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Table S1: Tobacco smoke constituents in IARC Group 1 (carcinogenic to humans) 

 

 Vapor pressure (mm Hg) 

Organic compounds 

Formaldehyde gas 

Vinyl chloride  gas 

Ethylene oxide gas 

1,3-Butadiene gas 

Benzene 96 

4-Aminobiphenyl 7.7 × 10-2 

2-Naphthylamine  2.6 × 10-4 

N′-Nitrosonornicotine (NNN)  5.1 × 10-4 

4-(Methylnitrosamino)- 1-(3-pyridyl)-1-butanone 
(NNK) 

6.8 × 10-5 

Benzo[a]pyrene (BaP) 5.5 × 10-9 

Inorganic species 

Arsenic  N/A 

Beryllium  N/A 

Nickel  N/A 

Chromium N/A 

Cadmium N/A 

Polonium-210 N/A 
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Section S1: TSNA mutagenicity and carcinogenicity 

 

Both NNK and NNN are activated metabolically, with formation of DNA adducts being considered critical 

for their mutagenicity and carcinogenicity [1, 2]. The carcinogenicity of NNK was tested in mice, rats, 

hamsters and mink, with administration via drinking water, gavage, subcutaneous or intraperitoneal 

injection, and skin painting [3-6]. NNK causes lung, liver, pancreas and other types of cancers and is 

more carcinogenic than NNN for the induction of lung and liver tumors in F344 rats or A/J mice [5, 7]. 

DNA adduct formation by NNK and NNN, after activation by the cytochrome P450 system, is considered 

a central mechanism for tumorigenesis [8]. In addition, the binding of NNK and NNN to the nicotinic 

acetylcholine receptor promotes tumor growth by enhancing and deregulating cell proliferation, 

migration, and invasion [9], thereby creating a microenvironment for tumor growth. The tumorigenic 

activity of NNA, together with NNK and NNN, was studied in strain A/J mice, and found to cause tumors, 

though at a lower incidence than NNK and NNN, with 36% for NNA compared to 87% and 76% for NNK 

and NNN, respectively [10]. In a study using a HPRT locus mutagenicity assay, NNA exhibited a 

mutagenic activity comparable to that of NNK in a human B-lymphoblastoid cell line expressing P450 

CYP2D6 cDNA [11]. Similarly, the DNA damage caused by NNA and NNK in a comet assay quantifying 

strand breaks in human HepG2 cells showed a similar damage and dose response, suggesting 

comparable genotoxicity for both compounds [12]. Several NNA adducts were identified in vitro from its 

reaction with deoxyguanosine [13].   
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Figure S1: Experimental setup  
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Table S2: Substrates and conditions used in the evaluation of the effects of skin liquids on the 

nitrosation of nicotine 

 
Control  

(only HONO 
or nicotine) 

Nicotine on 
clean 

substrate 

Nicotine & 
skin liquids 

Nicotine & 
artificial 

sweat, pH = 4 

Nicotine & 
artificial 

sweat, pH = 7 

Cellulose × × × × × 

Cotton × × × × × 
 

 

 

Figure S2: Specimens used in the experiments 

 

 

 

 

Table S3: Sweat surrogate mixture composition*  

Chemical Concentration (mM) 

NaCl 340 

NH
4
Cl 330 

Urea 83 

Lactic Acid  170 

Acetic Acid 42 
* adapted from Pavilonis et al, 2014 – Risk Analysis [14] 

 

  

Cellulose specimen 
(1 x 3 cm, 57 mg)

Cotton specimens on bandage 
applied to the skin (forearm) 
for 8 h prior to experiment

Cotton specimen (55 mg) with 
sweat surrogate mixture (250 mg)
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Section S2. Quantification of nicotine and TSNAs on cellulose and cotton substrates  

The determination of nicotine and TSNAs is based on the method described by Whitehead et al. [28]  

NNN and NNK: 200 μL of standards, QCs, or sample extracts and 100 μL internal standard solution were 

pipetted into a 13 × 100 mm glass culture tube. These were mixed with 0.75 mL of 1:1 saturated 

NaHCO3/50% K2CO3 and 4 mL of 40:40:15:5 pentane/dichloromethane/ethyl acetate/isopropanol, added 

for the extraction of analytes. The tubes were vortexed, centrifuged, and placed in dry ice acetone bath 

to freeze the aqueous layers. The organic layers were poured into new tubes containing 200 µL 0.2N HCl 

in MeOH, and evaporated to dryness in a Thermo Speedvac centrifugal evaporator at (1.5h/45°C). The 

residues were reconstituted in 250 µL LC mobile phase and 10 µL were injected into the LC-MS/MS 

system. The LOQs were 0.05 ng/mL. 

