproducibility Checklist

Fig. S1 – *Ikzf1* is efficiently deleted in *Foxn1*-Cre/*Ikzf1*^{fl/fl} mTECs. (A) Relative expression of *Ikzf1* mRNA in stromal cells. Downloaded from the Immgen expression database. *Ikzf1* is highly expressed in medullary thymic epithelial cells (MEC^{hi}). (**B**) Relative expression of *Ikzf1* mRNA in sorted MHC-II^{high} mTECs and lymph node CD4⁺ T cells, CD8⁺ T cells, and CD19⁺ B cells from C57BL/6 mice. (C) Relative expression of *lkzf1* mRNA in sorted MHC-II^{high} mTECs from *Foxn1*-Cre(-)/*lkzf1*^{fl/fl}, *Foxn1*-Cre(+)/*lkzf1*^{+/fl}, and *Foxn1*- $Cre(+)/Ikzfl^{fl/fl}$ mice. (n = 4 mice per genotype). (**D**) Relative expression of *Ikzfl* mRNA in sorted lymph node CD4⁺ T cells, CD8⁺ T cells, and CD19⁺ B cells from Foxn1-Cre/Ikzf1^{fl/fl} (Ikzf1^{fl/fl}) and Foxn1-Cre/Ikzf1^{+/fl} $(Ikzf1^{+/fl})$ mice. (n = 4 mice per genotype). (E) Relative expression of Ikzf1 mRNA in sorted splenic CD4⁺ T cells, $CD8^+$ T cells, and $CD19^+$ B cells. (n = 4 mice per genotype). (F) Representative flow cytometry plots of Ikaros levels in splenic CD4⁺ T cells, CD8⁺ T cells and CD19⁺ B cells. (B-E) In graphs, the bar corresponds to

Ikaros

the mean, with error bars showing +/- SD of values shown, and each data point represents an individual mouse. (C) Statistical significance was calculated using one-way ANOVA and grouped comparisons were corrected using Tukey's multiple-comparison test, ****P<0.0001. (D, E) Statistical significance was determined using Student's T-test. NS = not significant.

Fig. S2 – Deletion of *Ikzf1* does not alter thymic architecture. (A) Confocal microscopy of Keratin 5 (KRT5) (red) and Keratin 8 (KRT8) (green) of 30-day old thymi from *Foxn1*-Cre(+)/*Ikzf1*^{+/fl} (*Ikzf1*^{+/fl}) mice and *Foxn1*-Cre(+)/*Ikzf1*^{fl/fl} (*Ikzf1*^{fl/fl}) mice. Scale bars = 100 μ m. (B) Flow cytometry gating strategy for the isolation CD11c⁻EPCAM⁺ CD45⁻LY51⁻IA^{b+}Aire⁺ mTECs and CD11c⁻EPCAM⁺ CD45⁻LY51⁻IA^{b+}DCLK1⁺ thymic tuft cells.

Fig. S3 – *Foxn1*-Cre(+)/*Ikzf1*^{+/fl} and *Foxn1*-Cre(-)/*Ikzf1*^{fl/fl} mice are phenotypically indistinguishable. (A) Flow cytometry (left) and percentage and absolute number (right) of CD11c⁻EPCAM⁺CD45⁻LY51⁻MHC-II^{high}, MHC-II^{low}, and Aire⁺ mTECs from *Foxn1*-Cre(-)/*Ikzf1*^{fl/fl} mice, *Foxn1*-Cre(+)/*Ikzf1*^{+/fl} mice, and *Foxn1*-Cre(+)/*Ikzf1*^{fl/fl} mice. (n = 3 mice per genotype). (B) Confocal microscopy of Aire (red) and KRT5 (green) from 30-day old thymi. Scale bars = 100 μ m and 20 μ m for inset. (C) Flow cytometry (left) and percentage and absolute number (right) of CD11c⁻EPCAM⁺ CD45⁻LY51⁻IA^{b+}Ki67⁺ mTECs. (n = 5 mice per genotype). (A and C) In graphs, the bar corresponds to the mean, with error bars showing +/- SD of values shown, and each data point represents an individual mouse. (A) Statistical significance was calculated using one-way ANOVA and grouped comparisons were corrected using Tukey's multiple-comparison test, **P<0.01, ***P<0.001, ****P<0.0001. NS = not significant. (C) Statistical significance was determined using Student's T-test, *** P<0.001, **** P<0.0001.

