
Appendices
These appendices contain references to equations and tables appearing in the main text of Getz et al.,
The Statistical Building Blocks of Animal Movement Simulations and the bibliographic citations herein are
included in the References section of that text.

A Hierarchical Segmentation and Empirical Data

A.1 Issues of scale
We have various temporal scales in our model as they relate to the following structures and processes from
likely fastest to slowest:

1 FuME scale (fundamental movement element). The scale of the actual “hidden” movement elements
underlying the StaMEs (previously called metaFuMEs). This is the average time it takes to perform
a typical FuME, such as one repeatable sequence when striding, wing flapping, wiggling or undulating
one’s body.

2 Landscape traversal scale. This converts the landscape pixel scale to the typical time it takes for indi-
vidual to move across one pixel. This scale is typically finer than the relocation data scale (see next),
though if the pixels are large (e.g., 10 meters or more) and the relocation data scale fine then this scale
may be coarser than the relocation data scale.

3 Relocation data scale. This is set by the frequency of the relocation data. Fine scale implies that data
points are less than 10 secs apart. Course scale implies points more than 1 minute apart. Intermediate
scale is between these two.

4 StaMe scale (statistical movement elements, formerly metaFuMEs). This is the scale of our StaME
elements—i.e., it relates to the number of relocation data points (including missing points) used to
compute our StaMEs, which my vary from typically 10 to 30 points, depending on the fineness of the
relocation data scale.

5 CAM scale (Canonical activity mode) (formerly short or homogeneous CAMs). This scale relates to
the typical length of a homogeneous sequence of some underlying metaFuMEs. This scale will vary
somewhat, depending on the type of behavior. Directed walking, for example, may last several hours,
though it will likely be interspersed with pauses when the individual rests or scans their surrounding
for information relating to navigation or safety. Grazing, which is a mix of several different FuMEs that
each last a short time (e.g., stop-start motions involving forward, sideways and backward movements
coupled with various head motions) may also last on the order of large fractions of an hour or multiple
hours.

6 Activity type scale (formerly long CAMs). When relocation data is relatively fine (consecutive points
are seconds apart) then “activity types” may be identified in terms of a characteristic mix of CAMs.
Thus a migration movement CAM that lasts for a substantial part of a diel may be made up of
a characteristic mix of directed movement, grazing, and resting CAMs. On the other hand, if the
relocation data scale is relatively course (i.e., relocation points are minutes apart) then StaMEs reflect
average movement behavior during “migration movement” may already have statistics that reflect a
mix of directed movement, grazing, and resting behaviors.

A.2 Movement path data and segmentation
Here is a refinement of the hierarchical definitions provided in [30] to help us understand how to parse out
the information contained in the planar points relocation time series or walk (recall Eq 12)

W =
{(
t;xidt , y

id
t

)∣∣t = 0, ..., ntime
}

1

From this time series, the following step length S, or equivalently velocity V and turning-angle ∆Θ time
series, can be derived using the relocation point frequency F

V = {(t, vt| t = 1, ..., ntime} (A.1)

using the derived values

vt = F

√(
xidt − xidt−1

)2
+

(
yidt − yidt−1

)2 (A.2)
and

∆Θ = {(t,∆θt| t = 2, ..., ntime} (A.3)
using the derived values

|∆θt| = min{|θt − θt−1|, 2π − |θt − θt−1|}, where θt = arctan

(
yidt − yidt−1

xidt − xidt−1

)
(A.4)

and the sign of |∆θt| is easily determined by considering which quadrants θt−1 and θt are in and whether
moving clockwise or anticlockwise subscribes the smaller of the two angles between them: anticlockwise
implies positive and clockwise negative. As in [18], we may also study movement in terms of the persistent
(vper) and tangential (vtan) velocities rather than speed (v or stepsize) and turning angle (δθ), using the
transformations

vpert = vt cos (θt) and vtant = vt sin (θt) (A.5)

FuME A FuME is a fundamental movement element that for some types may be hard to observe its start
and end points, or even define with any precision

Step A step is one point t in the time series W with which we associate a step length s(t) and turning angle
∆θ(t)

StaME (previously called metaFuMEs) These are statistically entities computed from consecutive segments
of fixed length of a walk W (Eq 12) (i.e., each segment contains a specified number of consecutive
relocation points—typically 10-30 to obtain reasonable statistics). These segments can be classified into
a few different StaME categories or types based on their statistics—typically the mean and variances
of the persistent and turning velocities v(p) and ht obtained for each segment.

CAM A canonical activity mode, formerly referred as a “short” or “ homogeneous” CAM that is a consecutive
sequence of two or more StaMEs of the same type.

