Supplementary Information

Lipid Droplets Sequester Palmitic Acid to Disrupt Endothelial Ciliation and Exacerbate Atherosclerosis in Male Mice

Yanjie Tan^{1,8}, Zhenzhou Huang^{1,8}, Yi Jin², Jiaying Wang¹, Hongjun Fan¹, Yangyang Liu¹, Liang Zhang², Yue Wu¹, Peiwei Liu¹, Tianliang Li¹, Jie Ran¹, He Tian³, Sin Man Lam^{3,4}, Min Liu⁵, Jun Zhou^{1,6}*, Yunfan Yang⁷*

¹Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China.

²Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.

³State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

⁴LipidALL Technologies Company Limited, Changzhou 213022, China.

⁵Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin 300462, China.

⁶State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.

⁷Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

⁸These authors contributed equally to this work.

*Correspondence: junzhou@sdnu.edu.cn (J.Z.); yunfanyang@sdu.edu.cn (Y.Y.)

Supplementary Figure 1. HFD feeding induces atherosclerosis in mice. **a** Representative Oil Red O (ORO) staining of aortic root sections from ApoE^{KO} mice fed normal chow (NC) or high fat diet (HFD) for indicated periods. Scale bar, 200 μ m. **b** Quantitative analysis of panel **a** (n = 4 mice). **c** *En face* immunofluorescence images of aortic arch VECs stained with antibodies against cluster of differentiation 31 (CD31, white) and ac-tubulin (magenta). LDs were stained with BODIPY (green), and nuclei were stained with DAPI (blue). Scale bar, 10 μ m. **d** Quantification of the fluorescence intensity of BODIPY in non-ciliated and ciliated VECs of the aortic arch shown in Fig. 1c (n = 10 mice). **e**, **f** Scatter plots showing the relationship between ciliary signal and LD signal of randomly chosen locations in the inner curvature of the aortic arch (n = 10 mice). Data are presented as mean ± SEM. Statistical significance was determined by unpaired two-tailed Student's t-test (**d**) or one-way ANOVA with post hoc analysis (**b**). Source data are provided as a Source Data file.

Supplementary Figure 2. Accumulation of LDs triggers ciliary loss in cultured VECs. **a-c** Immunofluorescence images (**a**) and quantifications of BODIPY staining (**b**) and ciliation (**c**) of cultured HUVECs treated with oleic acid (OA) at the indicated concentration for 12 h, followed by serum starvation for 48 h (n = 10 fields from 3 independent experiments). Scale bar, 10 µm. **d-f** Immunofluorescence images (**d**) and quantifications of BODIPY staining (**e**) and ciliation (**f**) of HUVECs treated with Atglistatin (10 µM) for 12 h, followed by serum starvation for 48 h (n = 20 fields from 3 independent experiments). Scale bar, 10 µm. **g-i** Immunofluorescence images (**g**) and quantifications of BODIPY staining (**h**) and ciliation (**i**) of HUVECs treated with DMSO or DGAT inhibitors (A922500, 10 µM and PF-06424439, 5 µM) for 24 h, exposed to BSA or OA (200 µM) for 12 h, and then serum-starved for 48 h (n = 20 fields from 3 independent experiments). BSA was used as a control treatment. Scale bar, 10 µm. Data are presented as mean \pm SEM. Statistical significance was determined by unpaired two-tailed Student's t-test (**e**, **f**), one-way (**b**, **c**), or two-way (**h**, **i**) ANOVA with post hoc analysis. Source data are provided as a Source Data file.

Supplementary Figure 3. LD accumulation in endothelial cells preferentially stimulates the sequestration of cytosolic PA. **a** Immunofluorescence images of HUVECs labeled with γ -tubulin antibody (magenta) and stained with BODIPY (green) and DAPI (blue). Boxed area is enlarged in the bottom panel. Scale bar (for enlarged image), 5 µm. **b**, **c** GC-MS analysis showing changes in levels of indicated free fatty acids in HUVECs exposed to DGAT1 overexpression for 48 h (**b**) or Atglistatin (10 µM) treatment for 24 h (**c**). PA: palmitic acid, SA: stearic acid, ELA: elaidic acid, OA: oleic acid, LA: linoleic acid, EA: erucic acid, AA: arachidonic acid. **d-f** HUVECs were pre-incubated with BODIPY FL C₁₆ (0.5 µM) for 30 min and then treated with oleic acid (OA, 200 µM) or BSA for indicate periods (**d**). The fluorescence intensity of LipidTOX (**e**) and cytosolic PA (**f**) were quantified (n = 10 fields from 3 independent experiments). Scale bar, 10 µm. **g** HUVECs expressing livedrop-mCherry were pre-incubated with BODIPY FL C₁₆ (0.5 µM) for 30 min and then treated with OA (200 µM) for 30 min. Boxed areas are enlarged in the bottom panel. Scale bar (for enlarged images), 5 µm.