Fig. S4 – *IKZF1* is present in human mTECs. (A) Violin plots of marker genes for specific mTEC subsets from murine scRNA-seq data. (B) UMAPs of scRNA-seq data from human thymic epithelial cells. Arrows denote the mTEC subset with increased *AIRE* and *IKZF1* expression. (C) Flow cytometry (left) and percentage and absolute number of CD11c⁻EPCAM⁺CD45⁻LY51⁻Aire⁺ and DCLK1⁺ mTECs in 6-month-old *Foxn1*-Cre/*Ikzf1*^{+/fl} mice and *Foxn1*-Cre/*Ikzf1*^{+/fl} mice. (n = 2 mice per genotype). (D) Representative

immunohistochemistry images of 30- day-old thymi stained with DCLK1 (5 μ m sections). Scale Bar = 100 μ m. (C) In graphs, the bar corresponds to the mean, with error bars showing +/- SD of values shown, and each data point represents an individual mouse. (C) Statistical significance was determined using Student's T-test. *P<0.05, **P<0.01, ***P<0.001.

Fig. S5 – Expression of DCLK1 and IL-25 overlap in tuft cells. (A) Flow cytometry of CD11c⁻EPCAM⁺ CD45⁻LY51⁻DCLK1⁺ and CD11c⁻EPCAM⁺CD45⁻LY51⁻L1CAM⁺ tuft cells in C57BL/6, *Foxn1*-Cre(-)/*Ikzf1*^{fl/fl}, and *Foxn1*-Cre(+)/*Ikzf1*^{fl/fl} mice. (B) Principal component analysis of bulk RNA-seq data from sorted L1CAM⁺ tuft cells. Each data point represents tuft cells isolated from an individual mouse. (C) Representative confocal images (25 µm sections) of IL25-RFP (red) and DCLK1 (green) from 30-day old thymi of the indicated genotype. Immunofluorescence (IF) staining of thymic slices at high (40X optical) magnification. Scale bars = 100 µm.

Fig. S6 – Gating strategy for iNKT and CD8⁺ EOMES panels. (**A**) Representative flow cytometry gating strategy for two iNKT subsets: CD1d⁺PLZF1⁺ iNKT2s and CD1d⁺RORγt⁺ iNKT3s. (**B**) Representative flow cytometry gating strategy for CD8⁺EOMES⁺ innate T cells and CD4⁺CD73⁻CD25⁺Foxp3⁺ Tregs.

issue-specific small intestine issue-specific stomach ell-specific: granulocytes mac-1+ gr-1+ issue-specific large intestine ell specific: Raw 264.7 ell specific: b220 B cell ell specific: b220 B cell ell specific: osteoclasts issue-specific bone marrow issue-specific pancreas ell-specific: 373L1 issue-specific: bone issue-specific: bone
issue-specific: trigrminal ganglion
issue-specific: hone
issue-specific: pituatary
issue-specific: bladder
issue-specific: epidermis
issue-specific: salivary gland
issue-specific: thyroid
issue-specific: hypothalamus
issue-specific: NK cells