Nicotine: the same samples were diluted and analyzed by GC/MS to determine nicotine concentrations. 

The LOQ was 100 ng/mL. 

NNA: A different aliquot from each sample was used. To 1 mL standards, QCs, and samples were added 

NNA-d3 internal standard, followed by 750 µL 1:1 saturated NaHCO3/50% K2CO3 and 4 mL 45:45:10 

dichloromethane/pentane/ethyl acetate. The samples were vortexed, centrifuged, and placed in a dry 

ice/acetone bath to freeze the aqueous layers. The organic layers were poured to culture tubes 

containing 100 µL 0.1N HCl in methanol. The solvent was evaporated to dryness using a centrifugal 

vacuum evaporator (~1.5 hr at 45 deg C). To the tubes were added 200 µL of derivatizing agent, 

pentafluorophenylhydrazine (PFPH), 3 mg/mL in acetonitrile. The tubes were heated for 30 min at 60°. 

After cooling to room temperature, 0.5 mL of the base (1:1 saturated NaHCO3/50% K2CO3 ) and 4 mL of 

extraction solvent (45:45:10 dichloromethane/pentane/ethyl acetate) was added. The samples were 

vortexed, centrifuged, and placed in a dry ice/acetone bath to freeze the aqueous layers. The organic 

layers were poured to culture tubes containing 0.5 mL of 1 M sulfuric acid, and the samples were 

vortexed, centrifuged, and placed in a dry ice/acetone bath to freeze the aqueous layers. The organic 

layers were poured off and discarded. The above base, 0.5 mL, and 4 mL of the above extraction solvent 

were added. The samples were vortexed, centrifuged, and placed in a dry ice/acetone bath to freeze the 

aqueous layers. The organic layers were poured to culture tubes and the solvent was evaporated at 55° 

with a stream of nitrogen. The evaporated samples were reconstituted in 50 µL mobile phase, 10 mM 

ammonium formate in 85:15 water/methanol. 20 µL were injected into the LC-MS/MS system, with a 

Phenomenex Phenyl-Hexyl 3 x 150 mm column, mass spectrometer with a heated ESI source (HESI), run 

in SRM mode, as described in Whitehead et al. The LOQ was 0.05 ng/mL. 
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Figure S3. DNA double strand breaks (DSBs) in lung epithelial cells in the presence of NNA.  
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Figure S4. Loss kinetics for 3-HC (zero-order) and NNAL (first-order) in mice exposed dermally to nicotine 

and NNK, respectively. 
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Section S3: Human dermal uptake of nicotine and NNK from tobacco-laden clothing 

Three volunteers wore tobacco-contaminated clothing inside an environmental chamber with nearly 

0.85 air changes per minute.  This is approximately 100 times more air exchange than is normally seen in 

homes in the US [15, 16].  Thus, dermal absorption, rather than inhalation, was the dominant form of 

exposure in this study.  The clothing was long-sleeved shirts and full-length pants that had been exposed 

to cigarette smoke for 30 days, at concentrations similar to those found in the home of a pack-a-day 

smoker (3 mgs total particulate material).  Each participant also completed a control exposure where 

they wore similar clothing that had not been exposed to smoke and the order of the exposures was 

randomized.  The participants did not smoke tobacco or cannabis and were not exposed to smoke at 

home or work.   They wore the clothing for three hours and exercised enough to perspire for thirty 

minutes out of each of hour.  Urine specimens were collected prior to exposure, and at 8 hours after the 

start of exposure. Metabolites of nicotine (cotinine) and NNK (NNAL) were analyzed by published 

methods  [17, 18]. 

The results show that both nicotine and NNK were absorbed through the human skin.  Eight hours after 

the start of exposure, the urinary NNAL concentration was 86-fold higher than background levels, when 

the participants wore THS clothing, but remained at background levels when they wore clean clothing.  

The corresponding cotinine concentrations increased by a factor of 18 during the same period when 

tobacco-contaminated clothing was worn.  These findings suggest that despite having a higher 

molecular weight than nicotine, NNK passes through the human dermis and into the bloodstream.    

 

 

Table S4: Biomarkers of nicotine and NNK measured in urine before (background) and eight 
hours after exposure to tobacco-contaminated clothing. 

