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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
E The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

E A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

E The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

E A description of all covariates tested
E A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

E A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

E For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

E For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

IZ] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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IZ] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection 1. MDTB dataset: The 26 tasks were presented and behavioral data collected using custom-written code in MATLAB R2015b. The low-level
functionality from psychtoolbox (3.0.13) was used for display and execution of the tasks tested in both the behavioural and fMRI sessions. The
Eyelink toolbox (MATLAB toolbox) was used to collect eye movement data.

2. Highres-MDTB dataset: The 9 tasks were presented and behavioral data collected using custom-written code in PsychoPy. PsychoPy was
used for display and execution of tasks tested both in behavioral and fMRI sessions.

3. Nishimoto dataset: Siemens MAGNETOM TrioTim (Siemens, syngo MR B17) and Presentation (Neurobehavioral Systems, ver. 18.0)

4. Individual Brain Charting (IBC) dataset: Metadata, concerning the stimuli presented during the BOLD fMRI runs, were made available
publicly at https://github.com/hbp-brain-charting/public_protocols. They include: (1) the task-stimuli protocols; (2) demo presentations of the
tasks as video annotations; (3) instructions to the participants; and (4) scripts to extract paradigm descriptors from log files for the GLM
estimation.

5. WMFS dataset: We used tools from SPM12 and custom written code in MATLAB 2018b to process the functional and anatomical data
process the functional and anatomical data.

6. Multi-Demand dataset: MRI CCF acquisition protocols for HCP Young Adult cohort were used (package date 2016.07.14; https://
protocols.humanconnectome.org/CCF/).

7. Somatotopic mapping dataset: Siemens Magnetom Prisma-fit MRI scanner and a 64-channel phased-array head-neck coil (Siemens
Healthcare, Erlangen, Germany). The Eyelink 1000 Core Plus with Long-Range Mount (SR Research, Ottawa, Ontario,Canada), and alertness
was scored during each functional run.

8. HCP Unrelated 100 dataset: The HCP resting-state data is from the publicly available Human Connectome Dataset at https://
www.humanconnectome.org/study/hcp-young-adult/data-releases
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Data analysis SPM12 and SUIT (3.3) toolboxes were used to analyze the data. The code for building the atlas and generating the results and figures in this
paper is publicly available as the GitHub repository https://github.com/DiedrichsenLab/ProbabilisticParcellation. The code for the hierarchical
Bayesian parcellation framework is available at https://github.com/DiedrichsenLab/HierarchBayesParcel. The organization, file system, and
code for managing the diverse set of datasets is available at https://github.com/DiedrichsenLab/Functional_Fusion.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw data for the fMRI studies used in this project are publicly available at OpenNeuro.org (https://openneuro.org/). Specifically, MDTB (https://openneuro.org/
datasets/ds002105/versions/1.1.0), Nishimoto (https://openneuro.org/datasets/ds002306/versions/1.0.3), IBC (https://openneuro.org/datasets/ds002685/
versions/1.3.1), HCP unrelated 100 (https://www.humanconnectome.org/study/hcp-young-adult/data-releases). Three datasets can be found in their original
papers: WMFS (https://doi.org/10.1101/2023.01.25.525395), Multi-Demand dataset (https://doi.org/10.1101/2022.12.01.518720), and Somatotopic mapping
dataset (https://doi.org/10.1152/jn.00165.2022). The High-res MDTB dataset has not yet been published.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender . MDTB dataset (16 females and 8 males)

. Highres-MDTB dataset (3 females and 5 males)

. Nishimoto dataset (2 females and 4 males)

. Individual Brain Charting (IBC) dataset (2 females and 10 males)
WMFS dataset (8 females and 8 males)

Multi-Demand dataset (23 females and 14 males)

. Somatotopic mapping dataset (6 females and 2 males)

