Index of Supplementary Information for Harris et al.

Supplementary Notes

Supplementary Figures

- Supp. Figure 1 → relates to Figure 1: Design and validation of natural sequence RNA Bind-n-Seq
- Supp. Figure 2 \rightarrow relates to Figure 2: Analysis of species-specific binding patterns
- Supp. Figure 3 → relates to Figure 3: Analysis of species-specific syntenic motif-level binding patterns
- Supp. Figure 4 \rightarrow relates to Figure 4: Analysis of regional impacts on binding
- Supp. Figure 5 \rightarrow relates to Figure 5: Evolutionary conservation of binding

Supplementary Tables

- Supp. Table 1 \rightarrow Primer sequences for cloning of recombinant UNK domains
- Supp. Table 2 \rightarrow Primer sequences for RBNS reverse transcription and PCR
- Supp. Table 3 → Accession numbers for ENCODE RNA-seq data
- Supp. Table 4 → Accession numbers for ENCODE eCLIP data
- Supp. Table 5 \rightarrow Sequences for synthetic UAG fluorescence polarization RNA oligos
- Supp. Table 6 → Sequences for synthetic *GTPB4* chimeras flourescence polarization RNA oligos
- Supp. Table 7 \rightarrow Final RNA sequences for qPCR binding assay
- Supp. Table 8 \rightarrow qPCR primers used for qPCR binding assay

Supplementary References

Supplementary Download Items

 Supp. Data 1 → relates to Figure 1-4: nsRBNS data table used for all analyses with sequences, relevant iCLIP information, enrichment values, zscores, relevant sequence information, and relevant oligo information Supp. Data 2 → relates to Figure 5: 100vert RBNS data table used for all analyses with sequences, relevant species information, enrichment values, relevant sequence information, and relevant oligo information

SUPPLEMENTARY NOTES

Supp. Note 1

In our nsRBNS experiments, we have observed that human oligos are better bound than mouse oligos on a global scale. This can be observed for all oligos, bound alone, or unbound alone. The precise nature of these differences is difficult to define, however a few factors may contribute. While we can't be certain, one likely explanation might be in a technical challenge of performing iCLIP from mouse brain tissue vs human neuronal cell lines. It is plausible that the identified mouse binding sites were more challenging to derive due to tissue processing and crosslinking efficiencies as well as the abundance of UNK itself. These differences are apparent in some of our comparisons and limited our ability to test the impact of chimerizing mouse bound sequences into human not bound sequences to test if any enhanced UNK binding. Within these analyses, we found that while some regions from mouse bound sequences could enhance human binding, specific positions were not as impactful as we observed when chimerizing human into mouse (**Fig. 4B,C**). Generally, trends of binding patterns were overall weaker for mouse binding sites.

Another potential mechanism driving this is effect are inherent protein differences: Human recombinant protein was used for all *in vitro* experiments; however iCLIP was performed *in vivo* with species-specific proteins¹. At the amino acid sequence level, human and mouse UNK are 95% identical and 96% similar overall while the RBDs are 99% identical^{2,3}. Within the RBDs, only one amino acid is non-similar (Q321 in human, P321 in mouse). Structurally, this amino acid does not lie on the RNA-binding surface and likely does not directly contribute to RNA-protein interactions⁴. However, this single amino acid difference may affect global structural orientation, and therefore indirectly alter RNA-protein interactions *in vivo*. Indeed, previous work on transcription factors has demonstrated preferential binding of human sequences by human protein and vice versa⁵. Cellular context differences: Individual RNA and protein concentrations vary across celltypes and species. Additionally, species-specific alternative splicing can result in sequence differences and isoform expression level changes across cell-types and species and have been largely correlated with genomic evolution^{6–9}. These may be particularly important when comparing tissues to cell lines. Cell type mRNA composition and heterogeneity is likely an important consideration when assessing iCLIP from tissue samples. It is plausible that cell-type specific binding events within a tissue dampen the degree to which binding to any one site is detected. Previous work has demonstrated that RNA-protein interactions across tissue culture cells versus isolated tissue can vary drastically, even when similar cell types are considered¹⁰.

Since nsRBNS does not take into consideration any competitory binding, cofactors, salt concentrations, diffusion differences, etc. between cells and purely measures RNA-protein interactions, these factors may be different across species, even when similar cell types are examined.