Data are presented as mean ± SEM. Statistical significance was determined by unpaired two-tailed Student's t-test. Source data are provided as a Source Data file.

Supplementary Figure 4. LD accumulation disrupts ciliary homeostasis by reducing cytosolic PA. **a-f** Immunofluorescence images (**a**, **d**) and quantifications of BODIPY staining (**b**, **e**) and ciliation (**c**, **f**) of HUVECs first treated with BSA or oleic acid (OA, 200 μ M) for 12 h, then supplemented with stearic acid (SA, 200 μ M) or palmitic acid (PA, 200 μ M) for 12 h, and finally serum-starved for 48 h (n = 20 fields from 3 independent experiments). Scale bars, 10 μ m. **g-i** Immunofluorescence images (**g**) and quantifications of LipidTOX staining (**h**) and ciliation (**i**) of HAECs serum-starved for

48 h, then exposed to OA (100 μ M) and/or α -linolenic acid (ALA) or PA (100 μ M) for 16 h (n = 20 fields from 3 independent experiments). Scale bar, 20 μ m. **j**-l Immunofluorescence images (**j**) and quantifications of BODIPY staining (**k**) and ciliation (**l**) of HUVECs treated with Atglistatin (10 μ M) for 12 h, exposed to PA (200 μ M) for 12 h, and then serum-starved for 48 h (n = 20 fields from 3 independent experiments). Scale bar, 10 μ m. **m**-**o** Immunofluorescence images (**m**) and quantifications of BODIPY staining (**n**) and ciliation (**o**) of HUVECs treated with an FASN inhibitor (C75, 10 μ M) for 24 h, exposed to PA (200 μ M) for 12 h, and then serum-starved for 48 h (n = 20 fields from 3 independent experiments). Scale bar, 10 μ m. Data are presented as mean ± SEM. Statistical significance was determined by oneway (**k**, **l**, **n**, **o**), or two-way (**b**, **c**, **e**, **f**, **h**, **i**) ANOVA with post hoc analysis. Source data are provided as a Source Data file.

C: Environmental Information Processing

E: Metabolism

Supplementary Figure 5. ABE-MS detection of S-palmitoylated proteins. **a** Schematic describing the enrichment strategy and mass spectrometry-based workflow used for the identification of S-acylated proteins in HUVECs treated with BSA or oleic acid (OA, 200 μ M) for 12 h. NEM, N-Ethylmaleimide; HAM, hydroxylamine. **b** KEGG analysis of differentially S-palmitoylated proteins between BSA- and OA-treated HUVECs. Panel **a** was created with BioRender.com released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International license.

Supplementary Figure 6. PA is essential for ARL13B S-palmitoylation. **a-c** Immunofluorescence images (**a**) and quantifications of BODIPY staining (**b**) and ciliation (**c**, n = 20 fields from 3 independent experiments) of HUVECs first treated with DMSO or 2-Bromopalmitate (2-BP, 50 μ M) for 24 h, exposed to BSA or palmitic acid (PA, 200 μ M) for 12 h, and then serum-starved for 48 h. Scale bar, 10 μ m. **d**, **e** MAECs were first treated with DMSO or 2-BP (50 μ M) for 24 h and then supplemented with either BSA or PA (200 μ M) for another 12 h. The level of ARL13B S-palmitoylation was examined by IP-ABE and immunoblotting (**d**) and quantified by densitometry (**e**) (n = 3 samples). HAM, hydroxylamine. **f**, **g** MAECs were pre-treated with DMSO or the FASN inhibitor C75 (10 μ M) for 24 h and then supplemented with