С

Gene Name	Gene Symbol	Log2Fold Change	Adi p-value	p-value	Tissues
Mucl2	Mucin-like 2	1.913297352	0.529669527	3.47E-05	Salivary gland, lacrimal gland
Pcp4	Purkinie cell protein 4	1.797459199	2.34E-09	1.53E-13	Nervous system
Mt4	Metallothionein	1,73416747	5.21E-05	3.41E-09	Stomach, epidermis
Nts	Neurotensin	1.622555936	0.000922221	6.04E-08	CNS, small intestine
Ccl20	Chemokine ligand 20	1.533744099	0.000111574	7.31E-09	Intestine
Prss29	Protease, serine 29	1.457943407	5.58E-06	3.66E-10	Pancreas, liver
Cck	Cholecystokinin	1.380825312	1	0.000968302	CNS, small intestine
Psors1c2	Psoriasis susceptibility 1 candidate 2	1.379490195	5.87E-17	3.85E-21	Stomach
Hspb1	Heat shock protein 1	1.344302414	0.000514528	3.37E-08	Multiple tissues
Serpinb12	Serine peptidase inhibitor, clade B, member 12	1.29719266	6.38E-12	4.18E-16	Stomach
Camp	Cathelicidin antimicrobial peptide	1.295053433	0.029201447	1.91E-06	Bone, bone marrow
Fam25c	Family with sequence similarity 25, member C	1.274812548	0.003705061	2.43E-07	Epidermis
Avp	Arginine vasopressin	1.273876859	0.049323997	3.23E-06	Hypothalamus
S100a9	S100 calcium binding protein A9	1.266993373	1.30E-11	8.50E-16	Bone, bone marrow
Retnla	Resistin like alpha	1.213130905	0.002056968	1.35E-07	Adipose
Ncf1	Neutrophil cytosolic factor 1	1.198249572	1.55E-30	1.01E-34	Macrophage, bone marrow
Gdf15	Growth differentiation factor 15	1.19522158	9.12E-19	5.97E-23	Macrophage, mast cells
Lyz2	Lysozyme 2	1.195178132	2.77E-19	1.82E-23	Lung, bone marrow
Рру	Pancreatic polypeptide	1.179043297	0.006834122	4.48E-07	Pancrease, adipose
Tkt	Transketolase	1.175051931	1.80E-38	1.18E-42	Adipose, eye
Rarres1	Retinoic acid receptor responder 1	1.169588396	5.86E-08	3.84E-12	Epidermis, liver
Calcb	Calcitonin-related polypeptide, beta	1.166937573	8.92E-28	5.84E-32	Dorsal root ganglia
Sprr1a	Small proline-rich protein 1A	1.166560782	3.29E-13	2.15E-17	Bladder, stomach, uterus
Mucl1	Mucin-like 1	1.161735084	1	8.81E-05	Salivary gland, lacrimal gland
lgfbp6	Insulin-like growth factor binding protein 6	1.148535402	9.26E-05	6.07E-09	Multiple tissues

Fig. S7 – scRNA-seq reveals that *Ikzf1*-deletion results in decreased TSA gene expression. (A) Gene expression in *Foxn1*-Cre/*Ikzf1*^{+/f1} mice (*Ikzf1*^{+/f1}) versus *Foxn1*-Cre/*Ikzf1*^{f1/f1} mice (*Ikzf1*^{f1/f1}) in Aire⁺ mTECs. Blue numbers represent the number of genes increased in *Ikzf1*^{+/f1} mTECs (log2FC>0.25, p<0.05) and red numbers equal the number of genes increased *Ikzf1*^{f1/f1} mTECs (log2FC>0.25, p<0.05). Genes labelled in green are Aire-dependent TSAs and genes labelled in orange are Fezf2-dependent TSA genes. (B) Metascape gene ontology analysis showing pathways downregulated in *Foxn1*-Cre/*Ikzf1*^{f1/f1} Aire⁺ mTECs. (C) Table of top 25 genes downregulated in *Ikzf1*^{f1/f1} Aire⁺ mTECs.

Fig. S8 – **Ikaros regulates TSA gene expression.** (**A**) UMAP visualization of the average expression of TSA genes. Bar graph shows the percentage of Aire⁺ mTECs expressing TSA genes at an expression level of 0.15. (**B**) Violin plots for Aire and Aire-dependent TSA genes in Aire⁺ mTECs. (**C**) Violin plots for Fezf2 and Fezf2-dependent TSA genes in Aire⁺ mTECs. (**D**) Violin plot for the Aire/Fezf2-independent TSA gene *Gad1* in Aire⁺ mTECs.

significance was calculated using one-way ANOVA and grouped comparisons were corrected using Tukey's multiple-comparison test, *P<0.05, ***P<0.001, ****P<0.0001.

