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Figure S1. High titer AdV production is achievable under conditions where the cross-packaging 

rate is low. 

A: Experiment design. WT and ∆Fiber Ad5 genomes were transfected at a 1:1 ratio. Since only WT 

genomes can produce functional capsids, the ratio of ∆Fiber genomes in cells infected with 

progeny virions indicates the cross-packaging rate. 

B: Progeny titer (blue) and cross-packaging rate (red) as a function of the AdV genome linearized 

plasmids transfection dose. The experiment was performed twice independently. With our AdV 

rescue protocols, doses of 5000 transfected plasmids per cell and below facilitated high titer AdV 

rescue while yielding less than 3% of cross-packaging. 
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Figure S2. Statistical modeling of library complexity. 

A: Complexity estimates yielded by different relevant statistical models, namely Mh and Mth 

models of Chao (1), Chao et al. (2), Lee et al. (3), or the „Mth Chao (LB) estimate of R‘s Rcapture 

package (4), for the different libraries. Complexity estimates inferior to the observed complexity 

are written in orange. Models did not substantially differ in their relative variability displayed for 

estimates computed from different combinations of three aliquots from the same library when 

available. Chao‘s model was chosen because it came close to the average of all models and never 

yielded abherrantly low estimates. When four libraries aliquots had been sequenced, the registered 

complexity was the average of Chao‘s estimator for all four possible combinations of three 

aliquots, in order not to introduce bias with libraries for which only three aliquots had been 

sequenced. 
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B: Numbers of identified variants and overlap in the three or four sequenced aliquots (#A, #B, #C 

and/or #D) of round 0 libraries. The observed complexity is the total number of identified variants 

in all library aliquots combined. 

 

Figure S3. Predicted furin cleavage sites in the selected fiber proteins. 

Furin cleavage sites along the whole fiber protein of Ad5-WT or of the selected variants were 

predicted by the ProP online tool (5). The insert position is indicated in yellow. 
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Figure S4. Benzonase treatment eliminates virtually all non-encapsidated DNA without affecting 

encapsidated DNA. 

A: Benzonase digests more than 99.9% of free DNA. Two million HEK293 cells were transfected 

with 500 billion copies of a plasmid carrying an ampicillin resistance gene. Four hours post 

transfection, cells and media were harvested, split in three equal groups and processed for 

benzonase treatment and DNA purification as NGS samples („benzonase“ condition), or without 

benzonase treatment („untreated“), or without separating cells and media but instead conducting 

four freeze and thaw cycles of full lysate before benzonase treatment („full lysate“). Undigested 

purified plasmids were numbered by qPCR and normalized on the „untreated“ sample. N=2. 

B: Benzonase treatment does not disrupt VPs. Two million HEK293 cells were transfected with 1 

billion copies of linearized luciferase-expressing HAdV-C5 genomes using the jetOPTIMUS 

reagents. At 8 dpi, cells and media were harvested and frozen and thawed 4 times. Aliquots of 2% 

of the total lysate volume were taken and submitted or not to benzonase treatment with the same 

conditions as for NGS samples preparation except that cells and media were not separated. New 

HEK293 cells were subsequently infected with the lysate and submitted to luciferase assay in order 

to quantify infectious VPs whose genomes were left intact. N=2. 
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Table S1. Primers used in this study. 

Blue sequences indicate either one on two random codons (Protocols 1, 2 and 3 random 

oligonucleotides), or the insert sequence of the primers used for variant recloning. “B” corresponds 

to C, T or G; “K” to T or G; and “V” to A, C or G. 