Supp. Note 2

In our 100vert RBNS experiment, we observe a decreased range of enrichments (-3 to 3 on log₂ scale) versus nsRBNS (-6 to 6 on log₂ scale). RBNS is inherently a zero-sum experiment (aka gain must equal loss). While both nsRBNS and 100vert RBNS are impacted by the nature of these experiments, oligo design for 100vert RBNS led to a greater impact (*i.e.*, dampening of signal).

For comparison, in nsRBNS only ~5,000 (20%) out of ~25,000 oligos were predicted to bind, whereas ~7,000 (28%) had unknown binding capabilities, while the remaining ~13,000 (52%) were expected to be non-binders. While non-binders were primarily included as controls and for validation purposes, this allowed for less competition within the oligo pool, and therefore a larger separation of enrichment values.

In contrast, only ~10% of expected non-binders were included for 100vert RBNS. Further, 100vert RBNS was designed from the top bound oligos in nsRBNS, further narrowing expected binding differences across oligos. This prevalence of high-capacity binders led to an earlier saturation of UNK protein with high competition potential between the oligos. The increased competition dampened the overall signal of the experiment, resulting in a decreased range of enrichments measured.

SUPPLEMENTARY LEGENDS

Supp. Fig. 1. Design and validation of natural sequence RNA Bind-n-Seq. A) Diagram of iCLIP peak overlap analysis method between human neuronal cells (SH-SY5Y) and mouse brain tissue or human HeLa cells. B) Design and motif logos of RBNS with ZnF1-3 and ZnF4-6. C-D) Cumulative distribution function of log_2 nsRBNS enrichment of all oligos separated by C) UUU and D) UUA motif content. Insets show significance values for all comparisons via KS test and corrected for multiple comparisons via the BH procedure. Red denotes significant ($p\leq0.05$). Values are as follows: e ($p\leq0.001$), f ($p\leq0.0001$). E) *in vitro* qPCR fraction bound for wild type and mutant *GART* RNA oligos incubated with UNK at 167 and 1500 nM. Significance was determined via one-sided Wilcox test ($p\leq0.01$; n=5 technical replicates). Error bars represent SEM. F) Box and whisker plot of log_2 nsRBNS enrichment of all oligos separated by quantile-binned mean base pair probability (BPP) of the central region (54-64). Significance determined via KS test and corrected for multiple corrections via the BH procedure. All comparisons to lowest bin are significant ($p\leq0.0001$). Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are denoted as individual points.

Supp. Fig. 2. Analysis of species-specific binding patterns. A) Scatter plot of the $\log_2 k$ mer frequency fold change (UTR/CDS) of the top and bottom ten 3mers of all (left) motif-upstream (center) whole sequence and (right) motif-downstream sequences colored by UNK bound *k*mer as identified via RBNS¹¹. B-C) Density plot of *in vivo* binding versus *in vitro* binding patterns for "motif mutant" and "orthologous" oligos versus *in vivo* bound oligos for B) CDS and C) UTR oligos. D-E) Bar plot of *in vivo* binding versus *in vivo* binding patterns for "motif mutant" and "orthologous" oligos versus *in vivo* bound oligos. "Mirrors" correlation defined as \geq 2-fold change of *in vivo* bound over *in vivo* unbound, "weak mirrors" defined as < 2 and \geq 1-fold change, "weak opposite" defined as < 1 and > 0.5 fold change, and "opposite" defined as \leq 0.5

fold change. F-G) Cumulative distribution function of log₂ fold nsRBNS enrichment change of *in vivo* bound over *in vivo* not bound oligos separated by F) Δ UUU and G) Δ UUA content. Insets show significance values for all comparisons via KS test and corrected for multiple comparisons via the BH procedure. Red denotes significant (p≤0.05). Values are as follows: a (ns), b (p≤0.1), c (p≤0.05), d, (p≤0.01), e (p≤0.001), f (p≤0.0001). H-I) Cumulative distribution function of log₂ fold nsRBNS enrichment change of *in vivo* bound over *in vivo* not bound oligos separated by percent conservation for H) all and I) *k*mer loss cross-species comparisons. Insets show significance values for all comparisons via KS test and corrected for multiple comparisons via the BH procedure. Red denotes significant (p≤0.05). Values are as follows: a (ns), b (p≤0.1), c (p≤0.05), d, (p≤0.01), f (p≤0.05). Values are as follows: a (ns), b (p≤0.1), c (p≤0.05), d, (p≤0.01), f (p≤0.001).