. HCP Unrelated 100 dataset (54 females and 46 males)
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Reporting on race, ethnicity, or 1. MDTB dataset: 24 healthy right-handed adults (mean age=23.8 years old, SD=2.6) with no self-reported history of

other socially relevant groupings neurological or psychiatric illness.
2. Highres-MDTB dataset: 8 healthy right-handed adults (mean age= 25.37 years old, SD=3.74) with no self-reported history
of neurological or psychiatric illness.
3. Nishimoto dataset: Research participants were Osaka University students and adjuncts (4 males and 2 females, aged
22-33). All participants were healthy, had normal vision and hearing ability, and passed institutional pre-screening procedure
for MRI experiments (e.g., no metal implants, not pregnant, etc.)
4. Individual Brain Charting (IBC) dataset: 12 healthy adults (mean age=34.5 yrs, sd=4.9) with 11 right-handed.
5. WMFS dataset: 16 healthy participants (mean age = 25, std age = 2) with right-handed.
6. Multi-Demand dataset: 37 subjects (mean age=25.9, sd=4.7). All subjects had normal or corrected vision (using MRI
compatible glasses)
7. Somatotopic mapping dataset: 8 healthy adults (aged 19-25, means = 22.4 yr, SD =2.6, 7 right-handed). All participants
were screened to exclude a history of neurological and psychiatric iliness or ongoing use of psychoactive medications.
8. HCP Unrelated 100 dataset: 100 healthy subjects with (mean age=29.1 yrs, sd=3.7 yrs)

Population characteristics 1. MDTB dataset: 24 healthy right-handed adults (mean age=23.8 years old, SD=2.6) with no self-reported history of
neurological or psychiatric illness.
2. Highres-MDTB dataset: 8 healthy right-handed adults (mean age= 25.37 years old, SD=3.74) with no self-reported history
of neurological or psychiatric iliness.
3. Nishimoto dataset: Research participants were Osaka University students and adjuncts (4 males and 2 females, aged
22-33). All participants were healthy, had normal vision and hearing ability, and passed institutional pre-screening procedure
for MRI experiments (e.g., no metal implants, not pregnant, etc.)
4. Individual Brain Charting (IBC) dataset: 12 healthy adults (mean age=34.5 yrs, sd=4.9) with 11 right-handed.
5. WMFS dataset: 16 healthy participants (mean age = 25, std age = 2) with right-handed.
6. Multi-Demand dataset: 37 subjects (mean age=25.9, sd=4.7). All subjects had normal or corrected vision (using MRI
compatible glasses)
7. Somatotopic mapping dataset: 8 healthy adults (aged 19-25, means = 22.4 yr, SD =2.6, 7 right-handed). All participants
were screened to exclude a history of neurological and psychiatric illness or ongoing use of psychoactive medications.
8. HCP Unrelated 100 dataset: 100 healthy subjects with (mean age=29.1 yrs, sd=3.7 yrs)

Recruitment 1. MDTB dataset: Undergraduate and graduate students were recruited (via posters) from the larger student body at
Western University. Thus, our sample was biased towards relatively high-functioning, healthy and young individuals. While
we don't expect cerebellar organization to be dramatically different in this group, caution needs to be exercised when
generalizing the results to the general population.
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2. Highres-MDTB dataset: Graduate students were recruited (via posters and word-of-mouth) from the larger student body at
Western University. Thus, our sample was biased towards relatively high-functioning, healthy and young individuals. While
we do not expect cerebellar organization to be dramatically different in this group, caution needs to be exercised when
generalizing the results to the general population.

3. Nishimoto dataset: Participants were recruited from a local participant pool under the following selection criteria: (1) a
participant can join at least three fMRI sessions and (2) a participant is healthy and with normal vision and hearing.

4. Individual Brain Charting (IBC) dataset:The twelve participants were recruited by poster advertisements in the local area.
Exclusion criteria were: (i) IQo80 or 1Q>130; (ii) the use of drugs prior to the first exam; (iii) participation in other research
protocol involving drugs; (iv) psychiatric and neurologic disorders requiring medication with potential impact on general
cognitive abilities; (v) hearing problems; and (vi) any standard MRI counter-indications

5. WMFS dataset: Undergraduate/graduate students were recruited (via posters) from the larger student body at Western
University. Thus, our sample was biased towards relatively high-functioning, healthy and young individuals.

