Supporting Information: Conformational Control of Donor-Acceptor Molecules using Non-Covalent Interactions

Shawana Ahmad, Julien Eng, and Thomas J. Penfold*

Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon-Tyne, NE1 7RU, United Kingdom

E-mail: tom.penfold@ncl.ac.uk

List of Figures

S1	Structure and S_1 density difference associated with the ground state optimised	
	structure of $1a$	S16
S2	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $1a$	S16
S3	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $1a$	S17
S4	Structure and S_1 density difference associated with the ground state optimised	
	structure of $1b$	S17
S5	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $1b$	S18
S6	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $1b$	S18

S7	Structure and \mathbf{S}_1 density difference associated with the ground state optimised	
	structure of $1c.$	S19
$\mathbf{S8}$	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $1c.$	S19
S9	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $1c$	S20
S10	Structure and S_1 density difference associated with the ground state optimised	
	structure of $1d$	S20
S11	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $1d$	S21
S12	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $1d$	S21
S13	Structure and S_1 density difference associated with the ground state optimised	
	structure of $2a$	S22
S14	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $2a$	S22
S15	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $2a$	S23
S16	Structure and S_1 density difference associated with the ground state optimised	
	structure of $2\mathbf{b}$	S23
S17	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $2\mathbf{b}$	S24
S18	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $2\mathbf{b}$	S24
S19	Structure and S_1 density difference associated with the ground state optimised	
	structure of $2c$.	S25

S20	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $2c$	S25
S21	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $2c$	S26
S22	Structure and S_1 density difference associated with the ground state optimised	
	structure of $2d$	S26
S23	Structure and T_1 density difference associated with the T_1 state optimised	
	structure of $2d$	S27
S24	Structure and S_1 density difference associated with the S_1 state optimised	
	structure of $2d$	S27
S25	Potential of the ground and excited state along a linear interpolations in	
	internal coordinates (LIICs) between the twisted and planar ground state	
	optimised structures of 1a. Blue is calculated using the PBE0 functional,	
	black with the optimally tuned LC-BLYP and red with the optimally tuned	
	$\omega \rm B97X\text{-}D4$ exchange and correlation functional	S28
S26	Potential of the ground and excited state along a linear interpolations in inter-	
	nal coordinates (LIICs) between the twisted and bent ground state optimised	
	structures of 1b. Blue is calculated using the PBE0 functional, black with	
	the optimally tuned LC-BLYP and red with the optimally tuned $\omega B97X\text{-}D4$	
	exchange and correlation functional.	S29
S27	Potential of the ground and excited state along a linear interpolations in inter-	
	nal coordinates (LIICs) between the twisted and bent ground state optimised	
	structures of 1c. Blue is calculated using the PBE0 functional, black with	
	the optimally tuned LC-BLYP and red with the optimally tuned $\omega B97X\text{-}D4$	
	exchange and correlation functional.	S29

List of Tables

S1	Electronic structure at the optimised geometry of the electronic ground and	
	lowest S_1 and T_1 states of the twisted conformer of 1a . All energies relative	
	to the lowest energy conformer of the $1a$ molecule (planar). $CT = charge$	
	transfer, $LE(A) = Local$ exciton on the acceptor and $LE(D) = Local$ exciton	
	on the donor	S8
S2	Electronic structure at the optimised geometry of the electronic ground and	
	lowest S_1 and T_1 states of the planar conformer of 1a . All energies relative	
	to the lowest energy conformer of the $1a$ molecule (planar). $CT = charge$	
	transfer, $LE(A) = Local$ exciton on the acceptor and $LE(D) = Local$ exciton	
	on the donor	S8
S3	Electronic structure at the optimised geometry of the electronic ground and	
	lowest S_1 and T_1 states of the twisted conformer of 1b . All energies relative to	
	the lowest energy conformer of the ${\bf 1b}$ molecule (bent). CT = charge transfer,	
	LE(A) = Local exciton on the acceptor and $LE(D) = Local$ exciton on the	
	donor	S9

S4Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **1b**. All energies relative to the lowest energy conformer of the **1b** molecule (bent). CT = charge transfer,LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the S9S5Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of 1c. All energies relative to the lowest energy conformer of the 1c molecule (twisted). CT = chargetransfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton S10S6Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **1c**. All energies relative to the lowest energy conformer of the 1c molecule (twisted). CT = chargetransfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton S10S7Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of 1d. All energies relative to the lowest energy conformer of the 1d molecule (twisted). CT = chargetransfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor. S11 S8Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of 1d. All energies relative to the lowest energy conformer of the 1d molecule (twisted). CT = chargetransfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton S11