Supp. Fig 3. Analysis of species-specific syntenic motif level binding patterns. A-B) Cumulative distribution function of log₂ nsRBNS enrichment of control (light grey; dotted), not bound (teal), bound elsewhere (purple), binding conserved (blue), and perfectly conserved (orange) for A) all UTR and B) motif conserved UTR oligos. Insets show significance values for all comparisons via KS test and corrected for multiple comparisons via the BH procedure. Red denotes significant ($p\leq0.05$), and gray denotes nearing significant ($p\leq0.1$). Values are as follows: a (ns), b ($p\leq0.1$), c ($p\leq0.05$), e ($p\leq0.001$), f ($p\leq0.0001$). C) Cumulative distribution function of log₂ fold nsRBNS enrichment change (parent/ortholog) of "binding conserved" oligos pairs separated by percent conservation. Inset shows significance values for all comparisons via KS test and corrected for multiple comparisons via the BH procedure. Red denotes significant ($p\leq0.05$). Values are as follows: a (ns), b ($p\leq0.1$), d ($p\leq0.01$). D) Boxplot of percent conservation of binding conserved, not bound, and bound elsewhere oligo pairs where the parent was bound in human, but the aligned orthologous region was unbound. Significance was determined via KS tests and corrected for multiple comparisons via the BH procedure. Statistical marks are as follows: *** $p \leq 0.001$, **** — $p \leq 0.001$. Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are denoted as individual points. E) Heat map of 3mer human over mouse enrichment upstream and downstream of central UAG in orthologs bound better in humans. F) Delta fluorescence polarization binding curves (n=3 technical replicates) for UNK ZnF1-6 (green circle), ZnF1-3 (blue triangle), and ZnF4-6 (teal square) incubated with a tri-UAG-containing RNA oligo graphed with delta fluorescence polarization binding curves for UNK ZnF1-6 (hollow green circle) incubated with a mono-UAG-containing RNA oligo. Each curve was normalized to its minimum and maximum fluorescence polarization signal to produce delta fluorescence polarization values. Data are presented as mean values +/- SD. G) Transcript level conservation of iCLIP UNK hits between human neuronal cells (SH-SY5Y) and human epithelial cells (HeLa). Significance determined via hypergeometric test. H) Motif level conservation of iCLIP UNK hits between human neuronal cells (SH-SY5Y) and human epithelial cells (HeLa). I) Cumulative distribution function of log₂ nsRBNS enrichment of human not bound in vivo (light grey; dotted), SH-SY5Y-specific oligos (purple), and SH-SY5Y and HeLa shared oligos (blue) Inset shows significance values for all comparisons via KS test and corrected for multiple comparisons via the BH procedure. Red denotes significant ($p \le 0.05$). Values are as follows: a (ns), b ($p \le 0.1$), d, ($p \le 0.01$). J) Diagram of eCLIP peak overlap analysis between HepG2 and K562 data. K) Mean proportion of overlaps of bound eCLIP genes and peaks between available HepG2 and K562 data¹² for 14 RBPs with and without known motifs from RBNS¹¹. Data split into exonic and non-exonic peaks (see Methods). Significance determined via KS tests. Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are denoted as individual points. L) Overlap of bound eCLIP genes and peaks between available HepG2 and K562 data¹² for 14 RBPs with known motifs from RBNS¹¹. Data split into exonic and non-exonic peaks (see Methods). M) Overlap of bound eCLIP genes and peaks between available HepG2 and K562 data¹² for 14 RBPs without known motifs from RBNS¹¹. Data split into exonic and non-exonic peaks (see Methods).

