
OMTON, Volume 32
Supplemental information
ADEVO: Proof-of-concept of adenovirus-directed

EVOlution by random peptide

display on the fiber knob

Erwan Sallard, Julian Fischer, Katrin Schroeer, Lisa-Marie Dawson, Nissai
Beaude, Arsalene Affes, Eric Ehrke-Schulz, Wenli Zhang, Adrian Westhaus, Marti
Cabanes-Creus, Leszek Lisowski, Zsolt Ruszics, and Anja Ehrhardt

Figure S1. High titer AdV production is achievable under conditions where the cross-packaging

rate is low.

A: Experiment design. WT and ∆Fiber Ad5 genomes were transfected at a 1:1 ratio. Since only WT

genomes can produce functional capsids, the ratio of ∆Fiber genomes in cells infected with

progeny virions indicates the cross-packaging rate.

B: Progeny titer (blue) and cross-packaging rate (red) as a function of the AdV genome linearized

plasmids transfection dose. The experiment was performed twice independently. With our AdV

rescue protocols, doses of 5000 transfected plasmids per cell and below facilitated high titer AdV

rescue while yielding less than 3% of cross-packaging.

1

Figure S2. Statistical modeling of library complexity.

A: Complexity estimates yielded by different relevant statistical models, namely Mh and Mth

models of Chao (1), Chao et al. (2), Lee et al. (3), or the „Mth Chao (LB) estimate of R‘s Rcapture

package (4), for the different libraries. Complexity estimates inferior to the observed complexity

are written in orange. Models did not substantially differ in their relative variability displayed for

estimates computed from different combinations of three aliquots from the same library when

available. Chao‘s model was chosen because it came close to the average of all models and never

yielded abherrantly low estimates. When four libraries aliquots had been sequenced, the registered

complexity was the average of Chao‘s estimator for all four possible combinations of three

aliquots, in order not to introduce bias with libraries for which only three aliquots had been

sequenced.

2

B: Numbers of identified variants and overlap in the three or four sequenced aliquots (#A, #B, #C

and/or #D) of round 0 libraries. The observed complexity is the total number of identified variants

in all library aliquots combined.

Figure S3. Predicted furin cleavage sites in the selected fiber proteins.

Furin cleavage sites along the whole fiber protein of Ad5-WT or of the selected variants were

predicted by the ProP online tool (5). The insert position is indicated in yellow.

3

Figure S4. Benzonase treatment eliminates virtually all non-encapsidated DNA without affecting

encapsidated DNA.

A: Benzonase digests more than 99.9% of free DNA. Two million HEK293 cells were transfected

with 500 billion copies of a plasmid carrying an ampicillin resistance gene. Four hours post

transfection, cells and media were harvested, split in three equal groups and processed for

benzonase treatment and DNA purification as NGS samples („benzonase“ condition), or without

benzonase treatment („untreated“), or without separating cells and media but instead conducting

four freeze and thaw cycles of full lysate before benzonase treatment („full lysate“). Undigested

purified plasmids were numbered by qPCR and normalized on the „untreated“ sample. N=2.

B: Benzonase treatment does not disrupt VPs. Two million HEK293 cells were transfected with 1

billion copies of linearized luciferase-expressing HAdV-C5 genomes using the jetOPTIMUS

reagents. At 8 dpi, cells and media were harvested and frozen and thawed 4 times. Aliquots of 2%

of the total lysate volume were taken and submitted or not to benzonase treatment with the same

conditions as for NGS samples preparation except that cells and media were not separated. New

HEK293 cells were subsequently infected with the lysate and submitted to luciferase assay in order

to quantify infectious VPs whose genomes were left intact. N=2.

4

Table S1. Primers used in this study.

Blue sequences indicate either one on two random codons (Protocols 1, 2 and 3 random

oligonucleotides), or the insert sequence of the primers used for variant recloning. “B” corresponds

to C, T or G; “K” to T or G; and “V” to A, C or G.