Fig. S10 – scATAC-seq identified four mTEC subsets: Aire⁺ mTECs, Late Aire mTECs, Ccl21a mTECs, and tuft cells. (A to C) scATAC-seq data quality control. (A) Number of unique nuclear fragments versus the transcriptional start site (TSS) enrichment of all fragments. (B) Percentage of fragments versus the ATAC-seq fragment size for each genotype (Foxn1-Cre/ $Ikzf1^{+/fl}$ ($Ikzf1^{+/fl}$) versus Foxn1-Cre/ $Ikzf1^{fl/fl}$ ($Ikzf1^{fl/fl}$) mTECs). (C) Normalized TSS enrichment score profile for each genotype. (D to F) TF footprints with motifs for each mTEC subset. Expected Tn5 insertion shown below. (D) TF footprints for select NF- κB family members, (E) Pou2f3, and (F) Ikzf1. (G) Genome track of pseudobulk scATAC-seq for the Pou2f3 locus. (H) Genome track of pseudobulk scATAC-seq for the Aire locus.

Fig. S11 - scATAC-seq replicates the cell composition changes seen in scRNA-seq. (A) UMAP of scATACseq clustering for the indicated genotypes. Blue = Foxn1-Cre/ $Ikzf1^{+/fl}$ ($Ikzf1^{+/fl}$) mTECs and Red = Foxn1- $Cre/Ikzfl^{fl/fl}$ (Ikzfl^{fl/fl}) mTECs. Bar graph shows percentage of individual mTEC subsets for each genotype. (B) UMAP of mimetic cell populations within Late Aire and tuft scATAC-seq data. (C) Heat map of normalized scATAC-seq fragment density at differential peaks (FDR<0.05) for Aire⁺ mTECs, tuft cells, and Ccl21a mTECs. (D) chromVAR motif accessibility volcano plot in Late Aire mTECs, Ccl21a mTECs, and tuft cells. Blue dots show motifs significantly enriched (FDR <0.05) in Foxn1-Cre/Ikzf1^{+/fl} (Ikzf1^{+/fl}) mTECs. Red dots show motifs significantly enriched in *Foxn1*-Cre/*Ikzf1*^{fl/fl} (*Ikzf1*^{fl/fl}) mTECs (FDR <0.05).

-0.4

-1.0

-0.5

0 Average Differential

0.5

1.0

-0.2 0 0. Average Differential

0.2

0.4

0 Average Differential

0.5

-0.5

Fig. S12 - Combined deletion of *Ikzf1/Pou2f3* **fails to rescue Aire-dependent mimetic cells. (A-B)** TF footprints with motifs for *Foxn1*-Cre(+)/*Ikzf1*^{+/fl} and *Foxn1*-Cre(+)/*Ikzf1*^{fl/fl} Aire⁺ mTECs and Late Aire mTECs. Expected Tn5 insertion shown below. **(A)** TF footprints for select *NF*- κ *B* family members, **(B)** *Foxn1*. **(C-F)** Flow cytometry (left) and percentage and absolute number (right) of mTEC populations from *Foxn1*-Cre(-)/*Ikzf1*^{fl/fl}/*Pou2f3*^{+/+} mice, *Foxn1*-Cre(-)/*Ikzf1*^{fl/fl}/*Pou2f3*^{-/-} mice, *Foxn1*-Cre(+)/*Ikzf1*^{fl/fl}/*Pou2f3*^{+/+} mice, and *Foxn1*-Cre(+)/*Ikzf1*^{fl/fl}/*Pou2f3*^{-/-} mice (n = 3-8 mice per genotype). **(C)** Staining for CD11c⁻EPCAM⁺CD45⁻

LY51⁻IA^{b+}DCLK1⁺ tuft cells. (**D**) Staining for Ki67. (**E**) Staining for GP2⁺ M cells. (**F**) Staining for KRT10⁺ Keratinocytes. (**C-F**) In graphs, the bar corresponds to the mean, with error bars showing +/- SD of values shown, and each data point represents an individual mouse. (**C-F**) Statistical significance was calculated using one-way ANOVA and grouped comparisons were corrected using Tukey's multiple-comparison test, **P<0.01, ***P<0.001, ****P<0.0001. NS = not significant.