Supp. Fig. 4. Analysis of regional impacts on binding. A) A/U nucleotide frequency of the central region (pos58-77) of enriched "Context Change" chimeras. B-D) Linear modeling of all natural (non-mutated, non-chimeric) sequences. B) Plot of linear model coefficients for top UNK motifs as defined by RBNS¹¹, colored by -log₁₀ p. C) Table of linear model coefficients and -log₁₀ p for top UNK motifs. D) Correlation of fitted log₂ nsRBNS enrichment via linear model versus observed log₂ nsRBNS enrichment. E-F) Heat map of significance values (p) for all single and double E) "UAG Change" and F) "Context Change" chimeras with significant binding changes (p≤0.05, red) and nearing significant (p≤0.1, grey). Values are as follows: a (ns), b (p≤0.1), c $(p \le 0.05)$, d $(p \le 0.01)$, e $(p \le 0.001)$, f $(p \le 0.0001)$. Significance was determined via paired, one-sided Wilcox test and corrected for multiple comparisons via the BH procedure. G) Heat map of number of "Context Change" double chimeras enhanced upon chimerization. H-I) Box and whisker plot of log₂ enrichment of mouse, single chimera, double chimera, and human oligos where both the single and double chimeras showed improved binding over mouse for H) "UAG Change" and I) "Context Change" chimeras. Significance was determined via paired, one-sample, Wilcox test. Statistical marks are as follows: ** — $p \le 0.01$, **** — $p \le 0.0001$. Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are denoted as individual points.

Supp. Fig. 5. Evolutionary Conservation of Binding. A) Design of 100 vertebrate DNA pool. B) Correlation plot of two experimental 100 vertebrate nsRBNS replicates. Pearson's correlation coefficient included. C) Box and whisker plot of log_2 100vertRBNS enrichment for human and total motif mutants. Significance was determined via paired, one-sided Wilcox test. Statistical marks are as follows: **** — $p \le 0.0001$. Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are denoted as individual points. D) Evolutionary distance in millions of years (Y-axis) versus mean percent RNA sequence identity (X-axis) for each aligned oligo. Pearson's correlation coefficient included. E) Full correlation of evolutionary distance in millions of years, mean percent RNA sequence identity, and mean delta log₂ 100vertRBNS enrichment. F) Multiple sequence alignment of the RNA-binding domains of UNK across select vertebrates. Individual ZnF domains are highlighted via black bar. Blue denotes similar amino acids while red denotes non-similar sequence divergence as predicted by BLAST. Asterisks denote direct RNA-contacting residues as predicted based on Murn et al., 2016⁴ G) Structure of UNK ZnF1-3 from Murn et al., 2016⁴ with less stringently conserved residues highlighted in red. Note: only 1129 is predicted to have direct RNA contacts based on the crystal structure. H) Structure of UNK ZnF4-6 from Murn et al., 2016⁴ with less stringently conserved residues highlighted in red. Note: no evolving residues are predicted to have direct RNA contacts based on the crystal structure. I) Full multiple sequence alignment for ATP1B1. Related to figure 5E. J) Normalized log₂ 100vertRBNS enrichment of ATP1B1. Pearson's correlation coefficient included. K) (left) Multiple sequence alignment for NFATC3 for Homo sapiens, Chlorocebus sabaeus, Jaculus jaculus, Tursiops truncatus, Elephantulus edwardii, and Macropus eugenii with normalized 100vertRBNS enrichment by species (n=3 technical replicates). Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. All data included as individual points. Significance determined via one-sided Wilcox tests. (right) Percent RNA sequence identity (Y-axis) versus normalized delta log₂ nsRBNS enrichment (Xaxis). Pearson's correlation coefficient included. L) Full multiple sequence alignment for NFATC3. M) Normalized log₂ 100vertRBNS enrichment of NFATC3. Pearson's correlation coefficient included. N) (left) Multiple sequence alignment for PPP2R5C. (right) Normalized log₂ 100vertRBNS enrichment of PPP2R5C. Pearson's correlation coefficient included. O) (top) Multiple sequence alignment for PPP2R5C for Homo sapiens, Gorilla gorilla gorilla, Macaca mulatta, Callithrix jacchus, and Saimiri boliviensis with normalized 100vertRBNS enrichment by species (n=3 technical replicates). Centre line denotes median (50th percentile) with bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th percentiles. All data included as individual points. Significance determined via one-sided Wilcox tests. (bottom) Percent RNA sequence identity (Y-axis) versus normalized delta log₂ 100vertRBNS enrichment (X-axis). Pearson's correlation coefficient included. P) Plot of percent identity by evolutionary distance, X-axis plotted on log₁₀ scale. Error bars show SEM. Data was separated by regulation as determined via RiboSeq where blue is higher than average log₂ fold change (>-0.9) and red is less than average log₂ fold change (<-0.9). Significance was determined via KS test. Data are presented as mean values +/- SD.