Activity type Formerly referred to as a long CAM, and is a characteristic mix of CAMs defining a complex
movement activity such as grazing (a mix of stop-start movements)

DAR A diel activity routine with start and stop points in its 24 hour cycle selected to correspond, for
example, to its major resting period.

LiMP A lifetime movement phase is a sequence of DARs that occurs during the individuals life history. It
may be a migration event that occurs over several days or weeks, or it may be a seasonal movement
pattern (e.g., a nomadic phase, or a home ranging phase) that repeats annually.

LiT The lifetime track of an individual from the moment it starts moving after birth to the moment it
ceases to move at death.

A.3 Step-selection procedures
ANIMOVER_1 includes two movement modes, each involving its own step selection procedure. One specifies
the movement of individuals within patches (wp) and a second between patches (bp). Each of these two
modes involves a kernel with mode-specific parameters Kα = K

(
rmin
α , rmax

α , ψα

)
, α = wp, bp (Eq 4), as

well as mode specific time-in-mode parameter t̂sαt (i.e. the value of tsα at time t) and neighborhood value
parameter ĉnbhα . The procedures also involve updating individual and cellular array states using Eqs 6 or 7,
depending on which of the RAMs (see Section 4.2) have been selected.

2

Within patches step-selection procedure, Rwp(t̂
swp , ĉnbhwp)

Rwp.1 SET αt = αwp,next,
(
xidt , y

id
t , θt, t

s
t

)
= (xnext, ynext, θnext, t

s
next) , and (cab,t, h) = (cab,next, hnext) (Fig 3).

Rwp.2 COMPUTE the values of the admissible set of cells Cwp
t (Eq 9) and COMPUTE cmax

ab = max{cab | cell(a, b) ∈
Cwp
t }. Note, for the case topology=plane, there may be no admissible cells.

Rwp.3 COMPUTE

Sum9 (c
max
ab) = cmax

ab + sum of values in 8-cell Moore neighborhood of cmax
ab cell

Rwp.4 IF Sum9 (c
max
ab) ≥ ĉnbhwp THEN

(a) COMPUTE the set of probabilities Pwp
t (Eq 10) associated with selecting one of the admissible

cells
(b) SELECT the next cell, cell(a, b) using the probabilities in Pwp

t in a multinomial drawing (i.e., the
cell most likely to be selected is the one with the largest pab and so on)

ELSE

(c) MODIFY K̃wp by replacing rmax
wp with rmax

bp , rmin
wp with 0 (typically we already have rmin

wp = 0),
and ψwp with π and repeat steps Rwp.2 & 3.

(d) APPLY rule Rwp 4a & b to the selected cell.
(e) IF the updated Sum9 (cab) ≥ ĉnbhwp THEN move to this cell
(f) ELSE move at random to one of the cells on the rim of a circle at radius rmax

bp from the
current location (i.e., all points whose distance from the current location is within the band[
rmax
bp −

√
∆x2 +∆y2, rmax

bp

]
). We note that this step will also prevent an individual from getting

stuck at a boundary when topology = plane.

Rwp.5 Now that we have identified the next cell(a, b) to be occupied:

(a) SET (xnext, ynext) = (xcella , ycellb).

(b) COMPUTE the next angle of heading θnext (Eq 3) and distance moved ρab(xnext, ynext) (Eq 2).

(c) UPDATE cab next and hnext using RAMupdate0 (Eq 6) or RAMupdate1 (Eq 7) or a user specified RAMupdate2

Rwp.6 UPDATE the StaME index αnext using probability pwp(t
s) (Eq 11) as follows

(where Sum9 (cab) is sum of values in the 8-cell Moore neighborhood of Cell(a, b) plus cab itself)

IF Z ∼ BINOMIAL[pwp(t
s)] = 1 AND Sum9 (cab) ≥ ĉnbhwp (if updated under R.4c use latest value)

THEN αnext = wp ELSE αnext = bp

Between patches step-selection procedure, Rbp(t̂
sbp , ĉnbhbp)

Rbp.1 SET αt = αbp,next,
(
xidt , y

id
t , θt, t

s
t

)
= (xnext, ynext, θnext, t

s
next) , and (cab,t, h) = (cab,next, hnext) (Fig 3).

Rbp.2 COMPUTE the values of the admissible set of cells Cvis
t (i.e., using K̃vis

t (0, rmax
wp , π/2) rather than K̃bp

t

in Eq 9) and COMPUTE cmax
ab = max{cab | cell(a, b) ∈ Cvis

t }. Note, for the case topology=plane, there
may be no admissible cells when the individual is on the boundary near a corner. In this case, when no
visible cells are available, then use Kvis(0, r

max
bp , π), i.e., the individual now looks behind itself as well.