6. Multi-Demand dataset: N/A

7. Somatotopic mapping dataset: The eight healthy adults were recruited from the Boston area.

8. HCP Unrelated 100 dataset: Our primary participant pool comes from healthy individuals born in Missouri to families that
include twins, based on data from the Missouri Department of Health and Senior Services Bureau of Vital Records. Additional
recruiting efforts are used to insure that participants broadly reflect the ethnic and racial composition of the U.S. population
as represented in the 2000 decennial census.
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Ethics oversight 1. MDTB dataset: The Ethics committee at Western University approved all experimental protocols (Protocol number:
107293).

2. Highres-MDTB dataset: The Ethics committee at Western University approved all experimental protocols (Protocol
number: 107293).

3. Nishimoto dataset: National Institute of Information and Communications Technology

4. Individual Brain Charting (IBC)dataset: The experimental procedures were approved by a regional ethical committee for
medical protocols in Tle-de-France and a committee to ensure compliance with data-protection rules. All participants were
undertaken with the informed written consent of each participant according to the Helsinki declaration and the French public
health regulation.

5. WMFS dataset: The Ethics committee at Western University approved all experimental protocols (Protocol number:
107293).

6. Multi-Demand dataset: Informed consent was obtained from each subject and the study was approved by the Cambridge
Psychology Research Ethics Committee.

7. Somatotopic mapping dataset: Paid participants provided written informed consent through a protocol approved by the
Institutional Review Board of Harvard University

8. HCP Unrelated 100 dataset: NIH Neuroscience Blueprint Institutes and Centers. All subjects gave written informed consent
to the Human Connectome Project consortium

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size . MDTB dataset: N=24 subjects, 5.5 hrs fMRI data per subject, 62 unique task conditions

. Highres-MDTB dataset: N=8 subjects, 2 hrs fMRI data per subject, 9 unique task conditions

. Nishimoto dataset: N=6 subjects, 162 minutes fMRI data per subject, 103 unique task conditions

. Individual Brain Charting (IBC) dataset: N=12 subjects, 822 minutes fMRI data per subject, 208 unique task conditions
. WMFS dataset: N=16 subjects, 65 minutes fMRI data per subject, 17 unique task conditions

Multi-Demand dataset: N=37 subjects, 100 minutes fMRI data per subject, 12 unique task conditions

. Somatotopic mapping dataset: N=8 subjects, 96 minutes fMRI data per subject, 6 unique task conditions

. HCP Unrelated 100 dataset: N=100 subjects, 1 hr resting-state fMRI data per subject
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Data exclusions 1. MDTB dataset: Originally recruited 31 participants. N=5 participants could not return to complete the second task set as they had moved.
These data were not included in the final analyses. Two additional participants were excluded from the analyses as they failed to complete all
32 scanning runs for technical reasons. Eye-tracking data from two participants in set A and three participants in set B were not obtained due
to technical problems.

2. Highres-MDTB dataset: Originally recruited 12 participants. N=4 participants either were excluded due either to data quality issues or not
returning to complete the second scanning session.

3. Nishimoto dataset: Some data were excluded (and re-measured) when we detected the following technical issues during experiments: the
earphone was not properly attached.

4. Individual Brain Charting (IBC) dataset: All tasks selected from this dataset were performed by 12 participants. We used all tasks reported in
Pinho et al. 2018 plus all tasks reported in Pinho et al. 2020 but the Self and the Bang tasks. Additionally, we also used the following tasks:
Wedge, Ring, LEC1, LEC2, Audi, Visu, Moto, MVEB, MVIS, MCSE, MathLanguage and SpatialNavigation. They are described in the IBC
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documentation: https://individual-brain-charting.github.io/docs/tasks.html

5. WMFS dataset: A total of 21 participants started the experiment. Of these, 4 participants were not scanned because of their poor
performance during the behavioral training session. The remaining 17 participants performed the tasks inside the scanner and data for one
participant was excluded due to an incidental finding.