S9Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **2a**. All energies relative to the lowest energy conformer of the 2a molecule (bent). CT = charge transfer,LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the S12S10 Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of 2a. All energies relative to the lowest energy conformer of the 2a molecule (bent). CT = charge transfer,LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the S12 S11 Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **2b**. All energies relative to the lowest energy conformer of the **2b** molecule (bent). CT = charge transfer,LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the S13 S12 Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **2b**. All energies relative to the lowest energy conformer of the 2b molecule (bent). CT = charge transfer,LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the S13 S13 Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **2c**. All energies relative to the lowest energy conformer of the 2c molecule (twisted). CT = chargetransfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton S14

Table S1: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **1a**. All energies relative to the lowest energy conformer of the **1a** molecule (planar). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			Г	Min 1	$\mathrm{S}_{1}^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.56	-	0.86	_	1.03
S_1	CT	4.13	CT	3.87	CT	3.88
S_2	CT	4.64	CT	4.56	CT	4.61
S_3	CT	4.74	CT	4.71	CT	4.79
T_1	LE(A)	3.98	CT	3.86	CT	3.87
T_2	LE(A)	4.09	LE(A)	4.19	LE(A)	4.29
T_3	CT	4.12	LE(D)	4.35	LE(D)	4.50

Table S2: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the planar conformer of **1a**. All energies relative to the lowest energy conformer of the **1a** molecule (planar). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			$\mathrm{T}_{1}^{\mathrm{Min}}$		$\mathrm{S}_1^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	-	0.44	_	0.59
S_1	CT + LE(A)	4.04	LE(A)	4.29	CT	3.70
S_2	CT	4.40	CT	4.36	CT	4.28
S_3	CT	4.44	CT + LE(A)	4.51	CT	4.55
T_1	LE(A)	3.28	LE(A)	2.85	CT + LE(A)	3.44
T_2	LE(A) + CT	3.37	LE(A)	3.77	LE(A) + CT	4.02
T ₃	LE(D)	3.59	LE(D)	4.03	LE(A) + CT	4.15

Table S3: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **1b**. All energies relative to the lowest energy conformer of the **1b** molecule (bent). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

	Ground Stat	e	T_1^{MIN}		S_1^{MIN}	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	—	0.18	-	0.64	-	0.67
S_1	CT	3.62	CT	3.31	CT	3.32
S_2	CT	4.19	CT	4.15	CT	4.15
S_3	CT	4.20	CT	4.21	CT	4.23
T_1	LE(A)	3.58	CT	3.31	CT	3.31
T_2	CT + LE(D)	3.61	LE(A)	3.89	LE(A)	3.91
T_3	LE(A)	3.68	LE(D)	4.05	LE(D)	4.08

Table S4: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **1b**. All energies relative to the lowest energy conformer of the **1b** molecule (bent). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			$\mathrm{T}_{1}^{\mathrm{Min}}$		$ m S_1^{Min}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	-	0.45	—	0.66
S_1	CT	4.05	LE(A)	4.28	LE(A)	3.91
S_2	CT	4.35	CT	4.35	CT	4.61
S_3	CT	4.42	CT + LE(A)	4.53	CT	4.87
T_1	LE(A)	3.27	LE(A)	2.85	LE(A)	3.19
T_2	LE(A)	3.38	LE(A)	3.74	LE(A)	3.84
T_3	LE(D)	3.84	LE(D)	3.94	LE(D)	4.51

Table S5: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **1c**. All energies relative to the lowest energy conformer of the **1c** molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			Г	Min 1	$\mathrm{S}_{1}^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	_	0.53	_	0.56
S_1	CT	3.44	CT	3.03	CT	3.03
S_2	CT	3.89	CT	3.89	CT	3.90
S_3	LE(D)	4.30	CT	4.09	CT	4.09
T_1	LE(A)	3.37	CT	3.03	CT	3.02
T_2	CT	3.43	LE(A)	3.75	LE(A)	3.78
T_3	LE(A)	3.51	LE(D)	3.85	LE(D)	3.88

Table S6: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **1c**. All energies relative to the lowest energy conformer of the **1c** molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

	Ground Stat	e	$\mathrm{T}_{1}^{\mathrm{Min}}$		$\mathrm{S}_{1}^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S ₀	—	0.12	-	0.72	_	_
S_1	CT	3.89	CT	4.04	—	—
S_2	CT	4.25	CT + LE(A)	4.37	—	—
S_3	LE(D)	4.47	LE(A)	4.46	—	—
T_1	LE(A)	3.37	LE(A)	2.91	—	—
T_2	LE(A) + CT	3.44	LE(A)	3.87	—	—
T_3	LE(D)	3.73	CT	4.09	_	_

Table S7: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **1d**. All energies relative to the lowest energy conformer of the **1d** molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