 

 
Cotinine 

(ng/mg creatinine) 
NNAL 

(pg/mg creatinine) 

Limit of quantification (LOQ) 0.04 0.02 

Background 0.61 0.16 

After exposure 11.1 13.8 
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Table S5: Measured formation rates and predicted rate constants for NNK, NNN and NNA resulting from 

the nitrosation of skin-bound nicotine  

TSNA (i)  Formation rate, ri Rate constant, ki 

(nmol m-2 h-1) (ppb-1 h-1) (ppb-1 day-1) 

NNK 24 – 72 2.3 × 10-8 – 6.9 × 10-8   5.5 × 10-7 – 1.6 × 10-6   

NNN 17 – 73 1.6 × 10-8 – 7.0 × 10-8   3.9 × 10-7 – 1.7 × 10-6   

NNA 53 - 179 5.0 × 10-8 – 1.7 × 10-7   1.2 × 10-6 – 4.1 × 10-6   

 

 

 

 

Section S4: Determination of the NNK formation rate constant 

The quantitative determination of nicotine, HONO and TSNA concentrations allowed for the estimation 

of the rate constant kNNK for NNK formation through epidermal chemistry. The formation rate rNNK on 

experiments carried out on cellulose and cotton was between 24 and 72 nmol m-2 h-1. For these 

experiments, considering a nicotine skin surface concentration CN = 1.5 × 103 µmol m-2, a HONO 

concentration [HONO] = 700 ppb, and a median NNK formation rate rNNK = 37 nmol m-2 h-1, a bimolecular 

reaction rate constant kNNK = 5.5 × 10-7 – 1.6 × 10-6 was determined as the ratio: 

𝑘𝑁𝑁𝐾 =
𝑟𝑁𝑁𝐾

[HONO]×𝐶𝑁
     (S1) 
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Figure S5. NNA concentration on substrates modified with artificial sweat surrogate mixture at pH = 4 

(light blue) and pH = 7 (dark blue) 
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Table S6: TSNA and nicotine concentrations in indoor and outdoor air 

 

AIR 
Nicotine PM2.5 

TSNAs NNK / 
nicotine 

ratio Reference NNN NNK NNA 

(ng m-3) (µg m-3) (pg m-3) (pg m-3) (pg m-3) (x1000) 

Indoor air 

16-m3 room-sized chamber, secondhand smoke (SHS) 61,000 1,500 12,000 253,000 1000 4.1 

[19] 
16-m3 room-sized chamber, 1-3 h post-smoking (SHS/THS) 21,000 500 5,500 10,900  0.5 

16-m3 room-sized chamber, 4-18 h post-smoking (THS) 5,900 25 120 240 110 0.041 

16-m3 room-sized chamber, 19-43 h post-smoking (THS>24h) 2,700 2 80 40 7 0.015 

Smoke aging chamber 
5,000 – 
70,000 

  3,000-
100,000 

 0.60 [20] 

Office of 72.3 m3   810 4,130   [21] 

Non-smoking homes with reported past smoking  70 – 400      [22] 

Hookah bars Istanbul, Moscow, Cairo  
700 – 
1,400 

82-213  500 – 
1,900 

 0.71 [23] 

Bars and restaurants, Germany (n=10) 
2,200-
33,500 

  7,000-
50,000 

 3.2 

[24] Smoker homes, Germany (n=5) 
3,600-
28,500 

  4,100-
23,000 

 1.1 

Smoker offices, Germany (n=4) 
4,000-
20,000 

  2,400-
15,200 

 0.60 

Bars and restaurants, USA (n=5)   
n.d.-

22,800 
1,400-
23,800 

  [25] 

Outdoor (urban) air 

London, UK    200 290   [26] 

San Francisco, CA  3.4  0.17 0.63  0.19 [13] 

California (five sites)  0.41 - 7.6   0.2 – 4.3   

[27] Birmingham, UK  0.54 - 5.5   4.3   

Hong Kong, China    4.2 – 9.9   

Msida, Malta  6.7 - 82 8  2.1 – 37    
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Table S7: TSNA and nicotine concentrations in settled indoor dust 

 

DUST 
Nicotine 

n 

TSNAs NNK / 
nicotine 

ratio Reference NNN NNK NNA NAT NAB 

(µg g-1) (ng g-1) (ng g-1) (ng g-1)   (x1000) 

CA - smokers’ homes (2002-2007)  7 6 1.6 3.7 0.46   0.53 

[28] 
CA - non-smokers homes (2002-2007) 0.52 20 <LOQ <LOQ <LOQ    

CA - smokers’ homes (2010)  7.8 6 2.9 5.8 0.6   0.74 

CA - non-smokers homes (2010)  0.51 20 <LOQ 0.51 <LOQ   1.00 

CA - homes - baseline 17.4 17/22/65 2.5 8.9  2.0 0.9 0.51 

[29] 