6. Multi-Demand dataset: Originally fifty subjects were scanned over two sessions; thirteen subjects were excluded either due to incomplete
data (n=5), excessive head movement during scanning (n=4; movement more than double the fMRI voxel size), technical problems during
scanning (n=2; MRI scanner crashing) or during analysis (n=2; excessive field in homogeneities due to unreported teeth implants that affected
structural scans).

7. Somatotopic mapping dataset: One motor run was excluded for S3,two motor runs for S4, one motor and two fixation runs for S6, and one
fixation run for S8 due to motion. Runs were excluded based on BOLD data quality before examination of task response patterns to avoid bias.
8. HCP Unrelated 100 dataset: This is the subset of subjects provided by HCP S900 release ensures that they are not family relatives. It means
the participants with family-structure co-variables were excluded.

Replication 1. MDTB dataset: The data includes a direct replication, as there are two identical sessions for each task set. There was good reliability of
activation patterns across sessions (within a task set). Models were tested using prediction accuracy for a complete separate task set.
2. Highres-MDTB dataset: The data include a direct replication, as there are two identical sessions for the task set. There was good reliability
of activation patterns across sessions.
3. Nishimoto dataset: The experiment consisted of 18 runs, with 12 training runs and 6 test runs. In the test runs, 103 tasks were presented
four times in the same order across all six runs (but with different instances for each repetition).
4. Individual Brain Charting (IBC) dataset: Two different acquisitions for the same task were always performed using two opposite phase-
encoding directions: one from Posterior to Anterior (PA) and the other from Anterior to Posterior (AP). The main purpose was to ensure
within-subject replication of the same tasks, while mitigating potential limitations concerning the distortion-correction procedure.
5. WMFS dataset: the participant performed 5 imaging blocks of the finger tapping task, alternating with 5 blocks of the working memory task.
Each block of the alternating finger tapping task lasted for just over 5 minutes, during which 260 volumes were collected. Conditions were
fully randomized, each repeating 5 times within a block. Four 12-second periods of rest were interleaved randomly between trials.
6. Multi-Demand dataset: Both rest and task EPI runs were acquired in pairs of reversed phase-encoding directions (AP/PA).
7. Somatotopic mapping dataset: Data from the initial four participants were fully analyzed and graphed (Discovery sample,S1-54) before any
analysis was attempted on the second, independent group of participants (Replication sample,S5-58)
8. HCP Unrelated 100 dataset: There are total two imaging sessions with each of them has two runs of 15 minutes resting-state scans, which
allowing data averaging or for increased success in obtaining usable data.

Randomization 1. MDTB dataset: The sequence of task was randomized across imaging runs. All of the participants performed the same sequence of tasks
(and the same number / order of runs) to enable analysis on the timeseries across participants.

2. Highres-MDTB dataset: The sequence of task was randomized across imaging runs. All of the participants performed the same sequence of
tasks (and the same number / order of runs) to enable analysis on the timeseries across participants.

3. Nishimoto dataset: n/a (Participants were not allocated into experimental groups.)

4. Individual Brain Charting (IBC) dataset: All trials within each task were pseudo-randomized in order to avoid the extensively consecutive
repetition of trials containing conditions of the same kind.

5. WMFS dataset: Each trial was randomly selected from one of five conditions.

6. Multi-Demand dataset: The same subjects performed all three tasks within the same session and within the same runs, enabling analysis on
the time series across participants.

7. Somatotopic mapping dataset: n/a. All of the participants performed the same sequence of tasks
8. HCP Unrelated 100 dataset: n/a, each participant was scanned of 4 runs of 15 minutes of resting-state data.