Rbp.3 COMPUTE

Sum9 (c
max
ab) = cmax

ab + sum of values in 8-cell Moore neighborhood of cmax
ab cell

3

Rbp.4 IF Sum9 (c
max
ab) ≥ ĉnbhwp THEN

(a) COMPUTE the set of probabilities Pwp
t (Eq 10) associated with selecting one of the admissible

cells

(b) SELECT the next cell, cell(a, b) using the probabilities in in a multinomial drawing

ELSE move to any cell at random in the set Cbp
t (i.e., overlapping with K̃wp

t).

Rbp.5 Now that we have identified the next cell(a, b) to be occupied:

(a) SET (xnext, ynext) = (xcella , ycellb).

(b) COMPUTE the next angle of heading θnext (Eq 3) and distance moved ρab(xnext, ynext) (Eq 2).

(c) UPDATE cab next and hnext, but for this movement mode setting κadd = 0 in the same RAMupdate

used in Rwp.6

Rbp.6 UPDATE the StaME index αnext using probability pbp(ts) (Eq 11) as follows

(where Sum9 (cab) is sum of values in the 8-cell Moore neighborhood of Cell(a, b) plus cab itself)

IF Z ∼ BINOMIAL[pbp(ts)] = 1 AND Sum9 (cab) ≤ ĉnbhbp THEN αnext = bp ELSE αnext = wp

A.4 StaMEs from empirical data
Various methods can be applied to extract StaMEs from empirical data. We have outlined one method in
Section 3 of our text. Here we present more comprehensive details on the method we use. In order to separate
different movement modes from each other, we perform a cluster analysis. Clustering is an unsupervised
machine learning procedure which finds an optimum partition of a set of points with two or more variables
into subsets (or clusters) of similar points.

Here we use hierarchical clustering approach, which results in a tree structure called dendrogram having
a single cluster at the root, with leaf nodes representing data points in the set. Recall from Eq 13 that the
variables Sµ had been constructed using the relocation time series W in Eq 12. which we repeat here for
convenience:

Sµ =

{
Segz

(
Vz,SD

V
z , |∆Θ|z,SD|∆Θ|

z ,∆ρ
)∣∣z = ⌊ t

µ
⌋+ 1, t = 0, · · · , ntime − 1

}
such that

Vz =

∑t+µ−1
τ=t vτ
vmaxµ

with st. dev. SDV
z , |∆Θ|z =

∑t+µ−1
τ=t |∆θτ |

2πµ
with st. dev. SD|∆Θ|

z

and ∆ρ =

√
(xidt+µ − xidt)2 + (yidt+µ − yidt)2

µVz
.

To begin with, it is important to discard any points containing missing or non-numeric values (since the
variables to be used in clustering algorithm are all numeric). Further, each of these variables ranges in [0, 1],
and hence no further normalisation has been carried out. Cluster analysis is performed on the segment level
data (i.e., with nseg = ⌊ t

µ⌋ + 1 points) using the variables in Sµ. Specifically, we want to find an optimal
partition

P(Sµ) = {C1, C2, ..., Ck},

where ∪k
i=1Ci = Sµ, and Ci ∩ Cj = ∅ (hard clustering).

Hierarchical agglomerative algorithms implement bottom-up clustering methodology, which starts with
each point of S in its own singleton cluster, followed by successive fusions of two clusters at a time, depending
on similarity between them, leading to a specified number of clusters (or, alternatively, leading to one cluster
followed by cutting the dendrogram at the desired number of clusters). These are deterministic, yet greedy,

4

in the sense that the clusters are merged based entirely on the similarity measure, thereby yielding a local
solution. Most of the similarity schemes are specified not in terms of an objective function to be optimized,
but procedurally. We use Ward’s minimum sum of square scheme, which performs a fusion of clusters while
minimizing the intra-cluster variance. Our distance metric to quantify dissimilarity is the Euclidean measure.