CA - homes - week 1 after quitting 10.5 
7 and 
13/22 

1.5 11.2  3.4 <LOQ 1.07 

CA - homes - month 1 after quitting 5.2 4 and 9  9.9  <LOQ  1.90 

CA - homes - month 3 after quitting 2.8 7       

CA - homes - month 6 after quitting 3.8 5       

CA - casino bingo hall (smoking) 121  24 84  31 8.6 0.69 

[30] CA - casino slots (non-smoking) 145  23 53  13 6.4 0.37 

CA - casino central area (pit)   170  14 31  34 2.6 0.18 

Korea - government buildings    10  189     

[31] 
Korea - large buildings   10  198     

Korea - nurseries   5  15     

Korea - private educational institutions  7  45     

China – smoking hotel rooms  31 
640 (230 
– 1200) 

1190 
(320 – 
3720) 

40 
(<LOQ – 

130) 

   [32] 

Europe - nonsmokers house dust 2.3   40    17.4 
[33] 

Europe - smokers house dust 26   540    20.8 
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Table S8: TSNA and nicotine concentrations in indoor surfaces and skin 

 

  

 SURFACES AND SKIN 
n 

Nicotine 

(µg m-2) 

TSNAs 

Reference NNN 

(ng m-2) 

NNK 

(ng m-2) 

NNA 

(ng m-2) 

Homes - baseline 45 31.2    

[29] 

Homes - week 1 after quitting 35 10.8    

Homes - month 1 after quitting 17 4.3    

Homes - month 3 after quitting 11 2.6    

Homes - month 6 after quitting 7 3.2    

Apartments – multiunit housing 38 7.2 - 62    [34] 

37 smoker homes 37   70  
[35] 

19 nonsmoker homes 19   <LOQ  

Nonsmoker homes (living room) 5 1.37    
[36] 

Hookah-only smoker homes 19 32    

NICU crib/incubator 5 0.18    
[37] 

NICU furniture 6 7.9    

Terrycloth stored 11 months  106 37 170 229 

[38] 

Terrycloth stored 16 months  113 46 219 219 

Terrycloth stored 19 months  70 31 132 88 

Polyester stored 11 months  0.56    

Polyester stored 19 months  1.79  3.2  

Smoker’s finger 17 150 (a)    [39] 

Finger of occupants in smoking homes 91 157 (a)    
[22] 

Finger of non-smoker new occupants 19 1.2 (a)    

Children’s hands 276 9 (b)    [40] 

Children’s hands (protected from 

exposure to tobacco smoke) 
311 0.3 (b)    

[41] 

Children’s hands (exposed to smoke) 193 2.2 (b)    

Children’s hands (THS-free home) 10 1.3    
[42] 

Children’s hands (THS-polluted home) 19 32    

Silicone wristbands used as exposure 

monitors for 2 days 
31 167    [43] 

(a) assumes 42 cm2 per wipe 

(b) assumes 100 cm2 per wipe 
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Table S9: TSNA concentrations measured simultaneously in the gas phase and particle phase at different 

times after smoking ended, and fraction of each compound in the gas phase (results published in Tang et 

al, 2021 [19], Figure 2) 

 

Compound 
Blank 

chamber 
SHS  

(fresh smoke) 
SHS/THS  

(1-3 h post smoking) 
THS (4-18 h 

post smoking) 
THS>24h (19-43 h 

post smoking) 

Denuder (gas phase), ng m-3 

NNN 0.01 0.9 0.5 0.02 0.06 

NNA n.d. n.d. n.d. 0.07 0.01 

NNK n.d. 2.4 0.41 0.19 0.04 

Filter (particle phase), ng m-3 

NNN 0.06 15.2 4.89 0.098 n.d. 

NNA 0.036 1.28 n.d. n.d. n.d. 

NNK 0.031 245 12.8 0.039 n.d. 

Fraction in gas phase, fg 

NNN  6% 9% 21% 100% 

NNA  0% 0% 100% 100% 

NNK  1% 3% 96% 100% 

 

 

 

  



Submitted to Environ. Sci. Technol.  REVISED: 06/20/2022 

 

S17 
 

Figure S6. NNK/nicotine ratio from different studies reported in the literature in A) indoor air, B) indoor 

settled dust, and C) indoor surfaces. Labels “SHS” and “THS” indicate samples that are more typically 

associated with secondhand and thirdhand smoke, respectively. 
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