either BSA or PA (200 μ M) for another 12 h. The level of ARL13B S-palmitoylation was then examined by IP-ABE and immunoblotting (**f**) and quantified by densitometry (**g**) (n = 3 samples). **h**, **i** HUVECs were treated with DMSO or 2-BP (50 μ M) for 24 h and then treated with CHX (20 mg/mL) for indicated periods. The level of ARL13B was examined by immunoblotting (**h**) and quantified by densitometry (**i**) (n = 3 samples). **j**-**l** Immunofluorescence images (**j**) and quantifications of LipidTOX staining (**k**) and ciliation (**l**) of HAECs overexpressed with ARL13B-GFP or ARL13B-GFP Myr and treated with BSA or oleic acid (OA, 200 μ M) (n = 20 fields from 3 independent experiments). Boxed areas are enlarged in the bottom panel. Scale bar (for enlarged images), 10 μ m. **m**, **n** Transcriptional levels of palmitoyl acyltransferases (ZDHHCs) (**m**) and depalmitoylases, including APT1, APT2, ABHD17A, ABHD17B, and ABHD17C (**n**) in MAECs treated with BSA or OA (200 μ M) for 12 h (n = 3 samples). Data are presented as mean ± SEM. Statistical significance was determined by unpaired two-tailed Student's t-test (**i**, **m**, **n**) or two-way ANOVA with post hoc analysis (**b**, **c**, **e**, **g**, **k**, **l**). Source data are provided as a Source Data file.

Supplementary Figure 7. Effects of SCD1 inhibition on circulating lipid levels. **a** Genotyping of indicated mouse lines. M: marker, a: WT, b: ApoE^{KO}, c: IFT88^{EC} ^{KO};ApoE^{KO}. **b** Immunoblotting of IFT88 protein level in MAECs isolated from IFT88^{EC} ^{KO};ApoE^{KO} and littermate ApoE^{KO} mice. **c-f** Levels of total cholesterol (CHO, **c**), high-density lipoprotein cholesterol (HDL-C, **d**), low-density lipoprotein cholesterol (LDL-

C, e), and triglycerides (TG, f) in the serum of IFT88^{EC KO};ApoE^{KO} and littermate ApoE^{KO} mice intravenously injected with A939572 (5 mg/kg body weight/2 days) or vehicle for 4 weeks (n = 6 mice). g-i, *En face* immunofluorescence images (g) and quantifications of BODIPY staining (h) and ciliation (i) of aortic arch VECs of IFT88^{EC} ^{KO}; ApoE^{KO} and littermate ApoE^{KO} mice intravenously injected with A939572 (5 mg/kg body weight/2 days) or vehicle for 4 weeks after an 8-week HFD feeding (n = 6 mice). Scale bar, 20 µm. j, k Immunoblotting (j) and quantification (k) of the protein levels of CHOP in MAECs treated with PA at the indicated concentration for 12 h (n = 3samples). I, m Immunoblotting (I) and quantification (m) of the protein levels of CHOP, p-PERK, and PERK in the aortic arch of ApoE^{KO} mice intravenously injected with A939572 (5 mg/kg body weight/2 days) or vehicle for 4 weeks after an 8-week HFD feeding (n = 3 mice). **n**, **o** Immunoblotting (**n**) and quantification (**o**) of LC3 lipidation and p16 protein level in HAECs (n = 3 samples). p-r Images (p) and quantifications of LC3 puncta (q) and SA- β -gal-positive cells (r) in HAECs treated with OA or PA (200 μ M) for 12 h (n = 20 fields from 3 independent experiments). Scale bar for immunofluorescence images, 20 μm. Scale bar for SA-β-gal staining, 50 μm. Data are presented as mean ± SEM. Statistical significance was determined by unpaired twotailed Student's t-test (m), one-way (k, o, q, r), or two-way (c, d-f, h, i) ANOVA with post hoc analysis. Source data are provided as a Source Data file.

Supplementary Figure 8. Examination of ApoE^{KO} mice challenged with the indicated diets. **a-c** Levels of palmitoleic acid (POA, C16:1) (**a**), stearic acid (SA, C18:0) (**b**), and oleic acid (OA, C18:1) (**c**) in the serum of ApoE^{KO} mice fed with the indicated diets (n = 6 mice). **d-f** *En face* immunofluorescence images (**d**) and quantifications of BODIPY staining (**e**) and ciliation (**f**) of aortic arch VECs of ApoE^{KO} mice treated as described in Fig. 7a (n = 6 mice). NC, normal chow; HFD, high fat diet; S, soybean oil; P, palm oil. Scale bar, 10 µm. Data are presented as mean ± SEM. Statistical significance was determined by one-way ANOVA with post hoc analysis. Source data are provided as a Source Data file.