SUPPLEMENTARY TABLES

Supp. Table 1. Primer sequences for cloning of recombinant UNK domains

Primer name	Sequence
pGEX-GST-SBP-UNK ZnF1-3 forward	GCGTGAACCGGGATCCCCGCAGCACTACACGT
primer	
pGEX-GST-SBP-UNK ZnF1-3 reverse	ACGATGCGGCCGCTCAATTCTGCAAGGCCTCC
primer	
pGEX-GST-SBP-UNK ZnF4-6 forward	GCGTGAACCGGGATCCCCTCGGTGGCAAGAGA
primer	
pGEX-GST-SBP-UNK ZnF4-6 reverse	ACGATGCGGCCGCTCAGGACACAGCTGAGGAA
primer	

Supp. Table 2. Primer sequences for RBNS reverse transcription and PCR

Primer name	Sequence
nsRBNS RT primer	TCCTTGGCACCCGAGAATTCCANNNNNNNTGATGCTCAATCCT
	CTGTTG
RBNS index primer	CAAGCAGAAGACGGCATACGAGAT[N ₆
	barcode]GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
RBNS reverse primer	AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAG
	TCCGA

Supp. Table 3. Accession numbers for ENCODE RNA-seq data

Encode ID	Cell line	Rep
ENCFF267RKD,ENCFF455VYN	K562	1
ENCFF606ZTR,ENCFF444KCV	K562	2
ENCFF713MNU,ENCFF478DZZ	HepG2	1
ENCFF936SLY,ENCFF446UEC	HepG2	2

Supp. Table 4. Accession numbers for ENCODE eCLIP data

Encode ID	RBP Target	Cell Line
ENCFF073PCD	HNRNPL	HepG2
ENCFF077OSY	HNRNPL	K562
ENCFF082QGS	RBFOX2	HepG2
ENCFF103PRM	HNRNPL	HepG2
ENCFF105GZJ	TRA2A	HepG2
ENCFF121XCN	PCBP1	K562
ENCFF127WMZ	KHSRP	K562
ENCFF145YYK	IGF2BP1	HepG2
ENCFF150ZOO	RBM22	K562
ENCFF185IDD	IGF2BP1	K562
ENCFF230QOU	HNRNPC	HepG2
ENCFF241AOZ	HNRNPK	K562

ENCFF253ZSN	RBM22	HepG2
ENCFF288MWL	HNRNPK	HepG2
ENCFF327JJE	SRSF9	HepG2
ENCFF348TPU	TIA1	K562
ENCFF374XQF	KHSRP	K562
ENCFF378HWC	TIA1	HepG2
ENCFF383ZAQ	TAF15	HepG2
ENCFF390PJW	RBFOX2	HepG2
ENCFF401YRZ	HNRNPL	K562
ENCFF402AIE	TRA2A	K562
ENCFF409DPS	TAF15	K562
ENCFF421FJD	TARDBP	HepG2
ENCFF432ASF	SRSF9	HepG2
ENCFF443KJS	FUS	K562
ENCFF502OYV	PCBP1	HepG2
ENCFF526OQL	HNRNPC	K562
ENCFF534YQS	HNRNPC	HepG2
ENCFF545NBF	RBM22	HepG2
ENCFF565ILV	FUS	K562
ENCFF606RXB	TARDBP	K562
ENCFF611AHG	KHSRP	HepG2
ENCFF613UUR	SRSF9	K562
ENCFF618ZPP	TRA2A	K562
ENCFF626XAA	TARDBP	HepG2
ENCFF664RLU	HNRNPC	K562
ENCFF669TNM	TARDBP	K562
ENCFF674TKN	TIA1	K562
ENCFF685MZA	FUS	HepG2
ENCFF705SDK	IGF2BP1	HepG2
ENCFF754XAQ	HNRNPK	HepG2
ENCFF766DUS	PCBP1	K562
ENCFF7790IO	RBFOX2	K562
ENCFF824IDO	HNRNPK	K562
ENCFF853FGC	IGF2BP1	K562
ENCFF856EHA	TIA1	HepG2
ENCFF860QZG	SRSF9	K562
ENCFF899HGF	RBM22	K562
ENCFF899ZEH	TAF15	HepG2
ENCFF910WLP	RBFOX2	K562
ENCFF914VUW	PCBP1	HepG2
ENCFF951IBI	FUS	HepG2
ENCFF966KQG	TRA2A	HepG2
ENCFF988MWD	KHSRP	HepG2
ENCFF996BXS	TAF15	K562