oligonucleotide function

cagtttcctcctgttcctgtccatccgcacccactatcttcatgttgttgtttgttca

aaaaaaagcccgctc

forward PCR primer, selection

marker PCR, Protocol 1

assembly backbone cloning and

cloning of the Ad5-∆Fiber virus

tgaattacaacagtactgcgatgagtggcagggcggggcgtaatttaaatg

ctgacactctcttaaggtagc

reverse PCR primer, selection

marker PCR, Protocol 1

assembly backbone cloning

cagtttcctcctgttcctgtccatccgcacccactatcttcatgttgttgcagatg

aagcgcgcaagttaattaaATTTAAATTACGCCCCGCCCTGCCAC

TCATCGCAGTACTGTTGTAATTCA

selection marker deletion, Protocol

1 assembly backbone cloning

CTTCGAAcagatgaagcgcgcaag

forward PCR primer, subcloning of

the right hand side of the Ad5

genome in a pJet backbone,

Protocol 1 shuttle plasmid cloning

GTTCGAAcatcatcaataatataccttattttgg

reverse PCR primer, subcloning of

the right hand side of the Ad5

genome in a pJet backbone,

Protocol 1 shuttle plasmid cloning

ggACTAGTctGGATCCagttgtgtctcctgtttcctg

forward PCR primer, insertion of

BamH1 and Spe1 restriction sites

in the fiber gene, Protocol 1

shuttle plasmid cloning

ctGGATCCagACTAGTccaagtgcatactctatgtcattttc

reverse PCR primer, insertion of

BamH1 and Spe1 restriction sites

in the fiber gene, Protocol 1

shuttle plasmid cloning

5

taacactaaccattacactaaacggtacacaggaaacaggagacacaactttt

gttcaaaaaaaagcccgctc

forward PCR primer, selection

marker PCR, Protocol 2

assembly backbone cloning

tagttgtggccagaccagtcccatgaaaatgacatagagtatgcacttggGC

TGACACTCTCTTAAGGTAGC

reverse PCR primer, selection

marker PCR, Protocol 2

assembly backbone cloning

taacactaaccattacactaaacggtacacaggaaacaggagacacaactAT

TTAAATccaagtgcatactctatgtcattttcatgggactggtctggccacaa

cta

selection marker replacement by a

Swa1 restriction site,

Protocol 2 assembly backbone

cloning

ttttctgcaattgaaaaataaacacgttgaaacataacacaaacgattctGCT

GACACTCTCTTAAGGTAGC

reverse PCR primer, selection

marker PCR, cloning of the

Ad5-∆Fiber virus

cagtttcctcctgttcctgtccatccgcacccactatcttcatgttgttgagaatc

gtttgtgttatgtttcaacgtgtttatttttcaattgcagaaaa

selection marker deletion, cloning

of the Ad5-∆Fiber virus

aggtgttttccgcgttccgggtcaaagttggcgttttattatttgttcaaaaaaa

agcccgctc

forward PCR primer, selection

marker PCR, cloning of the

hTert promoter

ctccgtggcagataatatgtctcattttcagtcccggtgtGCTGACACTCT

CTTAAGGTAGC

reverse PCR primer, selection

marker PCR, cloning of the

hTert promoter

aggtgttttccgcgttccgggtcaaagttggcgttttattaCCCTGCGCTG

TCGGGGCCA

forward PCR primer, hTert

promoter PCR

ctccgtggcagataatatgtctcattttcagtcccggtgtCCCGCTGCCTG

AAACTCGCG

reverse PCR primer, hTert

promoter PCR

cacaggaaacaggagacacaactGGATCCNNKNNKNNKNNKNN

KNNKNNKNCTAGTccaagtgcatactctatgtcatt

Protocol 1 random

oligonucleotide

acacaggaaacaggagacacaactATTTBKNNKNNKNNKNNKNN

KNNKVNAAATccaagtgcatactctatgtcattt

Protocols 2 and 3 random

oligonucleotide

acaggaaacaggagacacaactGGATCCTGTCTGTATAAGGGTTG

GCATTCTAGTccaagtgcatactctatgtcat
CLY variant recloning

acaggaaacaggagacacaactGGATCCTTTTATAAGCATTCTGA

TAATGCTAGTccaagtgcatactctatgtcat
FYK variant recloning

gaaacaggagacacaactATTTTGCGTACGAGGAGGCATAAGC

GAAATccaagtgcatactctatg
LRT variant recloning

gaaacaggagacacaactATTTCGCGTGGTAGGAGGCTGAAGA

AAAATccaagtgcatactctatg
SRG variant recloning

gaaacaggagacacaactATTTCGGTGGCGCGGAAGCGTCGGA

GAAATccaagtgcatactctatg
SVA variant recloning

gaaacaggagacacaactATTTGGTCGCGTTGGCGGAGTATGAG

AAATccaagtgcatactctatg
WSR variant recloning

6

gaaacaggagacacaactATTTCGGATGAGTCGTCGGTGGGTAC

AAATccaagtgcatactctatg
SDE variant recloning

gaaacaggagacacaactATTTCTTCTGGGACTACTGAGGGTCA

AAATccaagtgcatactctatg
SSG variant recloning

gaaacaggagacacaactATTTTTGGTCATCAGAAGCCTTTGCTA

AATccaagtgcatactctatg
FGH variant recloning

ggtattgcagcttcctcctgg
forward primer, qPCR titration of

all AdVs

accggtttccgtgtcatatgg
reverse primer, qPCR titration of

fiber-containing AdVs

acacgttgaaacataacacaaacg
reverse primer, qPCR titration of

the Ad5-∆Fiber virus

ggaattgatttgggagagcatc

forward primer, qPCR titration of

cellular hB2M gene copies for

infectious units titration

caggtcctggctctacaatttactaa

reverse primer, qPCR titration of