To perform clustering, we make use of hclust function from fastcluster R package. It replaces the
stats:: hclust function, which offers the most common implementation of Ward’s hierarchical cluster-
ing in R. The conventional algorithm from stats package takes as input the set of points {xz}|n

seg

z=1 ={
Vz, SDV

z , |∆Θ|z, SD|∆Θ|
z ,∆ρ

z

}∣∣nseg

z=1
∈ Rnseg×5 (represented by Sµ) and a pair-wise dissimilarity matrix

d(Ci, Cj)|n
seg

i,j=1 (to be computed in advance). Starting with nseg clusters, it fuses multiple pairs of them in
each of nseg−1 steps while satisfying Ward’s criterion and updates the dissimilarity matrix with the distance
of each of the clusters still available to be merged with the newly created cluster. Accordingly, a series of
partitions are produced, with the first one containing singleton clusters and the last one containing all nseg
points in one cluster. At each step, a set of clusters available to be merged (active clusters) is maintained,
and each merger is tracked leading to a dendrogram. Concisely, the algorithm can be represented as shown
in Algorithm 1. The dendrogram thus produced can also be understood as a weighted graph, with leaf

Algorithm 1: Naive hierarchical agglomerative clustering algorithm
Initialize active set with each instance in singleton cluster
repeat

Select the pair of clusters with the most suitable distance
Remove each from the active set
Add their union to the tree

until Active set has only one item

nodes representing data points, and each internal node representing the cluster of its descendent leaves. The
dissimilarity between clusters is represented by edge weights. Built-in R function cutree can then be used
to cut the dendrogram at the required number of clusters, and colMeans can be used to compute a cluster’s
center.

This algorithm has a time complexity of O(nseg3 and requires Ω(nseg2) memory (on account of distance
matrix computation and storage), making it unsuitable for our segment-level data set with ∼ 105 points.
Further, it is also difficult to distribute over multiple threads because the complete dissimilarity matrix
along with active clusters and current state of dendrogram is required by all the processes. To get around
these difficulties, we make two modifications to this workflow. First, we make use of parDist function of
parallelDist package, which permits parallel computations of pair-wise dissimilarities. It offers the same
interface as that of stats::dist R function. Second, we use an improved algorithm for hierarchical agglom-
erative clustering from fastcluster package, as mentioned above. The algorithm performs hierarchical
clustering with Ward’s scheme faster by accomplishing the search for the best cluster to merge with any
cluster in the most efficient way [108]. For the clustering procedure, we choose to not perform dimensional
reduction and use all 5 variables in Sµ. This ensures enhanced interpretation of results.

As noted above, the number of clusters k needs to be specified in order to cut the dendrogram. As is
evident from Figures 7 and 8, we selected k = 8 to be used in our analyses. We initially choose to err on
the side of having more than fewer clusters than may turn out to be optimal because we wanted to try to
isolate clusters at the extremes of the cluster groups that were as homogeneous as possible in terms of not
mixing many different movement modes in one movement segment. It may also be useful in some particular
cases to use a gap statistic to justify one’s choice of k. For example, in the two-movement mode simulation
with 10-step segmentation we used a Gap statistic that compares the total intra-cluster variance for different
values of k with the corresponding no clustering case. In this case, we see in Fig A.1 that the rate of increase
of our Gap statistic somewhat flattens at k = 8. Accordingly, this would be the appropriate choice for our
10-step segmentation two-mode movement simulation. A relatively large value large value of k allows us
to consider how close the centroids of different clusters would be and what it may mean to combine one

5

Figure A.1: Gap statistic for the two-movement mode simulation data in section 5.2.

or more clusters. Also, every data set may have a different preferential value for k when considering a gap
statistic. Further, to facilitate comparisons across our analyses of different data sets, we kept to our selection
of k = 8. As mentioned in the discussion section, hierarchical clustering is but one of many methods that
may be used to cluster the data and other machine learning and even deep learning methods [109, 110, 111],
can be explored, particularly when segment shapes vary widely.

Our computations have been performed on a node of Berkeley’s HPC Cluster Savio. The system is Lenovo
NeXtScale nx360m5 equipped with two Intel Xeon 12-core Haswell processors (core frequency 2.3 Ghz) and
128 GB of 2133 Mhz DDR4 memory. The R function parDist distributes distance matrix calculation over all
of 24 available processor cores, and returns a "dist" class object - the lower triangle of the distance matrix
(since it is symmetric). hclust returns a list with several components describing the dendrogram. cutree
method, which is used to cut the tree, returns a vector of integers indicating which cluster each point has
been assigned to.

The segment level data in S has 5 variables. Accordingly, principal components analysis is required to
visualize the clustering results. This is a coordinate transformation procedure to a new set of variables such
that maximum variance is preserved (which amounts to minimum loss of information). The two principal
components accounting for maximum variance are used for 2-d cluster plots.