Supplementary Figure 9. Scheme depicting the method for measuring the fluorescence intensity of LDs and cilia in individual endothelial cells. **a** VE-cadherin immunofluorescence staining was performed to label the cell membrane of endothelial cells for delineating each cell's region. **b** Individual cell regions were outlined with cyan dashed lines based on the VE-cadherin fluorescence signal using ImageJ software. **c**, **d** The fluorescence intensities in the indicated channels within the selected regions were measured as F_{LDs} (**c**) and F_{cilia} (**d**) using the "measurement" tool by ImageJ software.

M+16	BSA-whole cells			OA-whole cells			OA-LDs		
TAG48:2	0.163405	0.140884	0.185191	0.236564	0.24418	0.24481	0.179437	0.175597	0.251498
TAG48:1	0.133255	0.108331	0.148846	0.162038	0.16666	0.181186	0.223402	0.219806	0.236626
TAG50:4	0.270872	0.272719	0.295094	0.159974	0.174798	0.165927	0.087491	0.091527	0.172058
TAG50:3	0.217719	0.20615	0.231091	0.254389	0.25386	0.251559	0.14854	0.146998	0.245513
TAG50:2	0.213248	0.196108	0.213866	0.275503	0.278028	0.281241	0.207748	0.207184	0.278488
TAG50:1	0.173794	0.152298	0.177299	0.210769	0.21647	0.219362	0.251337	0.241416	0.251099
TAG52:5	0.304058	0.273027	0.319822	0.200709	0.193125	0.187368	0.080159	0.082367	0.169051
TAG52:4	0.196854	0.194903	0.213205	0.265444	0.271142	0.255509	0.112302	0.109937	0.214767
TAG52:3	0.260636	0.257817	0.268264	0.333745	0.333669	0.318588	0.142007	0.142768	0.260656
TAG52:2	0.276268	0.265487	0.260854	0.348132	0.362746	0.338519	0.189363	0.187206	0.289902
TAG52:1	0.229631	0.209673	0.221455	0.272057	0.271254	0.265788	0.248434	0.247549	0.282431
TAG54:5	0.177626	0.151246	0.184732	0.069116	0.069776	0.070739	0.035273	0.033478	0.066342
TAG54:4	0.356134	0.356609	0.345143	0.100932	0.10288	0.101387	0.045831	0.04631	0.100994
TAG54:3	0.230521	0.226928	0.258715	0.175291	0.174768	0.174862	0.083825	0.080754	0.168302
TAG54:2	0.253488	0.251025	0.236269	0.275982	0.279534	0.276803	0.158218	0.164177	0.258844
TAG54:1	0.214008	0.203386	0.206958	0.261238	0.26528	0.263942	0.229373	0.227609	0.280147
TAG56:3	0.211615	0.21252	0.241579	0.180619	0.176942	0.177904	0.100975	0.099145	0.185721
TAG56:2	0.227159	0.223742	0.234967	0.262233	0.264163	0.258539	0.17035	0.162028	0.243013
TAG58:3	0.212519	0.215991	0.241857	0.194496	0.199587	0.207026	0.118243	0.116621	0.206348
							[
M+16	OE	NC-whole c	ells	OE D	GAT1-whole	e cells	Ol	E DGAT1-L	Ds
M+16 TAG48:2	OE 0.138486	NC-whole c 0.144759	ells 0.184901	OE D 0.298536	GAT1-whole 0.291484	e cells 0.302097	Ol 0.222096	E DGAT1-L 0.220194	Ds 0.213472
M+16 TAG48:2 TAG48:1	OE 0.138486 0.123746	NC-whole c 0.144759 0.111851	ells 0.184901 0.112117	OE D 0.298536 0.243293	GAT1-whole 0.291484 0.245156	e cells 0.302097 0.246452	Ol 0.222096 0.209667	E DGAT1-L 0.220194 0.200324	Ds 0.213472 0.210549
M+16 TAG48:2 TAG48:1 TAG50:4	OE 0.138486 0.123746 0.134483	NC-whole c 0.144759 0.111851 0	ells 0.184901 0.112117 0	OE D 0.298536 0.243293 0.200369	GAT1-whole 0.291484 0.245156 0.198914	e cells 0.302097 0.246452 0.194727	OI 0.222096 0.209667 0.107559	E DGAT1-L 0.220194 0.200324 0.106975	Ds 0.213472 0.210549 0.114875
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3	OE 0.138486 0.123746 0.134483 0.153641	NC-whole c 0.144759 0.111851 0 0.171981	ells 0.184901 0.112117 0 0.195577	OE D 0.298536 0.243293 0.200369 0.281578	GAT1-whole 0.291484 0.245156 0.198914 0.285318	e cells 0.302097 0.246452 0.194727 0.282087	OI 0.222096 0.209667 0.107559 0.203154	E DGAT1-L 0.220194 0.200324 0.106975 0.211518	Ds 0.213472 0.210549 0.114875 0.198209
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2	OE 0.138486 0.123746 0.134483 0.153641 0.199014	NC-whole c 0.144759 0.111851 0 0.171981 0.184033	eells 0.184901 0.112117 0 0.195577 0.206456	OE D 0.298536 0.243293 0.200369 0.281578 0.278445	GAT1-whold 0.291484 0.245156 0.198914 0.285318 0.290024	e cells 0.302097 0.246452 0.194727 0.282087 0.282052	OI 0.222096 0.209667 0.107559 0.203154 0.249752	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344	Ds 0.213472 0.210549 0.114875 0.198209 0.248286
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303	ells 0.184901 0.112117 0 0.195577 0.206456 0.133834	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299	GAT1-whold 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598	ells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051	ells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1 TAG54:5	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768	ells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736 0.04206
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1 TAG54:5 TAG54:4	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927 0.321198	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768 0.33856	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701 0.403657	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774 0.117128	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481 0.120552	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788 0.121685	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573 0.045396	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936 0.046482	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736 0.04206 0.046409