	Ground Stat	e	T_1^{MIN}		$ m S_1^{Min}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	—	0.00	_	0.29	_	0.37
S_1	CT	3.62	CT	2.74	CT	2.74
S_2	CT + LE(D)	3.88	CT	3.34	CT	3.39
S_3	CT	3.90	CT	3.65	CT	3.67
T_1	LE(A)	3.15	CT	2.73	CT	2.72
T_2	LE(D)	3.22	CT	3.31	CT	3.37
T ₃	LE(A)	3.32	LE(D)	3.49	LE(D)	3.56

Table S8: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **1d**. All energies relative to the lowest energy conformer of the **1d** molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

	Ground Stat	e	Г	MIN 1	S	Min 1
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	—	0.42	_	—	_	_
S_1	CT	4.11	_	—	—	—
S_2	CT	4.30	_	_	_	_
S_3	CT	4.44	_	_	—	_
T_1	LE(A)	3.69	_	_	_	_
T_2	LE(D)	3.76	_	_	—	_
T_3	LE(A) + CT	3.77	_	—	_	_

Table S9: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **2a**. All energies relative to the lowest energy conformer of the **2a** molecule (bent). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			Г	Min 1	S	$\mathrm{S}_{1}^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	
S_0	—	—	-	0.63	—	0.71	
S_1	_	—	CT	3.04	CT	3.01	
S_2	_	_	CT	3.91	CT	3.91	
S_3	_	_	LE(D)	4.65	LE(D)	4.88	
T_1	-	_	CT	2.99	CT	3.00	
T_2	_	—	CT	3.85	CT	3.91	
T_3	_	—	LE(A)	3.92	LE(A)	3.96	

Table S10: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **2a**. All energies relative to the lowest energy conformer of the **2a** molecule (bent). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			T_1^{MIN}	I	S_1^{MIN}	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	_	0.30	_	0.39
S_1	CT	4.01	LE(A) + CT	3.94	CT	3.21
S_2	CT	4.33	LE(A)	4.10	CT	4.03
S_3	LE(A)	4.51	LE(A) + CT	4.25	LE(A)	4.73
T_1	LE(A)	3.23	LE(A)	2.48	CT	3.00
T_2	LE(A) + CT	3.32	LE(A)	3.44	LE(A) + CT	3.70
T_3	LE(A)	3.95	LE(A)	4.02	LE(A)	3.79

Table S11: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of **2b**. All energies relative to the lowest energy conformer of the **2b** molecule (bent). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			Г	Min 1	$\mathrm{S}_{1}^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	—	-	—	—	1.18
S_1	—	_	_	_	CT	3.64
S_2	_	_	_	_	CT	4.56
S_3	—	_	-	_	CT	5.25
T_1	_	_	_	_	CT	3.63
T_2	_	_	-		LE(A)	4.41
T_3	_	—	_	—	CT	4.54

Table S12: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **2b**. All energies relative to the lowest energy conformer of the **2b** molecule (bent). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			Г	Min 1	S_1^{MIN}	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	_	0.70	_	0.83
S_1	CT + LE(A)	4.14	CT	4.46	CT	3.67
S_2	CT + LE(A)	4.47	CT	4.48	CT	4.50
S_3	LE(A)	4.50	CT	4.71	CT	4.96
T_1	LE(A)	3.24	CT	2.73	CT	3.48
T_2	LE(A)	3.63	LE(A)	3.84	CT + LE(A)	4.17
T_3	LE(A)	3.97	LE(A)	4.29	LE(A)	4.20

Table S13: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the twisted conformer of 2c. All energies relative to the lowest energy conformer of the 2c molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			T_1^{MIN}		$\mathrm{S}_1^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	_	0.85	_	0.88
S_1	CT	3.65	CT	3.25	CT	3.09
S_2	CT	3.82	CT	3.94	CT	3.95
S_3	LE(D)	4.25	CT	4.41	CT	4.41
T_1	LE(A)	3.12	CT	3.08	CT	3.08
T_2	LE(A)	3.38	CT	3.93	CT	3.94
T_3	LE(D)	3.45	LE(A)	3.95	LE(A)	4.68

Table S14: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of 2c. All energies relative to the lowest energy conformer of the 2c molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

	a 1.0		- mMix	т	o Min	
Ground State			T_1^{MIN}		S_1^{MIN}	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	—	0.15	-	0.80	_	_
S_1	CT	4.08	CT	4.39	—	_
S_2	CT	4.39	LE(A)	4.54	_	_
S_3	LE(A)	4.63	LE(A) + CT	4.75	—	_
T_1	LE(A)	3.37	LE(A)	2.96	—	_
T_2	LE(A)	3.48	LE(A)	3.95	_	_
T_3	LE(D)	4.04	LE(A)	4.40	_	_

Table S15: Electronic structure at the optimised geometry of the electronic ground and lowest S_1 and T_1 states of the bent conformer of **2d**. All energies relative to the lowest energy conformer of the **2d** molecule (twisted). CT = charge transfer, LE(A) = Local exciton on the acceptor and LE(D) = Local exciton on the donor.