oligonucleotide function 

cagtttcctcctgttcctgtccatccgcacccactatcttcatgttgttgtttgttca

aaaaaaagcccgctc 

forward PCR primer, selection 

marker PCR, Protocol 1 

assembly backbone cloning and 

cloning of the Ad5-∆Fiber virus 

tgaattacaacagtactgcgatgagtggcagggcggggcgtaatttaaatg

ctgacactctcttaaggtagc 

reverse PCR primer, selection 

marker PCR, Protocol 1 

assembly backbone cloning 

cagtttcctcctgttcctgtccatccgcacccactatcttcatgttgttgcagatg

aagcgcgcaagttaattaaATTTAAATTACGCCCCGCCCTGCCAC

TCATCGCAGTACTGTTGTAATTCA 

selection marker deletion, Protocol 

1 assembly backbone cloning 

CTTCGAAcagatgaagcgcgcaag 

forward PCR primer, subcloning of 

the right hand side of the Ad5 

genome in a pJet backbone, 

Protocol 1 shuttle plasmid cloning 

GTTCGAAcatcatcaataatataccttattttgg 

reverse PCR primer, subcloning of 

the right hand side of the Ad5 

genome in a pJet backbone, 

Protocol 1 shuttle plasmid cloning 

ggACTAGTctGGATCCagttgtgtctcctgtttcctg 

forward PCR primer, insertion of 

BamH1 and Spe1 restriction sites 

in the fiber gene, Protocol 1 

shuttle plasmid cloning 

ctGGATCCagACTAGTccaagtgcatactctatgtcattttc 

reverse PCR primer, insertion of 

BamH1 and Spe1 restriction sites 

in the fiber gene, Protocol 1 

shuttle plasmid cloning 
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taacactaaccattacactaaacggtacacaggaaacaggagacacaactttt

gttcaaaaaaaagcccgctc 

forward PCR primer, selection 

marker PCR, Protocol 2 

assembly backbone cloning 

tagttgtggccagaccagtcccatgaaaatgacatagagtatgcacttggGC

TGACACTCTCTTAAGGTAGC 

reverse PCR primer, selection 

marker PCR, Protocol 2 

assembly backbone cloning 

taacactaaccattacactaaacggtacacaggaaacaggagacacaactAT

TTAAATccaagtgcatactctatgtcattttcatgggactggtctggccacaa

cta 

selection marker replacement by a 

Swa1 restriction site, 

Protocol 2 assembly backbone 

cloning 

ttttctgcaattgaaaaataaacacgttgaaacataacacaaacgattctGCT

GACACTCTCTTAAGGTAGC 

reverse PCR primer, selection 

marker PCR, cloning of the 

Ad5-∆Fiber virus 

cagtttcctcctgttcctgtccatccgcacccactatcttcatgttgttgagaatc

gtttgtgttatgtttcaacgtgtttatttttcaattgcagaaaa 

selection marker deletion, cloning 

of the Ad5-∆Fiber virus 

aggtgttttccgcgttccgggtcaaagttggcgttttattatttgttcaaaaaaa

agcccgctc 

forward PCR primer, selection 

marker PCR, cloning of the 

hTert promoter 

ctccgtggcagataatatgtctcattttcagtcccggtgtGCTGACACTCT

CTTAAGGTAGC 

reverse PCR primer, selection 

marker PCR, cloning of the 

hTert promoter 

aggtgttttccgcgttccgggtcaaagttggcgttttattaCCCTGCGCTG

TCGGGGCCA 

forward PCR primer, hTert 

promoter PCR 

ctccgtggcagataatatgtctcattttcagtcccggtgtCCCGCTGCCTG

AAACTCGCG 

reverse PCR primer, hTert 

promoter PCR 

cacaggaaacaggagacacaactGGATCCNNKNNKNNKNNKNN

KNNKNNKNCTAGTccaagtgcatactctatgtcatt 

Protocol 1 random 

oligonucleotide 

acacaggaaacaggagacacaactATTTBKNNKNNKNNKNNKNN

KNNKVNAAATccaagtgcatactctatgtcattt  

Protocols 2 and 3 random 

oligonucleotide 

acaggaaacaggagacacaactGGATCCTGTCTGTATAAGGGTTG

GCATTCTAGTccaagtgcatactctatgtcat 
CLY variant recloning 

acaggaaacaggagacacaactGGATCCTTTTATAAGCATTCTGA

TAATGCTAGTccaagtgcatactctatgtcat 
FYK variant recloning 

gaaacaggagacacaactATTTTGCGTACGAGGAGGCATAAGC

GAAATccaagtgcatactctatg 
LRT variant recloning 

gaaacaggagacacaactATTTCGCGTGGTAGGAGGCTGAAGA

AAAATccaagtgcatactctatg 
SRG variant recloning 

gaaacaggagacacaactATTTCGGTGGCGCGGAAGCGTCGGA

GAAATccaagtgcatactctatg 
SVA variant recloning 

gaaacaggagacacaactATTTGGTCGCGTTGGCGGAGTATGAG

AAATccaagtgcatactctatg 
WSR variant recloning 
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gaaacaggagacacaactATTTCGGATGAGTCGTCGGTGGGTAC