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1 TAG52:1 TAG54:5 TAG54:4 TAG54:3	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927 0.321198 0.225172	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768 0.33856 0.226271	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701 0.403657 0.249056	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774 0.117128 0.182219	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481 0.120552 0.18004	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788 0.121685 0.189655	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573 0.045396 0.091172	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936 0.046482 0.096595	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.220708 0.255172 0.247736 0.04206 0.04206 0.046409 0.095902
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1 TAG54:5 TAG54:4 TAG54:3 TAG54:2	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927 0.321198 0.225172 0.198173	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768 0.33856 0.226271 0.194974	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701 0.403657 0.249056 0.205162	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774 0.117128 0.182219 0.27487	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481 0.120552 0.18004 0.280729	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788 0.121685 0.189655 0.277564	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573 0.045396 0.091172 0.195336	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936 0.046482 0.096595 0.201938	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736 0.04206 0.04206 0.046409 0.095902 0.19718
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1 TAG54:5 TAG54:4 TAG54:3 TAG54:2 TAG54:1	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927 0.321198 0.225172 0.198173 0.194106	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768 0.33856 0.226271 0.194974 0.186483	ells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701 0.403657 0.249056 0.205162 0.188276	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774 0.117128 0.182219 0.27487 0.280938	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481 0.120552 0.18004 0.280729 0.292415	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788 0.121685 0.189655 0.277564 0.292787	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573 0.045396 0.091172 0.195336 0.260179	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936 0.046482 0.096595 0.201938 0.267272	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736 0.04206 0.04206 0.046409 0.095902 0.19718 0.259276
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:3 TAG52:2 TAG52:1 TAG54:5 TAG54:4 TAG54:3 TAG54:2 TAG54:1 TAG56:3	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927 0.321198 0.225172 0.321198 0.225172 0.198173 0.194106 0.167581	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768 0.33856 0.226271 0.194974 0.186483 0.165164	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701 0.403657 0.249056 0.205162 0.188276 0.182104	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774 0.117128 0.182219 0.27487 0.280938 0.161829	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481 0.120552 0.18004 0.280729 0.292415 0.171837	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788 0.121685 0.189655 0.277564 0.292787 0.166324	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573 0.045396 0.091172 0.195336 0.260179 0.107924	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936 0.046482 0.096595 0.201938 0.267272 0.115875	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736 0.04206 0.04206 0.04206 0.04206 0.045902 0.19718 0.259276 0.111249
M+16 TAG48:2 TAG48:1 TAG50:4 TAG50:3 TAG50:2 TAG50:1 TAG52:5 TAG52:4 TAG52:3 TAG52:2 TAG52:1 TAG52:1 TAG54:5 TAG54:4 TAG54:3 TAG54:2 TAG54:1 TAG56:3 TAG56:2	OE 0.138486 0.123746 0.134483 0.153641 0.199014 0.134318 0.189553 0.380094 0.213316 0.259173 0.184758 0.120927 0.321198 0.225172 0.198173 0.194106 0.167581 0.176795	NC-whole c 0.144759 0.111851 0 0.171981 0.184033 0.122303 0.191486 0.428654 0.210598 0.248051 0.18057 0.117768 0.33856 0.226271 0.194974 0.186483 0.165164 0.168922	eells 0.184901 0.112117 0 0.195577 0.206456 0.133834 0.220712 0.465981 0.224125 0.2749 0.193859 0.119701 0.403657 0.249056 0.205162 0.188276 0.182104 0.180764	OE D 0.298536 0.243293 0.200369 0.281578 0.278445 0.236725 0.265073 0.351299 0.371344 0.37532 0.284097 0.11774 0.117128 0.182219 0.27487 0.280938 0.161829 0.250141	GAT1-whole 0.291484 0.245156 0.198914 0.285318 0.290024 0.255959 0.276498 0.34037 0.367622 0.367614 0.300889 0.112481 0.120552 0.18004 0.280729 0.292415 0.171837 0.271678	e cells 0.302097 0.246452 0.194727 0.282087 0.282052 0.242436 0.279581 0.353721 0.374638 0.37349 0.303599 0.118788 0.121685 0.277564 0.292787 0.166324 0.269895	OI 0.222096 0.209667 0.107559 0.203154 0.249752 0.237025 0.120602 0.19108 0.229666 0.266382 0.252855 0.041573 0.045396 0.091172 0.195336 0.260179 0.107924 0.195404	E DGAT1-L 0.220194 0.200324 0.106975 0.211518 0.252344 0.23584 0.126175 0.199025 0.238397 0.271643 0.252812 0.040936 0.046482 0.096595 0.201938 0.267272 0.115875 0.196843	Ds 0.213472 0.210549 0.114875 0.198209 0.248286 0.236763 0.114227 0.179858 0.220708 0.255172 0.247736 0.04206 0.04206 0.046409 0.095902 0.19718 0.259276 0.111249 0.19842