Fig. S13 - Bulk RNA-seq in MHC-II^{high} **mTECs with combined** *Ikzf1/Pou2f3* **deletion.** (**A**) t-distributed stochastic neighbor embedding (t-SNE) plot of bulk RNA-seq samples from MHC-II^{high} mTECs of the indicated genotype. Each data point represents MHC-II^{high} mTECs isolated from an individual mouse. (**B**) Table of top 25 genes upregulated genes in MHC-II^{high} mTECs in *Foxn1*-Cre(-)/*Ikzf1*^{*fl/fl}/<i>Pou2f3*^{-/-} versus *Foxn1*-Cre(+)/*Ikzf1*^{*fl/fl*}/*Pou2f3*^{-/-} (**C**) qPCR of select target genes. Each data point represents an individual mouse. (**C**) In graphs, the bar corresponds to the mean, with the error bars showing +/- SD of values shown, and each data point represents an individual mouse. (**C**) Statistical significance was calculated using one-way ANOVA and grouped comparisons were corrected using Tukey's multiple-comparison test, *P<0.05, ***P<0.001, ****P<0.0001. NS = not significant.</sup>

Α

Fig. S14 – Deletion of *Ikzf1* **in mTECs does not alter T cell development.** (**A**) Flow cytometry plots (left) and counts (right) of thymocyte subsets from *Foxn1*-Cre/*Ikzf1*^{+/f1} (*Ikzf1*^{+/f1}) and *Foxn1*-Cre/*Ikzf1*^{f1/f1} (*Ikzf1*^{f1/f1}) mice. (n = 6-7 mice per genotype). (**B and C**) Flow cytometry plots (left) and counts (right) of CD69⁺/MHC-I⁻ semi-mature (SM), CD69⁺/MHC-I⁺ mature 1 (M1), and CD69⁻/MHC-I⁺ mature 2 (M2), (**B**) SP CD4⁺ T cells and (**C**) SP CD8⁺ T cells. (n = 6-7 mice per genotype). (**A-C**) In graphs, the bar corresponds to the mean, with error bars showing +/- SD of values shown, and each data point represents an individual mouse. (**A-C**) Statistical significance was determined using Student's T-test. NS = not significant.

Fig. S15 – Gating strategy for IRBP and TCAF3 tetramer staining. (A) Representative gating strategy used for flow cytometry analysis of TCR β^+ CD4⁺CD8⁻IRBP⁺ and TCR β^+ CD4⁺CD8⁻TCAF3⁺ T cells from immunized *Foxn1*-Cre(+)/*Ikzf1*^{+/*fl*} (*Ikzf1*^{+/*fl*}) mice.

Supplementary Table 1 – Resource Table.

Antibodies	Source	Clone/Tetramer Sequence	Used for
M2 antibody to Flag	Sigma	F1082	Co-IP/Western Blot
HRP-conjugated M2 anti-Flag	Sigma	A8592	Co-IP/Western Blot
HRP-conjugated anti-HA	Roche	12CA5	Co-IP/Western Blot
Anti-LaminB	Abcam	ab65986	Co-IP/Western Blot
HRP-conjugated donkey anti- rabbit	Jackson ImmunoResearch	711-035-152	Co-IP/Western Blot
A647-conjugated Krt10	Abcam	EP1607IHCY	Immunofluorescence
A488-conjugated DCLK1	Abcam	EPR6085	Immunofluorescence
e660-conjugated Aire	eBiosciences	clone 5H12	Immunofluorescence
A488-conjugated- Krt5	Abcam	EP1601Y	Immunofluorescence
Krt8 (Rabbit polyclonal to KRT8	Abcam	ab59400	Immunofluorescence
Rabbit polyclonal RFP antibody pre-adsorbed	Rockland	Cat. 600-401-379	Immunofluorescence
A488-conjugated Goat anti- Rabbit IgG (H+L) secondary antibody	Life Technologies	A-11008	Immunofluorescence
A647-conjugated goat anti- Rabbit IgG (H+L) secondary antibody	Thermo Scientific	A-21244	Immunofluorescence
Ikaros rabbit polyclonal targeting the N-terminus	gift to HS from Stephen T. Smale Lab, UCLA	-	Immunofluorescence
Rabbit monoclonal to DCLK1	Abcam	ab109029	Immunohistochemistry
Rabbit polyclonal to Biotin	Abcam	ab1227	Immunohistochemistry
LIVE/DEAD Fixable Blue Dead Cell Stain Kit	Thermo Fisher Scientific	Cat. L23105	Flow cytometry
PerCPCy5.5-conjugated CD8	BioLegend	SK1	Flow cytometry
PerCPCy5.5-conjugated CD44	Tonbo Biosciences	IM7	Flow cytometry
PerCP-conjugated CD45	Invitrogen	30-F11	Flow cytometry
BUV737-conjugated CD8a	BD Biosciences	53-6.7	Flow cytometry
Pacific Blue-conjugated CD19	BioLegend	6D5	Flow cytometry
Alexa Fluor e450-conjugated CD11B	Thermo Fisher Scientific	M1/70	Flow cytometry
BV421-conjugated F4/80	BioLegend	BM8	Flow cytometry
BV421-conjugated CD11c	BioLegend	N418	Flow cytometry
BUV737-conjugated CD11c	BD Biosciences	HL3	Flow cytometry
BV605-conjugated CD45	BD Biosciences	30 F11	Flow cytometry

