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1. Comparison of annotations in the BioNLP ST

2009 training and development datasets with

ComplexTome annotations

To investigate whether currently available corpora can be used without reannotation
for the purposes of training a relation extraction system for our downstream task, we
binarized the event annotations from BioNLP ST 2009 training and development
datasets into relation annotations and filtered them to binding relations only using the
code available in this repository: https://github.com/spyysalo/binarize-events/. Then
we compare these with the annotated relations in ComplexTome using the
overlapping matching criterion, with the evaluation script available through the main
repository for this project:
https://github.com/farmeh/ComplexTome_extraction/blob/main/TrainRelationExtractio
nSystem/evalsorel.py

This comparison produced the following results for the overlapping set of documents
in the two corpora:

- 209 relations in common between the BioNLP ST 2009 sets and
ComplexTome

- 137 relations annotated only in ComplexTome
- 108 relations annotated only in BioNLP ST 2009 sets

In summary there is less than 50% overlap between the relation annotations of these
two datasets. This result can easily be explained by the different definition of binding
in the two sets, as well as differences in named entity annotation as discussed in the
Introduction section of our manuscript. This experiment shows that using the
annotations from this dataset for transfer learning would not have worked as
intended and showcases that reannotating the documents was the correct decision.
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2. Implementation of marking and masking

approach in the relation extraction system

Since a Complex_formation relation by definition is non-directional (i.e.,
R(e1,e2)=R(e2,e1)), an input document with N NEs includes
N!/((N−2)!×2) candidate entity pairs, and for each pair, the system has to
predict and assign a positive or a negative label. A typical document usually contains
more than two entities (i.e., there are more than one pair in a typical document),
therefore it is necessary to inform the classifier which two particular NEs constitute a
pair at-a-time for label prediction. For this aim, we transform the text by encoding the
entities in the input document, either using a marking approach or a masking
approach. We use language model’s “unused” tokens for this aim.

The marking approach:
In our marking approach, only the two focused entities (that constitute a pair
at-a-time) are marked, but the texts of other entities in the text remain untouched.
We use different “unused” tokens to mark the beginning and end of the focused
entities, based on their type (e.g., [unused1] and [unused2] tokens are used to
mark a Protein entity boundary, [unused3] and [unused4] are used to mark a
Chemical boundary, etc). Therefore, our marking approach not only denotes which
two entities constitute a pair for label detection, but it also denotes their type,
providing maximum information to the classifier.

Following is an example sentence with three Protein entities and a
Protein_Family entity and shows how the marking approach works. Note how
different “unused” tokens are utilized to denote entity boundaries based on entity
type.

Sentence:
“GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate

nuclear factor of activated T cell activation.”

Entities:
Protein entities = {“GrpL”, “Grb2-related adaptor protein”, “SLP-76”}
Protein_Family entities = {“nuclear factor of activated T cell”}

There are six candidate pairs in the sentence which are transformed differently
based on the focused entities:
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● “[unused1]GrpL[unused2], a [unused1]Grb2-related adaptor
protein[unused2], interacts with SLP-76 to regulate
nuclear factor of activated T cell activation.”

● “[unused1]GrpL[unused2], a Grb2-related adaptor protein,
interacts with [unused1]SLP-76[unused2] to regulate
nuclear factor of activated T cell activation.”

● “[unused1]GrpL[unused2], a Grb2-related adaptor protein,
interacts with SLP-76 to regulate [unused7]nuclear factor
of activated T cell[unused8] activation.”

● “GrpL, a [unused1]Grb2-related adaptor protein[unused2],
interacts with [unused1]SLP-76[unused2] to regulate
nuclear factor of activated T cell activation.”

● “GrpL, a [unused1]Grb2-related adaptor protein[unused2],
interacts with SLP-76 to regulate [unused7]nuclear factor
of activated T cell[unused8] activation.”

● “GrpL, a Grb2-related adaptor protein, interacts with
[unused1]SLP-76[unused2] to regulate [unused7]nuclear
factor of activated T cell[unused8] activation.”

The masking approach
In the masking approach, the texts of the two focused entities in the text are always
masked with [unused1] tokens, while all other entities in the text are masked with
[unused2] tokens. Therefore, not only we hide the texts of all entities, but we also
hide their types across the whole document. This is to ensure maximum
generalization on unseen texts as the neural network model has to rely on and learn
from non-entity words as context.

Following are the 6 transformations of the mentioned sentence, based on the
masking approach:

● “[unused1], a [unused1], interacts with [unused2] to
regulate [unused2] activation.”

● “[unused1], a [unused2], interacts with [unused1] to
regulate [unused2] activation.”