Supplementary Table 1. The fractional abundance of ¹³C₁₆-labeled triglycerides in different samples.

M+16	DMSO-whole cells			Atglistatin-whole cells			Atglistatin-LDs		
TAG48:2	0.197089	0.193064	0.160215	0.296072	0.292791	0.299318	0.236047	0.224751	0.200558
TAG48:1	0.154902	0.147066	0.134205	0.255376	0.251816	0.251585	0.216987	0.214282	0.202605
TAG50:4	0	0	0	0.192255	0.180752	0.171468	0.123915	0.10971	0.098899
TAG50:3	0.227229	0.222466	0.193693	0.282001	0.275743	0.284665	0.216281	0.218003	0.194154
TAG50:2	0.235501	0.230555	0.208364	0.301196	0.29491	0.279496	0.264472	0.261821	0.240169
TAG50:1	0.162371	0.160719	0.147772	0.262689	0.258462	0.242786	0.239448	0.237188	0.224183
TAG52:5	0.234946	0.229021	0.21989	0.283645	0.261169	0.272281	0.143126	0.144788	0.103563
TAG52:4	0.46233	0.472976	0.446192	0.34755	0.344522	0.352414	0.207763	0.203884	0.171035
TAG52:3	0.248689	0.239179	0.242079	0.369047	0.365399	0.376065	0.247882	0.240322	0.21029
TAG52:2	0.272732	0.268579	0.254489	0.364588	0.366028	0.373423	0.284912	0.27944	0.248394
TAG52:1	0.207343	0.22238	0.197393	0.305763	0.302722	0.2922	0.271473	0.247543	0.235008
TAG54:5	0.131931	0.125915	0.128887	0.124181	0.117741	0.117824	0.044915	0.050619	0.039263
TAG54:4	0.346216	0.352868	0.347214	0.132762	0.128967	0.117736	0.04798	0.053834	0.041929
TAG54:3	0.232809	0.250992	0.231703	0.201591	0.190322	0.178359	0.102208	0.10268	0.087108
TAG54:2	0.218337	0.211062	0.206882	0.286419	0.277941	0.280508	0.208202	0.202375	0.184275
TAG54:1	0.205171	0.215112	0.204543	0.301148	0.29399	0.291344	0.274463	0.26705	0.255507
TAG56:3	0.171666	0.173814	0.177557	0.177584	0.170012	0.165306	0.1123	0.11685	0.098649
TAG56:2	0.188946	0.18981	0.179838	0.268964	0.260068	0.253688	0.197951	0.209111	0.188429
TAG58:3	0.181075	0.17317	0.180067	0.212989	0.210598	0.20622	0.142611	0.153851	0.120386