Ground State			T_1^{MIN}	Ι	$\mathrm{S}_{1}^{\mathrm{Min}}$	
State	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$	Nature	$\Delta E / eV$
S_0	_	0.00	-	1.08	_	0.92
S_1	CT	3.78	CT	3.30	CT	3.24
S_2	CT	3.99	CT	4.21	CT	4.08
S_3	CT	4.09	CT	4.25	CT	4.14
T_1	LE(A)	3.24	CT	3.22	CT	3.22
T_2	LE(A)	3.39	CT + LE(A)	3.99	LE(A)	3.92
T ₃	CT + LE(D)	3.70	CT	4.11	LE(D)	4.04

Figure S1: Structure and S_1 density difference associated with the ground state optimised structure of 1a.

Figure S2: Structure and T_1 density difference associated with the T_1 state optimised structure of 1a.

Figure S3: Structure and S_1 density difference associated with the S_1 state optimised structure of 1a.

Figure S4: Structure and S_1 density difference associated with the ground state optimised structure of **1b**.

Figure S5: Structure and T_1 density difference associated with the T_1 state optimised structure of **1b**.

Figure S6: Structure and S_1 density difference associated with the S_1 state optimised structure of **1b**.

Figure S7: Structure and S_1 density difference associated with the ground state optimised structure of 1c.

Figure S8: Structure and T_1 density difference associated with the T_1 state optimised structure of **1c**.

Figure S9: Structure and S_1 density difference associated with the S_1 state optimised structure of **1c**.

 $\mathbf{S_1}$

Figure S10: Structure and S_1 density difference associated with the ground state optimised structure of 1d.

Figure S11: Structure and T_1 density difference associated with the T_1 state optimised structure of 1d.

 T_1

 $\mathbf{S_1}$

Figure S12: Structure and S_1 density difference associated with the S_1 state optimised structure of 1d.

Figure S13: Structure and S_1 density difference associated with the ground state optimised structure of 2a.

 $\mathbf{S}_{\mathbf{0}}$

Figure S14: Structure and T_1 density difference associated with the T_1 state optimised structure of 2a.

Figure S15: Structure and S_1 density difference associated with the S_1 state optimised structure of 2a.

 $\mathbf{S}_{\mathbf{0}}$

Figure S16: Structure and S_1 density difference associated with the ground state optimised structure of 2b.

Figure S17: Structure and T_1 density difference associated with the T_1 state optimised structure of **2b**.

 $\mathbf{T_1}$

Figure S18: Structure and S_1 density difference associated with the S_1 state optimised structure of **2b**.

Figure S19: Structure and S_1 density difference associated with the ground state optimised structure of 2c.

Figure S20: Structure and T_1 density difference associated with the T_1 state optimised structure of 2c.

Figure S21: Structure and S_1 density difference associated with the S_1 state optimised structure of **2c**.

Figure S22: Structure and S_1 density difference associated with the ground state optimised structure of 2d.

 $\mathbf{S}_{\mathbf{0}}$

 $\mathbf{S_1}$

Figure S23: Structure and T_1 density difference associated with the T_1 state optimised structure of 2d.

 T_1

 $\mathbf{S}_{\mathbf{1}}$

Figure S24: Structure and S_1 density difference associated with the S_1 state optimised structure of 2d.

Figure S25: Potential of the ground and excited state along a linear interpolations in internal coordinates (LIICs) between the twisted and planar ground state optimised structures of **1a**. Blue is calculated using the PBE0 functional, black with the optimally tuned LC-BLYP and red with the optimally tuned ω B97X-D4 exchange and correlation functional.

Figure S26: Potential of the ground and excited state along a linear interpolations in internal coordinates (LIICs) between the twisted and bent ground state optimised structures of **1b**. Blue is calculated using the PBE0 functional, black with the optimally tuned LC-BLYP and red with the optimally tuned ω B97X-D4 exchange and correlation functional.

Figure S27: Potential of the ground and excited state along a linear interpolations in internal coordinates (LIICs) between the twisted and bent ground state optimised structures of 1c. Blue is calculated using the PBE0 functional, black with the optimally tuned LC-BLYP and red with the optimally tuned ω B97X-D4 exchange and correlation functional.

Figure S28: Potential of the ground and excited state along a linear interpolations in internal coordinates (LIICs) between the twisted and bent ground state optimised structures of 1d. Blue is calculated using the PBE0 functional, black with the optimally tuned LC-BLYP and red with the optimally tuned ω B97X-D4 exchange and correlation functional.

Table S16: Analysis of the geometric and electronic structure properties obtained from 15 ps of *ab initio* molecular dynamics in the electronic ground (S_0) and first singlet excited state (S_1) .