● “[unused1], a [unused2], interacts with [unused2] to
regulate [unused1] activation.”
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● “[unused2], a [unused1], interacts with [unused1] to
regulate [unused2] activation.”

● “[unused2], a [unused1], interacts with [unused2] to
regulate [unused1] activation.”

● “[unused2], a [unused2], interacts with [unused1] to
regulate [unused1] activation.”

A note on example generation:

For each candidate named-entity pair, after marking/masking the entities in the input
text, we tokenize the transformed text into its corresponding sub-tokens (based on
the vocabulary of a particular language model currently being used) and for each
pair, we calculate their distance in sub-tokens (including the added markers in case
of marking) and if they can fit into a window with a size smaller than or equal to the
specified MSL, we generate a machine learning example (a sequence of tokens as a
neural network input) for the pair.

We highlight that the same example generation method is used for positive/negative
examples (i.e., during the training), and for unlabeled examples (i.e., during the
prediction). Those longer examples not fitting into a window will be either discarded
(in the case of training or predicting the unlabeled examples in large-scale
prediction) or will be counted as False Negative (FN) predictions of the system (if
there is a Complex_formation relation between their entities, in case of
development/test set pairs).
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3. Relation extraction system details

3.1 System architecture and the transformer-based models
For building the relation extraction system, we follow the mainstream and common
approach of fine-tuning a pre-trained transformer-based model on the ComplexTome
training set for binary relation extraction. Therefore, the relation extraction system is
based on deep neural networks and its architecture is composed of one pre-trained
transformer encoder, followed by a decision layer with a softmax activation function,
for binary classification.

The current state-of-the-art text mining methods in the biomedical domain utilize
models based on the transformer architecture [1], and for that reason, we have also
focused our efforts on these. In particular, recent studies have shown that the
RoBERTa-large-PM-M3-Voc model [2] has resulted in the highest performance
scores in several biomedical text mining tasks. For example, in the Drug-Protein
relation extraction task of the BioCreative VII challenge [3], the winning team
obtained an F1 score of 79.73% on the hidden test set using this model and
achieved the first rank out of 107 submitted runs in the official evaluation [4]. In a
similar study, Luoma et al. (2023) have developed a transformer-based system for
biomedical Named-Entity Recognition (NER) and compared three language models
that are specifically pre-trained for the biomedical domain
(RoBERTa-large-PM-M3-Voc, BioBERT-large, cased [6], and BioMegatron 345M
Bio-vocab-50k [7]), and they have shown that the RoBERTa-large-PM-M3-Voc model
outperforms the rest [5].

Since we are using the Hugging Face transformers library, it enables us to
seamlessly plug and try different pre-trained transformer models (available in the
model repository) into the neural network architecture and fine-tune it on the
ComplexTome training set (for details on example generation and how texts of
candidate named-entity pairs are fed to the neural network model, see Section 2).
When doing so, we make sure to do a full grid search to find the optimal values of
hyper-parameters (including the learning rate, number of training epochs, mini-batch
size, and max sequence length), and to deal with the effect of initial random weights
in the architecture on the performance metric (as measured on the development set),
for each unique set of hyper-parameter values, we repeat each experiment for 4
times (training the network with the same hyper-parameters but with different initial
random weights), and take the average and standard deviation of the resulting
f1-scores.

We highlight that one round of grid search (and running 4 experiments per
hyper-parameter set) on the GPU-cluster machine available to us takes
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approximately one week to complete (varying based on the jobs already submitted to
the queue by other research groups), therefore, we could not afford to try all
transformer-based models that are pre-trained for the biomedical domain, and chose
to focus on the two most promising ones, BioBERT-large and
RoBERTa-large-PM-M3-Voc, based on the recent publications in the literature.
These two models are tried for building the final system. However, initial experiments
showed that RoBERTa-large-PM-M3-Voc outperforms the BioBERT-large model,
therefore, it was used for building the final system. For the quick comparison of
different training schemes (see here), we used the BioBERT-base model [6], since it
is a smaller (yet very capable model), requiring much less training time. Finally, for
the baseline system we used BERT-base-cased model [9].

3.1.1 RoBERTa and BERT architecture
The RoBERTa-large-PM-M3-Voc model is based on RoBERTa (Robustly Optimized
BERT Approach) architecture [8], and it is trained on PubMed abstracts, PubMed
Central full-text articles, the Medical Information Mart for Intensive Care, third update
(MIMIC-III) texts, and other biomedical texts [2].