Supp. Table 5. Sequences for synthetic UAG fluorescence polarization RNA oligos

Oligo name	Sequence

Mono-UAG FP RNA	AAAAAAAUUAGAAAAAA /6-FAM/
Tri-UAG FP RNA	UAGUUUAGUUUAGUU /6-FAM/

Supp. Table 6. Sequences for synthetic GTPB4 chimeras flourescence polarization RNA

oligos

Oligo name	Sequence
Human GTPB4 FP RNA	UACAUCGCAUUAGACAUUUU /6-FAM/
Mouse gtpb4 FP RNA	UUCAUCGGAUUCGACAUUUU /6-FAM/
Chi58-67 gtpb4 FP RNA	UUCAUCGCAUUAGACAUUUU /6-FAM/

Supp. Table 7. Final RNA sequences for qPCR binding assay

Oligo name	Sequence
WT GART RNA	GAGUUCUACAGUCCGACGAUCGUUAUCUCCAACAAAGCCGC
	AGUAGCUGGGUUAGAUAAAGCGGAAAGAGCUGGUAUUCCCA
	CUAGAGUAAUUAAUCAUAAACUGUAUAAAAAUCGUGUAGAAU
	UUGACAGUGCAAUUGACCAACAGAGGAUUGAGCAUCA
Mutant GART RNA	GAGUUCUACAGUCCGACGAUCGUUAUCUCCAACAAAGCCGC
	AGUAGCUGGGUUAGAUAAAGCGGAAAGAGCUGGUAUUCCCA
	CCCGAGUAAUUAAUCAUAAACUGUAUAAAAAUCGUGUAGAAU
	UUGACAGUGCAAUUGACCAACAGAGGAUUGAGCAUCA

Supp. Table 8. qPCR primers used for qPCR binding assay

Primer name	Sequence
qPCR_FWD	GAGTTCTACAGTCCGACGATC
qPCR_REV	TGATGCTCAATCCTCTGTTG

SUPPLEMENTARY REFERENCES

- Murn, J. *et al.* Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt. *Genes Dev* 29, 501–512 (2015).
- UniProt. UniProt: the Universal Protein knowledgebase in 2023. *Nucleic Acids Res* 51, D523– D531 (2023).
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J Mol Biol* **215**, 403–410 (1990).
- Murn, J., Teplova, M., Zarnack, K., Shi, Y. & Patel, D. J. Recognition of distinct RNA motifs by the clustered CCCH zinc fingers of neuronal protein Unkempt. *Nat Struct Mol Biol* 23, 16–23 (2016).
- Wilson, M. D. *et al.* Species-specific transcription in mice carrying human chromosome 21.
 Science (1979) **322**, 434–438 (2008).
- Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. *Science (1979)* **338**, 1593–1599 (2012).
- Barbosa-Morais, N. L. *et al.* The evolutionary landscape of alternative splicing in vertebrate species. *Science (1979)* 338, 1587–1593 (2012).
- Barr, K. A., Rhodes, K. L. & Gilad, Y. The relationship between regulatory changes in cis and trans and the evolution of gene expression in humans and chimpanzees. *Genome Biol* 24, 1–21 (2023).
- Sudmant, P. H., Alexis, M. S. & Burge, C. B. Meta-analysis of RNA-seq expression data across species, tissues and studies. *Genome Biol* 16, 1–11 (2015).
- 10. Perez-Perri, J. I. *et al.* The RNA-binding protein landscapes differ between mammalian organs and cultured cells. *Nat Commun* **14**, 2074 (2023).
- 11. Dominguez, D. *et al.* Sequence, structure, and context preferences of human RNA binding proteins. *Mol Cell* **70**, 854–867 (2018).

12. Van Nostrand, E. L. *et al.* A large-scale binding and functional map of human RNA-binding proteins. *Nature* **583**, 711–719 (2020).