Alexa Fluor e450-conjugated MHC-II I-Ab	Thermo Fisher Scientific	AF6-120.1	Flow cytometry
BV605-conjugated CD8	BD Biosciences	SK1	Flow cytometry
PE-Cy7-conjugated CD4	Tonbo Biosciences	RM4-5	Flow cytometry
PE-Cy7-conjugated CD45	Invitrogen	30-F11	Flow cytometry
PECy7-conjugated CD11c	Tonbo Biosciences	N418	Flow cytometry
PE-conjugated CD62L	Tonbo Biosciences	MEL-14	Flow cytometry
PE-conjugated CD44	BioLegend	IM7	Flow cytometry
PE-conjugated Ly51	BioLegend	6C3	Flow cytometry
PE-conjugated FOXP3	eBioscience	FJK-16s	Flow cytometry
PE-conjugated MHCI	eBioscience	AF6-88.5.5.3	Flow cytometry
PE-conjugated RORg	eBioscience	B2D	Flow cytometry
FITC-conjugated Foxp3	Invitrogen	FJK-16s	Flow cytometry
FITC-conjugated Ly51	BioLegend	6C3	Flow cytometry
FITC-conjugated CD69	Thermo Fisher Scientific	CH/4	Flow cytometry
A488-conjugated EOMES	Invitrogen	Dan11mag	Flow cytometry
A488-conjugated Aire	Thermo Fisher Scientific	5H12	Flow cytometry
A488-conjugated DCLK1	Abcam	EPR6085	Flow cytometry
A488-conjugated PLZF	488-conjugated PLZF eBioscience		Flow cytometry
APC-conjugated CD25	conjugated CD25 Tonbo		Flow cytometry
APC-conjugated MHC-II I-Ab eBioscience		AF6-120.1	Flow cytometry
APC-conjugated Ikaros	BioLegend	2A9/Ikaros	Flow cytometry
A647-conjugated KRT10	Abcam	EP1607IHCY	Flow cytometry
Alexa Fluor e660-conjugated AIRE	eBioscience	5H12	Flow cytometry
APCCy7-conjugated EPCAM	BioLegend	G8.8	Flow cytometry
APCe780-conjugated TCRb	eBioscience	H57-597	Flow cytometry
Mouse CCL21/6Ckine Antibody	R&D Systems	MAB457	Flow cytometry
Rabbit polyclonal RFP antibody pre-adsorbed	Rockland	Cat. 600-401-379	Flow cytometry
PE-conjugated L1CAM	Bio-Techne	555	Flow cytometry
PE-conjugated Glycoprotein 2	MBL Life Science	2F11-C8	Flow cytometry
Alexa Fluor 647-conjugated Ki67	BD Pharmingen	B56	Flow cytometry
Alexa Fluor A488-conjugated UEA1	VWR	Cat. 10360-710	Flow cytometry
Donkey anti-goat IgG (H+L) secondary Antibody PE	Invitrogen	Cat. PA1-29953	Flow cytometry

PE-labeled tetramer for IRBP	NIH Tetramer Facility	QTWEGSGVLPCVG	Tetramer staining
APC-labeled tetramer for IRBP	NIH Tetramer Facility	QTWEGSGVLPCVG	Tetramer staining
PE-labeled tetramer for TCAF3	NIH Tetramer Facility	THYKAPWGELATD	Tetramer staining
APC-labeled tetramer for			
TCAF3	NIH Tetramer Facility	THYKAPWGELATD	Tetramer staining
BV421-labeled tetramer for			
CD1d	NIH Tetramer Facility	PBS-57	Tetramer staining