Both BERT and RoBERTa architectures are based on the Transformer architecture
[1], using a multi-layer bidirectional Transformer encoder. The original Transformer
model includes two main blocks: an encoder block and a decoder block. However,
BERT and RoBERTa models are encoder-only models, meaning they only contain
the encoder part (and not the decoder part), with a classifier added on top. The
classifier predicts the masked tokens in the input (i.e. masked language modeling
(MLM) task) and/or whether a second sentence precedes the first one or not (i.e.
Next Sentence Prediction (NSP) task). Once pre-training a BERT or RoBERTa model
is finished, it can be fine-tuned for different downstream tasks (e.g. relation
extraction, question answering, NER, etc) with real training data, and in a supervised
manner. Supplementary Figure 1 shows the general scheme for pre-training and
fine-tuning a BERT model.
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Supplementary Figure 1: Pre-training and fine-tuning a BERT model. The [CLS] token is
a special token in the vocabulary and used to denote the start of a sequence (e.g. a
sentence), and the [SEP] is a special separator token (e.g. separating questions/answers).
Figure from Devlin et al. (2017).

In principle, RoBERTa models are very similar to the original BERT architecture [9]
(both using the encoder block of the Transformer model [1]), but they utilize a few
modifications in pre-training and architecture, which leads to improved performance.
Here are the key differences between the two models:

1. The original BERT is pre-trained with two tasks: masked language modeling
(MLM) and Next Sentence Prediction (NSP), whereas RoBERTA models are
only trained with the MLM task because the authors have shown it results in
better performance.

2. The original BERT was trained using static masking (which masks the same
tokens at every epoch of pre-training), but RoBERTA models utilize dynamic
masking, i.e. randomly masking different tokens at different points during
pre-training, encouraging the model to learn more robust and generalizable
representations of language by forcing it to predict missing tokens in a variety
of different contexts.

3. RoBERTa models generally use byte-pair encoding (BPE) (a sub-word
tokenization method that helps to handle rare and out-of-vocabulary words
more effectively) with relatively larger vocabulary sizes in contrast to the
original BERT model (that uses WordPiece sub-word tokenization with usually
lower vocabulary size), resulting in better pre-trained models.

The aforementioned items are the main differences between RoBERTa and BERT
models. However, in practice, other items (such as pre-training on longer texts, or
pre-training with higher number of epochs) can be utilized when making a BERT or a
RoBERTa model to achieve better models and higher performance on downstream
tasks.

3.1.2 Transformer architecture and key concepts
As discussed before, the Transformer model includes two main blocks: an encoder
block and a decoder block [1]. Here we briefly discuss the two blocks in the
architecture.

In principle, the encoder maps an input sequence of symbol representations (x1, ...,
xn) (i.e. sub-tokens) to a sequence of continuous representations z = (z1, ..., zn).
Given z, the decoder then generates an output sequence (y1, ..., ym) of symbols,
one element at a time. At each step the model is auto-regressive, consuming the
previously generated symbols as additional input when generating the next. The
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Transformer follows this overall architecture using stacked self-attention and
point-wise, fully connected layers for both the encoder and decoder (see
Supplementary Figure 2).

Supplementary Figure 2: Transformer model architecture. The left side shows the
encoder block and the right side shows the decoder block. Each block is composed of N
identical stacked layers. Figure adapted from Vaswani et al. (2017).

Encoder block: The encoder is composed of a stack of N identical layers. Each
layer has two sub-layers. The first is a multi-head self-attention mechanism, and
the second is a simple, position-wise fully connected feed-forward network. There is
also a residual connection around each of the two sub-layers, followed by layer
normalization. That is, the output of each sub-layer is LayerNorm(x + Sublayer(x)),
where Sublayer(x) is the function implemented by the sub-layer itself. To facilitate
these residual connections, all sub-layers in the model, as well as the embedding
layers, produce the same outputs of dimension dmodel. In both
RoBERTa-large-PM-M3-Voc and BioBERT-large models that we have used, N=24.

Decoder block: The decoder is also composed of a stack of N identical layers. In
addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder
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stack. Similar to the encoder, there are residual connections around each of the
sub-layers, followed by layer normalization. The self-attention sub-layer in the
decoder stack is also modified to prevent positions from attending to subsequent
positions.

Attention mechanism in the encoder/Decoder:

Supplementary Figure 3: (left) Scaled Dot-Product Attention. (right) Multi-Head
Attention consists of several attention layers running in parallel. Figure adapted from
Vaswani et al. (2017).

Each layer in the encoder and decoder is based on using the multi-head attention
mechanism. An attention function can be described as the mapping of a query (Q)
and a set of key-value pairs (K, V) to an output, where the query, keys, values, and
output are all vectors. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility function of
the query with the corresponding key.