Blinding Blinding was not applicable. Participants in all datasets were not sorted into control and / experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [ ] chiP-seq
Eukaryotic cell lines D Flow cytometry
Palaeontology and archaeology D E] MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-authentication-procedures for-each seed stock used-ornovel-genotype generated.Describe-anyexperiments-usedto

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type The first 7 datasets are task-based, HCP dataset is resting-state

Design specifications 1. MDTB dataset: Two task sets. 2 fMRI scanning sessions per task set. 8 functional imaging runs per session (10-min
each). 17 tasks per imaging run (35 s each).
2. High-res MDTB dataset: One task set. 2 fMRI scanning sessions. 8 functional imaging runs per session (6-min each). 9
tasks per imaging run (35s each).
3. Nishimoto dataset: The main experiment was conducted in 3 separate fMRI sessions. The total of 18 runs were
acquired across the three sessions. Of these, 12 runs were used to train voxel-wise models, and 6 runs were used to test
the modeling accuracy. A single run consisted of 556 seconds. Stimuli used in the training and test runs were different.
4. Individual Brain Charting (IBC) dataset: 15 task sets.
5. WMFS dataset: 5 imaging blocks of the finger tapping task, alternating with 5 blocks of the working memory task.
Each block of the alternating finger tapping task lasted for just over 5 minutes, during which 260 volumes were
collected. Repeating 5 times within a block. Four 12-second periods of rest were interleaved randomly between trials
6. Multi-Demand dataset: 3 tasks were performed in the same scanning session: n-back, switch and stop signal. All three
tasks were visual. 2 other tasks were performed in second session: an auditory version of the n-back task and a fifth task
not relevant for this study. Each subject performed 4 runs in a session. Each run consisted of 36 blocks: 8 n-back, 8
switch, 8 stop and 12 fixation blocks. Each task consisted of 4 easy and 4 hard blocks. Each task block (30 s) started with
acue (4 s) followed by 12 trials (24 s, 2 s each) and ended with a blank screen (2 s) as an inter-block interval.
7. Somatotopic mapping dataset: All participants were scanned across 4 MRI sessions on separate nonconsecutive days.
6 task-based runs were acquired each day where participants made active movements (motor runs) as well as 2 runs
where participants fixated on a centrally presented black crosshair on a light gray background (fixation runs). In total,
each participant had 24 motor and 8 fixation runs. 4 participants (S5—-58) were scanned in an additional session not used
here. Each run is about 7 minutes.
8. HCP Unrelated 100 dataset: Two resting scanning sessions per subject. 2 imaging runs per session with each run is
about 15 minutes resting scans.

Behavioral performance measures 1. MDTB dataset: Variables recorded: response made, number of correct responses, false alarms, missed responses,
response time. Accuracy (% correct) and reaction time (ms) were collected and averaged across tasks per participant.
2. High-res MDTB dataset: Variables recorded: response made, number of correct responses, false alarms, missed
responses, response time. Accuracy (% correct) and reaction time (ms) were collected and averaged across tasks per
participant.
3. Nishimoto dataset: For 48 out of 103 tasks, task performance was measured using button responses and examined
for each participant separately by their median and interquartile range.
4. Individual Brain Charting (IBC) dataset: For ARCHI Standard, HCP Emotion, HCP Gambling, HCP Language, HCP
Relational, HCP Social, HCP Working Memory and RSVP Language, active responses were required from the participants.
The registry of all behavioral data, such as the qualitative responses to different conditions and corresponding response
times, was recorded in log files generated by the stimulus delivery software.
5. WMFS dataset: Variables recorded: Average force (N), Number of taps in 6 seconds. The averaged error rate and its
standard deviation was collected for each task condition across subjects.
6. Multi-Demand dataset: Response time and number of correct responses for N-back and Switch task. For stop signal
task, go omission, go accuracy, successful stop, unsuccessful stop RT, correct Go RT, and stop signal delay were
recorded. Accuracy (% correct) and reaction time (ms) were collected and averaged across tasks per participant (mean +
standard deviation).
7. Somatotopic mapping dataset: Not provided in original paper.
8. HCP Unrelated 100 dataset: Not necessary for resting scans.
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Acauisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI

Preprocessing

Preprocessing software

D Used

EPI, MPRAGE, and GRE field maps
Highres-MDTB dataset was acquired at 7T, other datasets were in 3T

1. MDTB dataset: Functional data: A multiband gradient echo-planar imaging sequence (TR = 2,000 ms, TE = 30 ms, flip
angle = 62°; voxel size = 2 x 2 x 2 mm, matrix size = 96 x 96, 72 axial slices, FOV = 192 x 192 mm, multiband factor = 3).
Structural data: T1-weighted MPRAGE (TR = 2530 ms, TE = 3.26 ms, flip angle = 9°, voxel size = 1 x 1 x 1 mm, matrix size
=256 x 256, 256 axial slices, FOV = 256 x 256 mm).