AAATccaagtgcatactctatg 
SDE variant recloning 

gaaacaggagacacaactATTTCTTCTGGGACTACTGAGGGTCA

AAATccaagtgcatactctatg 
SSG variant recloning 

gaaacaggagacacaactATTTTTGGTCATCAGAAGCCTTTGCTA

AATccaagtgcatactctatg 
FGH variant recloning 

ggtattgcagcttcctcctgg 
forward primer, qPCR titration of 

all AdVs 

accggtttccgtgtcatatgg 
reverse primer, qPCR titration of 

fiber-containing AdVs 

acacgttgaaacataacacaaacg 
reverse primer, qPCR titration of 

the Ad5-∆Fiber virus 

ggaattgatttgggagagcatc 

forward primer, qPCR titration of 

cellular hB2M gene copies for 

infectious units titration 

caggtcctggctctacaatttactaa 

reverse primer, qPCR titration of 

cellular hB2M gene copies for 

infectious units titration 

AATAgtcagtcaagtttacttaaacgg 
forward barcoded primer for NGS, 

pair 1 

AATAggccagaccagtcccatg 
reverse barcoded primer for NGS, 

pair 1 

TTATgtcagtcaagtttacttaaacgg 
forward barcoded primer for NGS, 

pair 2 

TTATggccagaccagtcccatg 
reverse barcoded primer for NGS, 

pair 2 

GGCGgtcagtcaagtttacttaaacgg 
forward barcoded primer for NGS, 

pair 3 

GGCGggccagaccagtcccatg 
reverse barcoded primer for NGS, 

pair 3 

CCGCgtcagtcaagtttacttaaacgg 
forward barcoded primer for NGS, 

pair 4 

CCGCggccagaccagtcccatg 
reverse barcoded primer for NGS, 

pair 4 

AGGTgtcagtcaagtttacttaaacgg 
forward barcoded primer for NGS, 

pair 5 

AGGTggccagaccagtcccatg 
reverse barcoded primer for NGS, 

pair 5 

GTTCgtcagtcaagtttacttaaacgg 
forward barcoded primer for NGS, 

pair 6 
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GTTCggccagaccagtcccatg 
reverse barcoded primer for NGS, 

pair 6 

aagccataccaaacgacgag 
forward qPCR primer for AmpR 

gene, benzonase efficiency test 

gtctattaattgttgccgggaag 
reverse qPCR primer for AmpR 

gene, benzonase efficiency test 

 

 

 

 

 

 

Table S2. NGS analysis of genome libraries.  

Aliquots of one Protocol 1 library and one Protocol 2 libraries were analysed by NGS after genome 

reassembly and prior to transfection. The dominant variant count is the number of reads 

corresponding to the most abundant variant of the library. 

Genome libraries Protocol 1 Protocol 2 

number of NGS reads that passed quality controls 6,159,383 4,564,775 

count of the dominant variant 48 28 

percentage of insert reads with stop codons 19.68 17.30 

theoretical percentage of inserts with stop codons 19.93 17.35 

 

 

 

 

 

 

 

8



 

 

 

 

 

 

 

 

 

 

Table S3: NGS inserts counter (nucleotide) 

The following python code takes as input the two .fastq files of paired reads returned by the 

sequencing company, and a list of parameters to be entered by the user. Reads are allocated 

to the corresponding library aliquot, undergo quality controls, then true unique inserts are 

identified. The output is one .csv table per library aliquot, containing the nucleotide 

sequence of each unique insert with their associated count, in order of decreasing 

abundance. 
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Table S4: NGS inserts counter (peptide) 

The following python code takes as input an output file of Supplemental code 1, translates 

all insert nucleotide sequences into amino acid sequences, merges the synonymous inserts 

and return a new .csv table containing each unique insert peptide sequence with their 

associated count, in order of decreasing abundance. 

 

'''this file takes as input a .csv file of unique NGS inserts and their counts, as 

produced by Supplemental Code 1, and gives as output a .csv file of unique corresponding 

peptides and counts''' 

 

inputfile='/Example_path_to_the_input_file.csv' 

output='/Example_path_to_the_output_file .csv' 