Symbol	Entrez Gene Name
ARL13B	ADP ribosylation factor like GTPase 13B
EHD1	EH domain-containing protein 1
ARF4	ADP-ribosylation factor 4
SEPTIN2	Septin-2
EHD2	EH domain-containing protein 2
HDAC6	Histone deacetylase 6
SEPTIN7	Septin-7
DYNLL1	Dynein light chain 1
BBS7	Bardet-Biedl syndrome 7
NECTIN2	Nectin-2
FLNA	Filamin-A
AURKA	Aurora kinase A
MAP4	Microtubule-associated protein 4
RP2	Protein XRP2
ATXN10	Ataxin-10
RAB8A	Ras-related protein Rab-8A
SLC9A3R1	Na (+) / H (+) exchange regulatory cofactor NHE-RF; Na (+) / H (+) exchange regulatory cofactor NHE-RF1
GSN	Gelsolin
KIF3A	Kinesin-like protein KIF3A
WDR54	WD repeat-containing protein 54
ACTR3	Actin-related protein 3
PTPN23	Tyrosine-protein phosphatase non-receptor type 23
CEP131	Centrosomal protein of 131 kDa
DNMBP	Dynamin-binding protein
DCTN1	Dynactin subunit 1
RO60	60 kDa SS-A/Ro ribonucleoprotein
HSPB11	Intraflagellar transport protein 25 homolog
CFAP20	Cilia- and flagella-associated protein 20
MAPRE1	Microtubule-associated protein RP/EB family member 1
ACTR2	Actin-related protein 2
GBF1	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1
PCM1	Pericentriolar material 1 protein
DNAAF5	Dynein assembly factor 5

Supplementary Table 2. Palmitoylated cilia-related proteins identified by IP-ABE in HUVECs.

	-	CD		HFD-S		HFD-S&P		HFD-P	
		gm	kcal	gm	kcal	gm	kcal	gm	kcal
Drotoin	Casein	200	800	200	800	200	800	200	800
riotein	L-Cystine	3	12	3	12	3	12	3	12
	Corn Starch	375	1500	0	0	0	0	0	0
Carbohydrate	Maltodextrin	125	500	125	500	125	500	125	500
	Sucrose	200	800	68.75	275	68.75	275	68.75	275
	cocoa butter	20	180	20	180	20	180	20	180
Fat	Soybean Oil	25	225	250	2250	115	1035	25	225
	Palm Oil	0	0	0	0	135	1215	225	2025
	C16:0	7.96	-	31.59	-	76.14	-	105.84	-
	C16:1	0.04	-	0.04	-	0.44	-	0.71	-
	C18:0	8.24	-	18.14	-	13.27	-	17.91	-
Fatty acid	C18:1	17.86	-	119.56	-	107.95	-	100.21	-
composition	SFA	16.64	-	51.74	-	97.23	-	127.56	-
	MUFA	12.3	-	63.6	-	82.77	-	95.55	-
	PUFA	14.98	-	144.81	-	78.91	-	35.91	-
	cellulose	50	0	50	0	50	0	50	0
	Mineral Mix, S10021	10	0	10	0	10	0	10	0
	Calcium Phosphate	13	0	13	0	13	0	13	0
Vitamins and	Calcium Carbonate	5.5	0	5.5	0	5.5	0	5.5	0
Minerals	Potassium Citrate	16.5	0	16.5	0	16.5	0	16.5	0
	Vitamin Mix, v10001	10	40	10	40	10	40	10	40
	Choline Bitartrate	2	0	2	0	2	0	2	0
	cholesterol	5.3	0	5.3	0	5.3	0	5.3	0
		gm%	kcal%	gm%	kcal%	gm%	kcal%	gm%	kcal%
C	Protein	19	20	26	20	26	20	26	20
Summary	Carbohydrate	67	70	26	20	26	20	26	20
	Fat	4	10	35	60	35	60	35	60

Supplementary Table 3. Compositions of diets used in this study.