Our speed and turning-angle measurements are scaled with maximum speed and π, respectively, ensuring
that the segment level data has all variables ranging in [0, 1]. This makes it reasonable to calculate principal
components without further normalization. For better interpretation, we report the variable V ± SDV in
Table 2 in units of m/s after rescaling with the maximum speed. PCA has been performed using built-in
R method prcomp. To ensure no further normalization, the binary arguments center and scale in prcomp
(which govern whether the variables are zero centered, and whether the variables are scaled to have unit
variance, respectively) are set to FALSE. The function returns a list with various components which can be
used to read eigenvectors and eigenvalues (and hence standard deviations of principal components) of the
covariance matrix.

6

A.5 Plots of 10-step simulation data segments
Each plot in this subsection, particularly across different clusters, has had its axes for each panel automati-
cally set by the plotting routine. Thus the size of segments is not comparable, only their relative shapes is
informative.

Figure A.2: 130 random 10-step segments from cluster C=1 (Table 1)

7

Figure A.3: 130 random 10-step segments from cluster C=2 (Table 1)

8

Figure A.4: 130 random 10-step segments from cluster C=3 (Table 1)

9

Figure A.5: 130 random 10-step segments from cluster C=4 (Table 1)

10

Figure A.6: 130 random 10-step segments from cluster C=5 (Table 1)

11

Figure A.7: 130 random 10-step segments from cluster C=6 (Table 1)

12

Figure A.8: 130 random 10-step segments from cluster C=7 (Table 1)

13

Figure A.9: 130 random 10-step segments from cluster C=8 (Table 1)

14

A.6 Plots of Adult Female Barn Owl StaMEs
Each plot in this subsection, particularly across different clusters, has had its axes for each panel automati-
cally set by the plotting routine. Thus the size of segments is not comparable, only their relative shapes are
informative.

Figure A.10: 130 random adult female barn owl segments from cluster C=1 (Table 2)

15

Figure A.11: 130 random adult female barn owl segments from cluster C=2 (Table 2)

Figure A.12: 130 random adult female barn owl segments from cluster C=3 (Table 2)

16

Figure A.13: 130 random adult female barn owl segments from cluster C=4 (Table 2)

Figure A.14: 130 random adult female barn owl segments from cluster C=5 (Table 2)

17

Figure A.15: 130 random adult female barn owl segments from cluster C=6 (Table 2)

Figure A.16: 130 random adult female barn owl segments from cluster C=7 (Table 2)

18

Figure A.17: 130 random adult female barn owl segments from cluster C=8 (Table 2)

19

A.7 Plots of Juvenile Male Barn Owl StaMEs
Each plot in this subsection, particularly across different clusters, has had its axes for each panel automati-
cally set by the plotting routine. Thus the size of segments is not comparable, only their relative shapes is
informative.

Figure A.18: 130 random adult female barn owl segments from cluster C=1 (Table 2)

20

Figure A.19: 130 random juvenile barn owl segments from cluster C=2 (Table 2)

Figure A.20: 130 random juvenile barn owl segments from cluster C=3 (Table 2)

21

Figure A.21: 130 random juvenile barn owl segments from cluster C=4 (Table 2)

Figure A.22: 130 random juvenile barn owl segments from cluster C=5 (Table 2)

22

Figure A.23: 130 random juvenile barn owl segments from cluster C=6 (Table 2)

Figure A.24: 130 random juvenile barn owl segments from cluster C=7 (Table 2)

23

Figure A.25: 130 random juvenile barn owl segments from cluster C=8 (Table 2)

24

B Numerical construction of a homogeneous movement map
A numerical representation of the mapping Fhom

µ Eq 14, where we note that we have dropped the
dependence on ∆ρ because of the lack of circular bias in our movement simulations and the index µ in the
image space) can be constructed as follows:

1. For a set of kernels defined in terms a positive integer r̂max and an incremental angle ∆ψ (typically
equal to π/12 or π/36) define the following set of kernels

K (r̂max,∆ψ) =

{
K(rmin, rmax, ν∆ψ)

∣∣ rmin = 0, · · · , rmax, rmax = 1, · · · , r̂max, ν = 1, · · · , π

∆ψ

}
(B.6)

2. For each kernel in K (r̂max,∆ψ) run a simulation of the model, moving the individual over the desired
homogeneous landscape for a selected period of period of time. For example, if one wants to generate
100 segments, each 15 points long, then the simulation will proceed for 1500 time steps.

3. For each of the simulated trajectories of the kernels in K (r̂max,∆ψ), carry out a segmentation with seg-
ment size µ and generate the selected set of segment statistics, in our case the values

(
V,SDV , |∆Θ|,SD|∆Θ|)

for each segment. Compute the means of these statistics across the set of segments to obtain one can-
didate point of the mapping Eq 14.