cellular hB2M gene copies for

infectious units titration

AATAgtcagtcaagtttacttaaacgg
forward barcoded primer for NGS,

pair 1

AATAggccagaccagtcccatg
reverse barcoded primer for NGS,

pair 1

TTATgtcagtcaagtttacttaaacgg
forward barcoded primer for NGS,

pair 2

TTATggccagaccagtcccatg
reverse barcoded primer for NGS,

pair 2

GGCGgtcagtcaagtttacttaaacgg
forward barcoded primer for NGS,

pair 3

GGCGggccagaccagtcccatg
reverse barcoded primer for NGS,

pair 3

CCGCgtcagtcaagtttacttaaacgg
forward barcoded primer for NGS,

pair 4

CCGCggccagaccagtcccatg
reverse barcoded primer for NGS,

pair 4

AGGTgtcagtcaagtttacttaaacgg
forward barcoded primer for NGS,

pair 5

AGGTggccagaccagtcccatg
reverse barcoded primer for NGS,

pair 5

GTTCgtcagtcaagtttacttaaacgg
forward barcoded primer for NGS,

pair 6

7

GTTCggccagaccagtcccatg
reverse barcoded primer for NGS,

pair 6

aagccataccaaacgacgag
forward qPCR primer for AmpR

gene, benzonase efficiency test

gtctattaattgttgccgggaag
reverse qPCR primer for AmpR

gene, benzonase efficiency test

Table S2. NGS analysis of genome libraries.

Aliquots of one Protocol 1 library and one Protocol 2 libraries were analysed by NGS after genome

reassembly and prior to transfection. The dominant variant count is the number of reads

corresponding to the most abundant variant of the library.

Genome libraries Protocol 1 Protocol 2

number of NGS reads that passed quality controls 6,159,383 4,564,775

count of the dominant variant 48 28

percentage of insert reads with stop codons 19.68 17.30

theoretical percentage of inserts with stop codons 19.93 17.35

8

Table S3: NGS inserts counter (nucleotide)

The following python code takes as input the two .fastq files of paired reads returned by the

sequencing company, and a list of parameters to be entered by the user. Reads are allocated

to the corresponding library aliquot, undergo quality controls, then true unique inserts are

identified. The output is one .csv table per library aliquot, containing the nucleotide

sequence of each unique insert with their associated count, in order of decreasing

abundance.

9

Table S4: NGS inserts counter (peptide)

The following python code takes as input an output file of Supplemental code 1, translates

all insert nucleotide sequences into amino acid sequences, merges the synonymous inserts

and return a new .csv table containing each unique insert peptide sequence with their

associated count, in order of decreasing abundance.

'''this file takes as input a .csv file of unique NGS inserts and their counts, as

produced by Supplemental Code 1, and gives as output a .csv file of unique corresponding

peptides and counts'''

inputfile='/Example_path_to_the_input_file.csv'

output='/Example_path_to_the_output_file .csv'

from Bio.Seq import Seq

import pandas as pd

rawseq=pd.read_csv(inputfile,sep=',')

peptides=[]

countDNA=[]

errorinsert=0

for k in range(rawseq.shape[0]):

 nt=rawseq.iloc[k,1]

10

 if len(nt)%3!=0:

 print('the sequence # '+str(rawseq.iloc[k,0])+' does not have the correct length')

 print(nt)

 errorinsert+=1

 else:

 pep=str(Seq(nt).translate())

 peptides.append(pep)

 countDNA.append(rawseq.iloc[k,2])

 if 'X' in pep:

 print(pep,k,nt)

print('translation finished')

df=pd.DataFrame({})

df['sequence']=peptides

df['count']=countDNA

df=df.sort_values(by=['sequence'])

print('sorting finished')

uniquePeptides=[]

uniqueCounts=[]

memory=''#the last insert at each step of the recurrence, to know if the insert is unique or not

for k in range(df.shape[0]):

 peptide=df.iloc[k,0]

 number=df.iloc[k,1]

 if peptide==memory:

 uniqueCounts[-1]=uniqueCounts[-1]+number

 else:

 memory=peptide

 uniquePeptides.append(peptide)

 uniqueCounts.append(number)

print('unique peptides identified and counted')

print('number of unique peptides: ',len(uniquePeptides))

result=pd.DataFrame({})

result['sequence']=uniquePeptides

result['count']=uniqueCounts

result=result.sort_values(by=['count'], ascending=False)

print('count of the most abundant peptide: ',result.iloc[0,1])

result.to_csv(output)