2. Highres-MDTB dataset: EPI: Gradient echo, multi-band (acceleration factor 3, interleaved) with an in-plane
acceleration (factor 3). Imaging parameters were: TR=1s, FOV=19.2cm, PE direction F to H, 60 slices, isotropic 1.5mm3
resolution. For anatomical localization and normalization, a 10-minute high-resolution scan of the whole-brain was
acquired (sagittal MP2RAGE, FOV = 24x24x15.6cm3 at isotropic 0.8mm3 voxel size).

3. Nishimoto dataset: Functional data: A multiband gradient echo-planar imaging sequence (TR = 2,000 ms, TE = 30 ms,
flip angle = 62°; voxel size = 2 x 2 x 2 mm3, matrix size = 96 x 96, 72 axial slices, FOV = 192 x 192 mm2, multiband factor
= 3). Structural data: T1-weighted MPRAGE (TR = 2530 ms, TE = 3.26 ms, flip angle = 9°, voxel size =1 x 1 x 1 mm3,
matrix size = 256 x 256, 256 axial slices, FOV = 256 x 256 mm?2).

4. Individual Brain Charting (IBC) dataset: Functional data: A multiband gradient echo-planar imaging sequence (TR =
2,000 ms, TE = 27 ms, flip angle = 74°; voxel size = 1.5 mm isotropic, FOV = 192 x 192 x 140 mm, multiband factor = 3).
Structural data: T1-weighted MPRAGE (TR = 2,300 ms, TE = 2.98 ms, flip angle = 9°, voxel size = 1 mm isotropic, matrix
size = 256 x 256 x 176 axial slices, FOV = 256 x 256 x 176 mm).

5. WMFS dataset: voxel size = 1 x 1x 1mm, Field-of-view = 25.6 x 25.6 x 25.6 cm, using an echo-planar imaging
sequence with TR = 1000 ms, TE = 30 ms, voxel size =2.5x2.5x3 mm, Field-of-view = 20.8x20.8x20.8 cm, 48 slices, P to A
phase encoding direction, with multi-band acceleration factor = 3 (interleaved) and in-plane acceleration factor = 2.
Gradient echo field maps were acquired to correct for distortions due to BO inhomogeneities (acquisition parameters:
voxel size = 3x3x3 mm, Field-of-view = 24x24x24 cm).

6. Multi-Demand dataset: structural (at least one 3D T1lw MPRAGE and one 3D T2w SPACE scan at 0.8-mm isotropic
resolution). Whole-brain rest and task fMRI data were acquired using identical multi-band (factor 8) gradient echo EPI
sequence parameters of 2-mm isotropic resolution (TR=800 ms, TE=37 ms).

7. Somatotopic mapping dataset: Functional data: (1) For 1.8 mm resolution: A multiband gradient-echo echo-planar
pulse sequence (TR =2,000 ms, TE = 30 ms, flip angle = 80°; voxel size = 2 x 2 x 2 mm, matrix size = 122 x 122 x 87 axial
slices, FOV =220 x 220 mm, multiband factor = 3). (2) For 2.4 mm resolution: TR = 1,000 ms, TE = 33 ms, flip-angle =
64°, matrix 92 x 92 x 65 (FOV =221 x 221 mm). Structural data: T1-weighted MPRAGE (TR = 2,200 ms, TE = 1.57, 3.39,
5.21, 7.03 ms, flip angle = 7°, voxel size = 1.2 mm, matrix size = 192 x 192 x 176 axial slices).

8. HCP Unrelated 100 dataset: resting-state functional data: A multiband gradient echo-planar imaging sequence (TR =
720 ms, TE = 33.1 ms, flip angle = 52°; voxel size = 2 mm isotropic, matrix size = 104 x 90 (RO x PE), FOV = 208 x 180 mm
(RO x PE), multiband factor = 8). Structural data: T1-weighted MPRAGE (TR = 2400 ms, TE = 2.14 ms, TI=1000, flip angle
=8°, voxel size = 0.7 mm isotropic, FOV = 224 x 224 mm).