- Scaled Dot-Product Attention (Supplementary Figure 3): The particular
attention mechanism implemented in the architecture is called "Scaled
Dot-Product Attention" (see Supplementary Figure 3). The input consists of
queries and keys of dimension dk, and values of dimension dv. Attention is
calculated based on the following equation:

- Multi-Head Attention (Supplementary Figure 3): Instead of using a single
attention function, the architecture uses multiple attention functions, and they
are aggregated based on the following equation:
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Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions. With a single attention head,
averaging inhibits this. Finally, we would like to refer the reader to The Illustrated
Transformer web page, for further reading about the inner workings of the
transformer architecture.

3.2 List of transformer models and hyper-parameters used for
building the relation extraction system

Models BERT-base-cased (download)(paper): used in the
baseline system

BioBERT-base (download) (paper): used for quick
comparison of different training schemes.

BioBERT-large (download) (paper): used for building
the relation extraction system. This is a large model with
24 hidden layers in the transformer encoder.

RoBERTa-large-PM-M3-Voc (download) (paper): used
for building the relation extraction system. This is a large
model with 24 hidden layers in the transformer encoder.

Max sequence length 128, 144, 160, 176, 192

Learning rate 2e-06, 3e-06, 4e-06, 5e-06

Mini-batch size ● 5 (for the large models and BERT-base-cased in
the baseline system)

● 16 (for BERT-base-cased and BioBert-base
model)

Number of epochs 6,7,8,9,10,11,12
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We used the BERT-base-cased model for the baseline system, and BioBERT-base
model for quick comparison of different training schemes (see here). For building the
final system we tested BioBERT-large and RoBERTa-large-PM-M3-Voc models since
these two models have recently achieved state-of-the-art on various tasks. Initial
experiments showed that RoBERTa-large-PM-M3-Voc outperforms the
BioBERT-large model, therefore, it was used for building the final system.
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4. Different training schemes and evaluation

results

The corpus contains four named-entity types (Protein, Chemical, Complex,
Protein_Family/Family) and Complex_formation relationships can occur
between any two entities mentioned in the text. For the real-world application for
which the model was intended to be used (i.e., extracting Protein-Protein
interactions for the STRING database v12), the system has to deal with texts
including only Protein entities. Hence, to have a realistic optimization method for
large-scale prediction, we filter out all non-Protein entities and all Protein entities
with the "blocklisted" attribute (and their relations) from the development and the
test sets. In order to remove the Protein entities with the “blocklisted” attribute,
we first convert them into a new entity type (Protein_BL) to allow for their easy
removal when necessary.

We performed experiments with five different training schemes detailed below.
Supplementary Table 1 shows an overview of each training scheme along with the
highest f1-score achieved on the development set.

We used the BioBert-base model for all of the above training schemes (since it is a
relatively small language model, thus requiring less computational resources, and we
can get the results faster). For each training scheme, we run a full grid search to find
the optimal values of hyper-parameters. For each hyper-parameter set, we repeat
each experiment four times and calculate the average and standard deviation of the
f1-score. Finally, we find and report the best obtained f1-score average and standard
deviation. Following is the explanation of each approach.

Training scheme 1-A: In this approach, we use all available training data (2489
annotated Complex_formation relations among all entity types), and use the
marking approach to denote the candidate entities in the input texts and their types.
As Table1 shows, this approach yields the highest f1-score with an average of
81.10%and 0.2915 standard deviation.

Training scheme 1-B: This approach is similar to 1-A, however, instead of marking
the candidate entities, we mask all entity texts and their types, resulting in an
average f1-score of 80.20%.

Training scheme 2: In this approach, we filter out all (i.e., delete) annotations for
non-Protein entities and any annotated Complex_formation between them from
the training set, and use the masking approach to hide all remaining entities and
their types. This approach results in the minimum number of training examples
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(1961), but is the most similar set to the reduced development set, i.e., the set that
only contains Protein entities and interactions among them. This approach
resulted in 79.28% average f1-score with 0.36 standard deviation. Please note that
annotations for Protein_BL, Complex, Chemical and Family entities are
deleted from the training .ann files, hence their texts are not masked in the
experiment, and constitute part of the contexts if they appear in the window of
Protein-Protein training examples.