11

Table S5: Library complexity estimator

The following python code takes as input the peptide sequences and counts tables returned

by Supplemental code 2 for the library aliquots considered. It is determined in how many

aliquots each insert is present. Then, the number of variants present in exactly 1, 2 or 3

aliquots (in case 3 library aliquots were considered) is counted. Finally, total library

complexity is estimated using Anne Chao’s simple capture-recapture estimator.

import pandas as pd

from random import randint

from statistics import mean,stdev

def WennDiagram(aliquots):

 '''

 aliquots is a list of paths towards peptide or nt inserts counts files from

 the same library. the function identifies in which aliquots each insert was

 identified so that a Wenn Diagram of aliquot overlap can be manually built,

12

 and library size can be estimated in the functions below

 '''

 nbaliquots=len(aliquots)

 overlaps=[0 for k in range(2**nbaliquots)]

 # this list indicates the overlaps between aliquots following a basis 2 indexation.

 # for example, if there are 4 aliquots and an insert is present in aliquots

 # 0 and 2 but not 1 and 3 (python numbering so there is an aliquot #0), the

 # insert will be counted at the position 2**0 + 2**2 = 5 (also python numbering)

 insertnotfused=[] # contains the list of insert in each aliquot

 nextinserts=[]

 nbinserts=[]

 index=[]

 stopsign=[]

 for aliquot in aliquots:

 insertlist=list(pd.read_csv(aliquot)['sequence'])

 insertlist.sort()

 nextinserts.append(insertlist[0])

 nbinserts.append(len(insertlist))

 insertlist.append('z')

 # this is the stop mechanism. In the next loop, the end of the list is

 # detected when the studied "insert" is 'z'. All true inserts will come

 # before this one in the alphabetic order

 insertnotfused.append(insertlist)

 index.append(0)

 stopsign.append('z')

 while nextinserts!=stopsign:

 studiedinsert=min(nextinserts)

 score=0

 for k in range(nbaliquots):

 if nextinserts[k]==studiedinsert:

 score+=2**k

 # now let's update nextinserts

 index[k]+=1

 nextinserts[k]=insertnotfused[k][index[k]]

 overlaps[score]+=1

 return overlaps

result=WennDiagram(['/path_to_aliquot_1_inserts_peptide_table.csv','/path_to_aliquot_2_inserts

_peptide_table.csv','/path_to_aliquot_3_inserts_peptide_table.csv.csv'])

def overlaps3toSum(ov):

 '''transforms a list of overlaps for 3 aliquots to a list which counts how

 many inserts were found in respectively 1, 2 or 3 libraries'''

 return [ov[1]+ov[2]+ov[4],ov[3]+ov[5]+ov[6],ov[7]]

execute the following lines only if the “result” list was built using the WennDiagram function

from exactly three library aliquots

13

OverlapsCounts=overlaps3toSum(results)

library_complexity=OverlapsCounts[0]+OverlapsCounts[1]+OverlapsCounts[2]+OverlapsCount

s[0]**2/(2*OverlapsCounts[1])

print(library_complexity)

Supplemental references

1. Chao, A. (1987) Estimating the Population Size for Capture-Recapture Data with Unequal

Catchability. Biometrics, 43.

2. Chao, A., Lee, S.M. and Jeng, S.L. (1992) Estimating Population Size for Capture-Recapture

Data When Capture Probabilities Vary by Time and Individual Animal. Biometrics, 48.

14

3. Lee, S.-M. and Chao, A. (1994) Estimating Population Size Via Sample Coverage for Closed

Capture-Recapture Models. Biometrics, 50.

4. Baillargeon, S. and Rivest, L.-P. (2007) TheRcapturePackage: Loglinear Models for Capture-

Recapture inR. Journal of Statistical Software, 19.

5. Duckert, P., Brunak, S. and Blom, N. (2004) Prediction of proprotein convertase cleavage

sites. Protein Eng Des Sel, 17, 107-112.

15