4. In identifying the set of kernel
(
rmin, rmax, ν∆ψ

)
that generates an image under the mapping Fhom

µ

that is closest to the observed point
(
V

obs
,SDV

obs
, |∆Θ|

obs
,SD|∆Θ|obs) proceed as follows:

(a) Discretize the image space of Fhom
µ through a series of latin cube lattice computations of Fhom

µ with

arguments ranging over the cube with min and max bounding vertices
{
(0, 0, 0), (ˆrmin, ˆrmax, ν̂∆ψ)

}
and intermediate cubes with min and max vertices

{
(rmin, rmax, ν∆ψ), (rmin + 1, rmax + 1, (ν + 1)∆ψ)

}
,

rmin = 0, · · · ˆrmin − 1, rmax = 0, · · · ˆrmax − 1, and ν = 0, · · · , ν̂ − 1.

(b) Select the intermediate cube that contains the image
(
V

obs
,SDV

obs
, |∆Θ|

obs
,SD|∆Θ|obs): i.e., the

cube for which, making the Kα arguments in Fhom
µ (Kα) explicitly:

Fhom
µ

(
rmin, rmax, ν∆ψ

)
≤

(
V

obs
,SDV

obs
, |∆Θ|

obs
,SD|∆Θ|obs) ≤ Fhom

µ

(
rmin + 1, rmax + 1, (ν + 1)∆ψ

)
(B.7)

(c) Either select the vertex in the cube defined by
{
(rmin, rmax, ν∆ψ), (rmin + 1, rmax + 1, (ν + 1)∆ψ)

}
whose image under Fhom

µ is closest to the observed point
(
V

obs
,SDV

obs
, |∆Θ|

obs
,SD|∆Θ|obs) or

use a finer resolution Latin Cube grid within this cube to locate a set of parameters the provides
an image as close as desired to the observed point.

25

C ANIMOVER_1: Access and Data

C.1 Output Data
At the end of the simulation the output data can either be automatically or manually saved (using a toggle
switch on the console, see Fig 5, N in main text) as a csv file. The header to this file contains a list of all
the parameter and switch settings that were used to generate the run. In addition, the data are listed in 8
different columns depicted in Fig. C.1.

Figure C.1: The 8 columns in the csv data output file (e.g., see the file Two_Kernel_Movement.csv, Supplementary
Data) that can be saved at the end of the simulation as as follows: Day, Delta (within-day step), X (x-location), Y
(y-location), Distance (distance moved), Theta (angle of heading in degrees), Resources (agent-state), Kernel (BP
or WP). We note that one computes the turning angle ∆θ at time t by subtracting the angle of headings at time
t from the angle of heading at time t − 1 taking into account that angles are specified modulo 360 degrees (e.g., if
θt−1 = 350 and θt = 10, then the turning angle is ∆θ = 10 − (350 − 360) = 20 degrees). Thus angles have heading
range over [−π, π]. In addition, the third argument in our StaME is the average of the absolute values of the angles
of heading rather than just the angles themselves. Also note that the BP movement mode (green entries) has two
states: Movement (movement within the kernel rim which rim exists whenever rmin

wp > 0) or Vision (movement within
the kernel sector, possibly between the inner rim radius and the current location). The WP movement mode has
three states: Consuming (when moving to a resource-rich location), Seeking (an interim step in looking for a resource
rich location when the kernel contains insufficient resources), or Rim moving the maximum step length (rmax

bp rather
than rmax

wp when the seeking state fails to provide a suitable resource location). The indicted 10-step segmentation of
the data shows how both pure and mixed movement segments arise during segmentation.

26

C.2 Downloading and Running the App
ANIMOVER_1 and the most recent release of Numerus Studio can be downloaded without cost from the
Numerus webpage https://www.numerusinc.com/studio/. Installers for Numerus Studio are provided for
Mac and Windows platforms. Instructions for using Numerus Studio are contained in the RAMP Users
Guide at https://wiki.numerusinc.com/index.php/Ramp_User_Guide

ANIMOVER_1 is deployed in the RAMP file Ani1Cr3.nms. After installing Numerus studio, open this
file and launch it from the Studio launchpad. Documentation for this RAMP can be found at https:
//wiki.numerusinc.com/index.php/Animover_1.

27

https://www.numerusinc.com/studio/
https://wiki.numerusinc.com/index.php/Ramp_User_Guide
https://wiki.numerusinc.com/index.php/Animover_1
https://wiki.numerusinc.com/index.php/Animover_1

D ODD Protocol for ANIMOVER_1
The element numbering scheme used in the subsections below is that of the second ODD revision present in
the Grimm et al. [64].

D.1 Purpose and Patterns
The reason for developing an animal movement simulator is articulated under goal c.) in the Introduction
of the main text. More broadly, we construct a user friendly, highly flexible movement track simulator that
can be used to test ideas and concepts. This includes testing hypotheses about underlying mechanisms that
may lead to particular emergent patterns of movement behavior [112]. In addition, simulated data can be
used, as we did to a limited extent in this paper and now do more extensively in our ongoing research,
to evaluate methods for movement track analysis, and forecasting animal movement patterns in changing
and novel environments. Although our simulator is built at two scales—1.) next-step decisions of where to
move next using ideas from step-selection function analysis [55], 2.) time-already-spent-in-current-movement
variables (e.g., mimicking satiation, increasing thirst, or hunger effects) and time-within-diel-cycle variables
(e.g., when to head home)—patterns emerge at a third scale (different kinds of diel activity routines [43]),
with higher scale seasonal patterns emergent as well.

D.2 Entities, state variables,and scales
The relevant entities and state variables are listed in Table 3. They are cells (as represent by their position
and associated euclidean location in the cellular array A), the resource states cab,t of cells at time t, the
individual agent’s location (xidt , x

id
t), movement mode αt, angle of heading θt, time in current movement

mode tst , and internal state value ht (e.g., level of resource satiation or its inverse, hunger).

D.3 Process overview and scheduling
The process overview and scheduling are illustrated in Fig 3, which depicts the computational flow sequence
of the movement decision algorithm at the core of ANIMOVER_1. In short, after selecting parameter
values and setting up the initial patch structure of the landscape (details next), the algorithm loops through
a next-step process. This involves 1.) computing the location to which the individual moves from its current
location based on the individual’s current movement mode and the summed resource state of the cells in its
current neighborhood, 2.) computing the amount of resources the individual extracts from the location to
which it moves, thereby updating its current state to include these new resources and the cost of movement,
3.) updating the resource state of the cell to which the agent moves and from which it extracts resources,
4.) updating the current movement mode based on the state of the neighborhood of the agent’s current
location, 5.) implementing the STOP rule when either the end of the simulation has been reached (t = T)
or the individuals internal state has hit 0 (ht = 0; the individual is now dead).

D.3.1 Patch setup

The process for setting up the initial patch structure of the landscape is implemented by the runtime
alterable module RAMpatch# , where the details of the different possible preselected versions # = 0 (default),
= 1 (selectable alternative), #2 (for use to supply customized code) are elaborated in Section 4.2 of the
main text.

D.3.2 Resource extraction

The process for computing the amount of resource extracted from the current cell in which the agent is
located and the new state of the agent as a function of the amount of resource it extracts is implemented by
the runtime alterable module RAMval# , where the default version RAMval0 uses the resource density independent
equations, Eq 6, and the alternative version RAMval1 uses the resource density-dependent equations, Eq 7. It

28

is also possible for the user to insert a customized set of equations by coding their own version RAMval2 of this
RAM.

D.3.3 Next step computation

The next-step computations are implemented by the within-patch and between-patch step selection proce-
dures Rwp(t̂

swp , ĉnbhwp) and Rbp(t̂
swp , ĉnbhbp) provided in Appendix A.3 above.

D.4 Design concepts
In the ODD protocol, this sections describes how the following 11 concepts were considered in the model.

D.4.1 Basic Principles

The basic principle behind our movement algorithm is that an individual chooses were to move next based
on its current mode of movement (e.g., is it searching for resources or commuting to a new location), the
statistics of the step-size and turning angles associated with its current movement mode, and the best location
to land on its “next-step” given the state of the landscape within a radius of the largest value associated with
the distribution of step sizes for its current movement mode.

D.4.2 Emergence

Emergence relates to patterns produced by a sequence of steps associated with the current movement mode,
and by switching several times among movement modes to produce patterns at the scale of BAMs (e.g.:
resting that emerges from a sequence of small, directionally random StaMEs; foraging that emerges from a
mixture of medium and short StaMEs with relatively high turning angles; commuting that emerges from a
sequence of large StaMEs with relatively low turning angles), DARS (e.g., commuting to a known distant
location where feeding occurs and then returning versus interspersed searching and resting close to a home
location), LiMPs (e.g., migration, ranging, or territoriality phases) and LiTs (a central place forager, versus
a ranger, or an annual migrator; also see Fig 1 in main text).

D.4.3 Adaptation

Adaptation of movement is implicit in the model, first in the way movement kernels are impacted by the
current landscape structure (see Fig 2C) and second in the fact that the state equations, depending on the
particular RAMval# used (see above), contain feedback structures that result in density-dependent resource
extraction. Additionally, we note that as the simulation progress, resource consumption by the agent during
the early phases of the simulation reshapes the landscape and hence my lead to shift in the agent’s emergent
movement patterns over time.

D.4.4 Objectives

From the agents point of view, the objective is to maximize resource intake at each within patch movement
step. This is realized through rule Rwp.2 (Appendix A.3) where the maximum value cmax

ab is computed and
decisions where to move next are based upon the location of the cell that has this value.

D.4.5 Learning

An ability to adapt through learning is not included in ANIMOVER_1.

29

D.4.6 Prediction

As mentioned under element 1 (D.1 above), “forecasting animal movement patterns in changing and novel
environments” is one of the purposes of the model. The ability of the model to reliably predict where an
animal moves next, as well as forecast patterns of movement at larger scales requires that the parameters
of the model first be fitted to the data using an estimation procedure suitable for the task in the context
the type of model and data available [113]. This has not been done here since the third goal of this paper is
both make available the ANIMOVER_1 simulation for the purpose elaborated in element 1 (D1) above and
also, as articulated in the Introduction of the main text. Model parameter estimation is data specific and
so will need to be undertaken in any studies that involve using ANIMOVER_1 to predict the movement of
individuals by fitting kernel and state updating parameters to empirical data on both the movement and
state of those individuals.

D.4.7 Sensing

An agent sensing the state of the environment is a very important component of ANIMOVER_1. This is
done through the definition of movement-mode specific full and rim circle-sector kernels (Fig 2). Looking
closely out the output in Fig C.1, in the last column (“Kernel”) 5 types of kernels are identified in the context
of between-patch (BP) and within-patch (WP) movement. Specifically we see BP:Movement, BP:Vision,
WP:Seeking, WP:Consuming, and WP:Rim. The BP:Movement and WP:Seeking are just the next-step
between-patch and within-patch selection kernels. The BP:Vision kernel is invoked when an individual hits
a landscape boundary during between-patch movement and thus needs to look all around (including behind
itself) to make its next move (see Rbp.2 in Section A.3). The WP:seeking kernel is invoked with an individual
within a patch does not find a cell to move to that has resources that exceeds its threshold requirements
in which case it enlarges and fills out its current movement rim to a full movement sector (see Rbp.4c in
Section A.3. If this kernel then fails to find a suitable cell for its next step, it moves at random to the best
cell available in the kernel WP:Rim.

D.4.8 Interaction

In ANIMOVER_1 is a single-agent simulator and interactions are confined to a resource-consumption process
involving the resources within the cell where the agent is currently located, according to Eqs 6 and 7.
Clearly a multi-agent simulator can be developed where interactions among individuals with respect to both
movement (either attraction or repulsion elements can be included) and resource exploitation (competition
for resources among individuals in the same cell can be introduced into Eqs 6 and 7 using approaches such
as those discussed in [54]

D.4.9 Stochasticity

Stochasticity enters into several different places in the simulation. First, the process of setting up patches
in RAMpatch involves laying down a set of patch seeds and then randomly adding neighbors to these seeds
with a certain probability, as articulated in Section 2.2 of the main text. Second, movement to a particular
cell in the within and between patch movement procedures Rwp and Rbp involves a multinomial drawing in
which cells higher resource cells falling within the movement kernel in operation at time are more likely to
be selected than lower resource cells.

D.4.10 Collectives

Not applicable to ANIMOVER_1.

D.4.11 Observation

It is assume in ANIMOVER_1 that the simulate locations of the agent as it moves over the landscape are
observed without error. If observation errors need to be introduced into this process, then noise can be

30

added to the output in a form desired for the analysis hand.

D.5 Initialization
Initialization of the landscape patch structure is dealt with in Section 2.2 of the main text. The process for
initializing other model parameters is discussed in Section 4.3, P6 and P7.

D.6 Input data
The process for initializing the landscape structure by reading in an input file is discussed in Section 4.3, as
is the process for setting all the parameter values for the run.

D.7 Submodels
D.7.1 Landscape construction

This is handled by RAMpatch, as discussed in D3.1 above.

D.7.2 Resource extraction

This is handled by RAMval, as discussed in D3.2 above.

D.7.3 Next step computation

This is handled by algorithms (step selection rules/procedures) Rwp(t̂
swp , ĉnbhwp) and Rbp(t̂

swp , ĉnbhbp) provided
in Appendix A.3.

31