Whole brain scans were used

Not used

1. MDTB dataset: Data preprocessing was carried out using tools from SPM 12, Caret, and SUIT, as well as custom written
scripts written in MATLAB 2015b. For all participants, the anatomical image was acquired in the first scanning session and
reoriented to align with the Left-Inferior-Posterior (LPI) coordinate frame. Functional data were re-aligned for head motion
within each session, and for different head positions.

2. Highres-MDTB dataset: Data preprocessing was carried out using tools from SPM12, optiBET, and SUIT, as well as custom
written scripts written in MATLAB 2019b. For all participants, the anatomical image was acquired in the first scanning session
and reoriented to align with the Left-Inferior-Posterior (LPI) coordinate frame. Functional data were re-aligned for head
motion within each session, and for different head positions across sessions using the 6-parameter rigid body transformation.
The mean functional image was then co-registered to the anatomical image, and this transformation was applied to all
functional images. No smoothing or anatomical normalization was applied to the functional images.

3. Nishimoto dataset: SPM8 (motion correction) and FreeSurfer 5.3.0 (anatomical registration, cortical surface
reconstruction, cortical segmentation, and subcortical segmentation)

4. Individual Brain Charting (IBC) dataset: Source data were preprocessed using PyPreprocess. This library offers a collection
of Python tools to facilitate pipeline runs, reporting and quality check (https://github.com/neurospin/pypreprocess). It is built
upon the Nipype library43 v0.12.1, that in turn launched various commands used to process neuroimaging data. These
commands were taken from the SPM12 software package (Wellcome Department of Imaging Neuroscience, London, UK)
v6685, and the FSL library (Analysis Group, FMRIB, Oxford, UK) v5.0.

5. WMFS dataset: Data preprocessing was carried out using tools from SPM 12, SUIT, as well as custom written scripts written
in MATLAB 2018b. For all participants, we defined an individual coordinate system for each subject by setting the origin of
the anatomical image to the approximate location of the anterior commissure. Functional data were re-aligned for head
motion within each session, and for different head positions.

6. Multi-Demand dataset: The HCP pipelines versions 3.27.0 were used (scripts available at: https://github.com/Washington-
University/HCPpipelines) for data preprocessing. For each subject, structural images (T1w and T2w) were used for extraction
of cortical surfaces and segmentation of subcortical structures. Functional images (rest and task) were mapped from volume
to surface space and combined with subcortical data in volume to form the standard CIFTI grayordinates space. Data were
smoothed by a 2mm FWHM kernel in the grayordinate space that avoids mixing data across gyral banks for surface data and
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avoids mixing across major structure borders for subcortical data.

7. Somatotopic mapping dataset: A custom analysis pipeline for individualized data processing was used, as described in
(Bragaet et al.,2019) Briefly, the pipeline combines tools from FreeSurfer, FSL, and AFNI to align data within an individual
across runs and sessions to a high-resolution output target (1 mm isotropic) using a single interpolation to minimize spatial
blurring.

8. HCP Unrelated 100 dataset: We used the HCP preprocessed data; preprocessing softwares included FSL 5.0.6, FreeSurfer
5.3.0-HCP, and Connectome Workbench v1.1.1.

Normalization The probabilistic maps for the cerebellum were normalized into SUIT space using the diffeomorphic anatomical registration
(DARTEL) algorithm. This algorithm deforms the cerebellum to simultaneously fit the probability maps of cerebellar gray and
white matter onto the SUIT atlas template. This non-linear deformation was applied to both the anatomical and functional
data. The activation estimates (i.e., the beta weights or resting-state functional connectivity), and residual mean-square
images from the first-level GLM were resliced into SUIT space.

Normalization template For all datasets, the spatially unbiased infratentorial template (SUIT) toolbox (v3.2) in SPM 12 was used to isolate the
cerebellum from the rest of the brain and to provide a normalization to a spatially unbiased template of the cerebellum.