Gene Name	Primer Sequence 5'-3'						
	Forward: TCCCGGTGGTGTTCATCAC						
ZDHHC2	Reverse: CAACTTGTTCGCCAGTGTTTTC						
ZDHHC3	Forward: CCACTTCCGAAACATTGAGCG						
	Reverse: CCACAGCCGTCACGGATAAA						
ZDHHC4	Forward: CCTGACTTGTGGAACCAATCC						
	Reverse: GCACCTCACGTTCTTTGGAAAC						
704465	Forward: GTTTGGCTTTGGCCTCCTTTA						
ZDHHCJ	Reverse: ACACACATTACTGCCATTGTGAC						
	Forward: GTTGTGGTATTGGCCCTTACA						
ZDHHC0	Reverse: AAAGCCCGGACCGACAAAC						
	Forward: CTGACCGGGTCTGGTTCATC						
ZDIIIIC/	Reverse: CATGACGAAAGTCACCACGAA						
	Forward: CTCAAACCCGCCAAGTACATC						
ZDIIICo	Reverse: ACACAGCTCGTGTCAACCAC						
	Forward: CCTGGGTGGGGGAATTGTGTT						
ZDIIIC9	Reverse: ACGACGGACCAGAGTGTAAAG						
7DHHC12	Forward: GTGCTGACCTGGGGGAATCAC						
ZDIIIIC12	Reverse: CTGCACATTCACGTAGCCA						
7DHHC13	Forward: AGGAAGCCATTAAGGTCACTCC						
ZDIIICIJ	Reverse: GCCAAAACCTATGCACCGTC						
7DHHC14	Forward: TGTGATAACTGCGTAGAACGGT						
ZDIIIIC14	Reverse: CGTGGGTGATAACGAATGCAA						
ZDHHC16	Forward: CGAAAGGCACATCAACAAGAAG						
	Reverse: AGTTGTCCAAGCAGCCGTAG						
ZDHHC17	Forward: GGCCCGGATGAGTACGATAC						
ZDIIIIC17	Reverse: TCCAAGAGGTTCACCATATCCA						
7DHHC18	Forward: CACCCCGAACCTCACACTG						
ZDIIICI	Reverse: TGAAGGCCGTCAGGAATGAGA						
700000	Forward: TTCGTGGTCGTCTGGTCCTA						
ZDIIIIC20	Reverse: AGGTAAACAACGGTCTTTCCATT						
7044021	Forward: TGTTGTTGACCCACATGGTTG						
LDIIIIC21	Reverse: GAGGCCCTCACTAAGGCAA						
7044022	Forward: GGGGCGCTCTTCCTATTCC						
LDIIIIC22	Reverse: GCAGAAGTGGGTGCTAGGTG						
7DHHC24	Forward: CTGGCACAGTTTGCCTTGG						
ZDHHC24	Reverse: CAGGGACCCAGGTCATAGGAG						

Supplementary Table 4. Primers used for qRT-PCR.

Forward: GGTACACGGTCCTCTTCTCG
Reverse: CGTAGCCGGAGTAGTCGTAG
Forward: TCTTGGTCAAATGAGCAGCTTT
Reverse: GCGAATGCCATATCTTGTCCT
Forward: GGTTTGCGTGTGGGCTTTTCC
Reverse: CATGAATGACCAACACAGGAGA
Forward: CCTTTGCAGGTATCAGAAGTTCA
Reverse: GCTGCCTGTTTAATCCCAGAT
Forward: AGGCAGCTAATGGCAGTGC
Reverse: AGGTGTGACAACAGACCGGA
Forward: TTCTTGCGATACACTCTGGTGC
Reverse: CGGGATTGAATGTTCTTGTCGT
Forward: GCAACTGTTCCTGAACTCAACT
Reverse: ATCTTTTGGGGGTCCGTCAACT
Forward: TAGTCCTTCCTACCCCAATTTCC
Reverse: TTGGTCCTTAGCCACTCCTTC
Forward: CTCCCGTGGCTTCTAGTGC
Reverse: GCCTTAGTTTGGACAGGATCTG
Forward: AGTTGGGGGATTCGGTTGTTCT
Reverse: CCCCTCATTCCTTACCACCC
Forward: ATGCCTCGCGCTTTCTCTCT
Reverse: GTAGTCCCGCTGACAGTATGC
Forward: GAACAGCGATCAGGCCAGG
Reverse: GGACAGTTGGGTGTCTCACATT
Forward: AAGCCGAGAATGCTGAGTTCA
Reverse: GCCGTGTAGATATGGTACAAGGA
Forward: AGGGACAAGCCTACCCCTC
Reverse: CTCATCTCCCGTCAGTTGGT
Forward: AGGTCGGTGTGAACGGATTTG
Reverse: TGTAGACCATGTAGTTGAGGTCA
Forward: AGGTCGGTGTGAACGGATTTG
Reverse: TGTAGACCATGTAGTTGAGGTCA

Uncropped Immunoblots of Supplementary Figures

Supplementary Figure 6d:

Supplementary Figure 6f:

Supplementary Figure 6h:

Supplementary Figure 7a:

Supplementary Figure 7b:

Supplementary Figure 7j

Supplementary Figure 7i:

Supplementary Figure 7n:

