Supporting Information

Sensitive Electrochemical and Thermal Detection of Human Noroviruses Using Molecularly Imprinted Polymer Nanoparticles Generated against a Viral Target

Sarbjeet Kaur^{a,b}, Pankaj Singla^{a,c}, Amy J. Dann^{a,c}, Jake McClements^a, Mark V. Sullivan^d, Minji Kim^e, Sloane Stoufer^e, James A. Dawson^f, Robert D. Crapnell^g, Craig E. Banks^g, Nicholas W. Turner^d, Matthew D. Moore^e, Inderpreet Kaur^{b*}, Marloes Peeters^{a,c*}

^a School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom

^b Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University,

Amritsar, Punjab, 143005, India

° School of Engineering, Engineering A building, East Booth Street, University of

Manchester, Manchester, M13 9QS, United Kingdom

^d Department of Chemistry, Dainton Building, University of Sheffield, Sheffield, S3 7HF, United Kingdom

^e Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States

^fChemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

^g Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Steet, Manchester, M1 5GD, United Kingdom

*Corresponding authors:

Marloes Peeters, Email: marloes.peeters@manchester.ac.uk Inderpreet Kaur, Email: inderpreet11@yahoo.co.in

Figure S1. Molecular structures of different functional monomers used for the development of three nanoMIP types.

Figure S2: Nyquist plots for (a) GCE/4-ABA/EDC+NHS/nanoMIP-1 and (b) GCE/4-ABA/EDC+NHS/nanoMIP-2 with NoV-LP concentration of 100 ng/mL in romaine lettuce rinse water.

Figure S3: (a) Typical raw data showing the thermal detection of Bacteriophage MS2 (10^6 and 10^7 particles/mL) using SPEs modified with nanoMIP-1; (b) Bar graph showing selectivity in terms of change in R_{th} with NoV and Bacteriophage MS2 concentrations (10^6 and 10^7 particles/mL).

NoV-LPs Concentration	Number of NoV-LPs	Number of NoV-LPs	Number of NoV-LPs	
	(particles/mL)	in 10 µL sample for	in 100 µL sample for	
		electrochemical	thermal experiments	
		experiments		
1 pg/mL	5.7×10 ⁴	5.7×10 ²	5.7×10 ³	
10 pg/mL	5.7×10 ⁵	5.7×10 ³	5.7×10 ⁴	
1000 pg/mL	5.7×10 ⁶	5.7×10 ⁴	5.7×10 ⁵	
1 ng/mL	5.7×10 ⁷	5.7×10 ⁵	5.7×10 ⁶	
10 ng/mL	5.7×10 ⁸	5.7×10 ⁶	5.7×10 ⁷	
100 ng/mL	5.7×10 ⁹	5.7×10 ⁷	5.7×10 ⁸	
1000 ng/mL	5.7×10 ¹⁰	-	5.7×10 ⁹	

Table S1: Various concentrations of NoV-LPs used for electrochemical and thermal experiments.

Table S2: Strongest binding energies (kJ/mol) between monomers and epitope calculated using density functional theory.

Amino acid	NAPMA	FMMA	DPMA	
D	-63.68	-41.49	-35.70	
Е	-71.40	-42.46	-41.49	
Y	-65.61	-57.89	-62.72	
S	-105.17	-101.32	-100.35	
Α	-101.31	-116.75	-96.49	
Р	-66.58	-52.11	-49.21	
Q	-70.44	-68.51	-44.39	
V	-126.40	-78.16	-88.77	

Table S3: Literature reports of NoV detection by various methods.

Method	Technique	Target	LoD	Reference
NoV-LPs-specific antibody- conjugated carbon dots	Fluorescence	NoV-LPs	80.3 pg/mL	60
Monoclonal antibody (mAb)	Photoelectrochemical biosensor	NoV-LPs	0.2 ng/mL	61
GII Ab- immunoassay	Colorimetric	NoV-LPs	10.8 pg/mL	62
S domain protein- specific monoclonal antibody	Electrochemical sensor	NoV-LPs	0.22 ng/ml	63
Modified DNA aptamer	Chemiluminescence	Norovirus GII capsid recombinant	80 ng/mL	64
3D-architectured aptasensor	Electrochemical sensor	NoV-LPs	0.28 ng/mL	65
Norovirus-specific aptamer	Fluorescence	NoV-LPs	4.4 ng/mL and 3.3 ng/mL	66
Optical fibre	Optical transmission	NoV-LPs	1 ng/mL	67
Quantum dot fluorescent dye	SPR-assisted fluorescence sensor	NoV-LPs	0.01 ng/mL	68
Peroxidase-like graphene-gold nanoparticle hybrids	Colorimetric	NoV-LPs	92.7 pg/mL	58
Biotinylated recombinant monoclonal anti- norovirus antibody	Electrochemical sensor	NoV-LPs	60 ag/mL	69
Mouse antiflavivirus group antigen monoclonal antibody	Electrical biosensor	NoV-LPs	1.16 pg/mL	59