 

from Bio.Seq import Seq 

import pandas as pd 

 

rawseq=pd.read_csv(inputfile,sep=',') 

peptides=[] 

countDNA=[] 

errorinsert=0 

for k in range(rawseq.shape[0]): 

    nt=rawseq.iloc[k,1] 
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    if len(nt)%3!=0: 

        print('the sequence # '+str(rawseq.iloc[k,0])+' does not have the correct length') 

        print(nt) 

        errorinsert+=1 

    else: 

        pep=str(Seq(nt).translate()) 

        peptides.append(pep) 

        countDNA.append(rawseq.iloc[k,2]) 

    if 'X' in pep: 

        print(pep,k,nt) 

print('translation finished') 

df=pd.DataFrame({}) 

df['sequence']=peptides 

df['count']=countDNA 

df=df.sort_values(by=['sequence']) 

print('sorting finished') 

uniquePeptides=[] 

uniqueCounts=[] 

memory=''#the last insert at each step of the recurrence, to know if the insert is unique or not 

for k in range(df.shape[0]): 

    peptide=df.iloc[k,0] 

    number=df.iloc[k,1] 

    if peptide==memory: 

        uniqueCounts[-1]=uniqueCounts[-1]+number 

    else: 

        memory=peptide 

        uniquePeptides.append(peptide) 

        uniqueCounts.append(number) 

print('unique peptides identified and counted') 

print('number of unique peptides: ',len(uniquePeptides)) 

result=pd.DataFrame({}) 

result['sequence']=uniquePeptides 

result['count']=uniqueCounts 

result=result.sort_values(by=['count'], ascending=False) 

print('count of the most abundant peptide: ',result.iloc[0,1]) 

result.to_csv(output) 
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Table S5: Library complexity estimator 

The following python code takes as input the peptide sequences and counts tables returned 

by Supplemental code 2 for the library aliquots considered. It is determined in how many 

aliquots each insert is present. Then, the number of variants present in exactly 1, 2 or 3 

aliquots (in case 3 library aliquots were considered) is counted. Finally, total library 

complexity is estimated using Anne Chao’s simple capture-recapture estimator. 

 

import pandas as pd 

from random import randint 

from statistics import mean,stdev 

 

def WennDiagram(aliquots): 

    ''' 

    aliquots is a list of paths towards peptide or nt inserts counts files from 

    the same library. the function identifies in which aliquots each insert was 

    identified so that a Wenn Diagram of aliquot overlap can be manually built, 
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    and library size can be estimated in the functions below 

    ''' 

    nbaliquots=len(aliquots) 

    overlaps=[0 for k in range(2**nbaliquots)] 

    # this list indicates the overlaps between aliquots following a basis 2 indexation. 

    # for example, if there are 4 aliquots and an insert is present in aliquots 

    # 0 and 2 but not 1 and 3 (python numbering so there is an aliquot #0), the 

    # insert will be counted at the position 2**0 + 2**2 = 5 (also python numbering) 

    insertnotfused=[] # contains the list of insert in each aliquot 

    nextinserts=[] 

    nbinserts=[] 

    index=[] 

    stopsign=[] 

    for aliquot in aliquots: 

        insertlist=list(pd.read_csv(aliquot)['sequence']) 

        insertlist.sort() 

        nextinserts.append(insertlist[0]) 

        nbinserts.append(len(insertlist)) 

        insertlist.append('z') 

        # this is the stop mechanism. In the next loop, the end of the list is 

        # detected when the studied "insert" is 'z'. All true inserts will come 

        # before this one in the alphabetic order 

        insertnotfused.append(insertlist) 

        index.append(0) 

        stopsign.append('z') 

    while nextinserts!=stopsign: 

        studiedinsert=min(nextinserts) 

        score=0 

        for k in range(nbaliquots): 

            if nextinserts[k]==studiedinsert: 

                score+=2**k 

                # now let's update nextinserts 

                index[k]+=1 

                nextinserts[k]=insertnotfused[k][index[k]] 

        overlaps[score]+=1 

    return overlaps 

 

result=WennDiagram(['/path_to_aliquot_1_inserts_peptide_table.csv','/path_to_aliquot_2_inserts

_peptide_table.csv','/path_to_aliquot_3_inserts_peptide_table.csv.csv']) 

 

def overlaps3toSum(ov): 

    '''transforms a list of overlaps for 3 aliquots to a list which counts how 

    many inserts were found in respectively 1, 2 or 3 libraries''' 

    return [ov[1]+ov[2]+ov[4],ov[3]+ov[5]+ov[6],ov[7]] 

 

# execute the following lines only if the “result” list was built using the WennDiagram function 

from exactly three library aliquots 
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OverlapsCounts=overlaps3toSum(results) 

library_complexity=OverlapsCounts[0]+OverlapsCounts[1]+OverlapsCounts[2]+OverlapsCount

s[0]**2/(2*OverlapsCounts[1]) 

print(library_complexity) 
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