Noise and artifact removal The cerebellar isolation mask was hand corrected to ensure that it did not contain any shared voxels between the superior
cerebellum and the directly abutting cerebral cortical regions of the inferior temporal and occipital cortex.

Volume censoring n/a

Statistical modeling & inference

Model type and settings First level analysis, (1) task-based fMRI data: a mass-univariate General Linear Model (GLM) was then fitted to the realigned
functional data to estimate brain activation per imaging run. Coefficients of the GLM were divided by the root-mean-square
error (RMSE) for each voxel, resulting in individual volume-based maps of normalized activity estimates. (2) resting-state
functional connectivity: We first concatenated the preprocessed functional data temporally across subjects, sessions, and
runs to create a single matrix. Then we used the group ICA implemented in FSL's MELODIC (Jenkinson et al., 2012) with
automatic dimensionality estimation, resulting in 1072 group-level components. 69 signal components were identified from
the first 300 ICA components as resting-state networks. Lastly, we regressed the 69 group network spatial maps into the
subject-and-run-specific cortical time series, resulting in 69 cortical network time courses. The cerebellar rs-FC fingerprints
were calculated as Pearson's correlations of the cerebellar voxel time series with each cortical network time course.

Second level analysis, We used a hierarchical Bayesian framework to learn a functional atlas of the cerebellum from multiple
fMRI datasets as described in the manuscript. Variational Inference was applied to deal with the intractability of the model.

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA
or factorial designs were used.

Specify type of analysis: @ Whole brain D ROI-based D Both

Statistic type for inference Voxel-wise

(See Eklund et al. 2016)

Correction Given that we used an uniformed evaluation criterion (DCBC), no correction for the number of voxel-wise or region-wise tests
were necessary.

Models & analysis

n/a | Involved in the study
D Functional and/or effective connectivity
D Graph analysis

D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Resting-state functional connectivity is measured using Pearson correlation of the fMRI time series (static
measures) and the model-parameter of a 1-st order autoregressive model of the fMRI time series (dynamic
measures).

Multivariate modeling and predictive analysis We developed a novel hierarchical Bayesian framework to build probabilistic brain parcellations from

multiple fMRI dataset (Zhi et al., 2023). From Bayesian modeling perspective, the spatial arrangement model
provides group probability prior, and emission models calculate subject-specific data likelihood from each of
individual dataset. To make it a probabilistic measure, the parcel assignment for each brain voxel i is
designed to be a multinomial random variable over all K possible functional regions. Then these vectors are
collected into the K (parcels) x P (voxels) matrix served as central quantity of the framework.

The model training was performed under EM algorithm procedures, which globally maximize the objective
function. Due to the intractability of the energy-based model, the objective function is the evidence lower
bound given the variational inference. When learning starts, the emission models first calculate data
likelihood for each subject and pass them to the arrangement model. Then, arrangement model calculate the
posterior probability of parcel assignment for every subject. Then these individual parcellations pass back to
the emission models to calculate the data likelihood for the next iteration. Then we learn the full model
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through multiple EM process until meeting our converge criterion.

To evaluate the performance of the estimated parcellations from trained model, we applied DCBC evaluation
(zhi et al., 2022) throughout. The DCBC method evaluates how well a parcellation corresponds to the
functional boundaries in an independent test dataset. A higher DCBC value indicates a better performance of
the given parcellation. This evaluation also allows a direct comparison between parcellations in different
resolutions and modalities.

As a second evaluation criterion we assessed the ability of a given parcellation to predict functional
responses individual held out data, by calculating a prediction error. We first derived the individual
parcellations from one half of each dataset, and converted these to winner-take all maps. We then used the
data from N-1 subjects of the second half to estimate the mean functional profiles for each region. For each
voxel in the Nth subject, we then used the profile of the assigned region as a prediction and calculated the
prediction error as one minus the cosine similarity of prediction and data vector. When averaging these
results across voxels, we weighted each cosine error by the length of the data vector to ensure that voxels
with high signal strength would influence our evaluation more than noisy voxels.
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