Training scheme 3: In this approach, we only use entities of types Protein,
Complex and Protein_BL (by converting the type of all Complex and
Protein_BL entities to Protein), and then use the masking approach to mask the
texts of all entities and their types (similar to Training scheme 1-B). As a result,
Family and Chemical entities in context are retained, but no training examples for
candidate pairs that either one or both of the entities are Family or Chemical are
generated. The reasoning behind this training scheme is that in the scientific
literature people tend to discuss Complex and Protein_BL entities in a similar
manner as Protein entities, so there could be a benefit from using all of them while
training, since this allows for a higher support for Complex_formation
relationships (2117).

Training scheme 4: This approach is very similar to Training scheme 3, in the sense
that only entities of types Protein, Complex and Protein_BL are masked and
used to generate examples. The difference in this case is that annotations for
Family and Chemical entities are completely removed and thus the text of these
entities now constitutes part of the contexts if it appears within the window of a
training example. This experiment was done to explore whether the text of Family
and/or Chemical entities is important for the model towards predicting a
Complex_formation relationship between two entities.

Out of all four schemes we have chosen to use training scheme 1-B for our relation
extraction model training. There are two main reasons for this choice. Firstly, in
comparison to training schemes 2,3 and 4, where masking is used as an encoding
type, there is no statistically significant difference to the results obtained on the
development set and the fact that we have the maximum amount of training data and
maximum masking in this case, means that this is the most generalizable approach,
out of these 4. When it comes to comparing with training scheme 1-A, the only
difference is the approach used for encoding types between the two experiments.
Again the difference is not statistically significant (i.e. the difference of the mean
F-scores is within ±3std) and the masking approach is more generalizable to the
open-world scenario, thus we have chosen training scheme 1-B for all subsequent
experiments.
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Supplementary Table 1: Evaluation of different training schemes on the development set jkjlkjlkjTabaflkjlkjTabakjshT

Exp# Encoding
type

Training pairs
(Positive/Negatives)

Masked
entities

Not masked
entities

Removed
annotations Comments Highest

mean(F1) std(F1) Positive
pairs

1-A Marking

Pair = (e1, e2)
e1, e2 ∈ {Protein,

Protein_BL,
Complex, Chemical,

Family}

Protein,
Protein_BL,
Complex,
Chemical,
Family

Maximum training data
No masking 81.10 0.29 2489

1-B Masking

Pair = (e1, e2)
e1, e2 ∈ {Protein,

Protein_BL,
Complex, Chemical,

Family}

Protein,
Protein_BL,
Complex,
Chemical,
Family

Maximum training data
Maximum masking 80.20 0.60 2489

2 Masking
Pair = (Protein,

Protein)
Protein

Protein_BL,
Complex,
Chemical,
Family

Minimum training data
Minimum masking

similar to filtered dev set
79.28 0.36 1961

3 Masking

Pair = (e1, e2)
e1, e2 ∈ {Protein,

Protein_BL,
Complex}

Protein,
Protein_BL,
Complex,
Chemical,
Family

More training data
compared to Experiment 2

Maximum masking
80.05 0.84 2117

4 Masking

Pair=(e1, e2)
e1, e2 ∈ {Protein,

Protein_BL,
Complex}

Protein,
Protein_BL,
Complex,

Chemical,
Family

More training data
compared to Experiment 2
Less masking compared

to Experiment 3

80.18 0.44 2117
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5. Trigger Detection Methods

A. LIG-based trigger detection method
Our best relation extraction model was obtained by fine-tuning a pre-trained
RoBERTa model (RoBERTa-large-PM-M3-Voc) on the relation extraction training set.
We mainly focus on the outputs of the embedding layer and the outputs of the 24
hidden RoBERTa layers in this model. For each pair in the trigger development set,
we feed the corresponding tokens as input to the model, and by applying the LIG
method for all mentioned layers, we obtain 25 one-dimensional vectors, each
representing the importance scores for the input tokens based on the outputs of a
particular layer. By stacking the layers vertically, one can create a heatmap (rows
denoting the layers, and columns denoting the tokens) and try to choose a layer (row
in the heatmap) in which, the token with the highest score, is actually the trigger of
the pair we are aiming to recognize.
The best layer might vary across different examples, thus we need a systematic
approach for choosing the layer which yields the highest evaluation score when all
predictions (i.e., predicted triggers for all positive pairs) are checked against the
gold-standard (the annotated triggers in the trigger development set).

B. SHAP-based trigger detection method
Similarly to the LIG method, SHAP also yields a vector for the input tokens. For each
pair, we simply feed the corresponding tokens as input to the model and apply the
SHAP method, and then choose the token(s) with the highest score as the trigger(s).
By repeating the process for all positive pairs, we obtain a prediction set which is
then evaluated against the gold-standard. As an additional experiment, we try
feeding the inputs with and without the [CLS] and [SEP] tokens, as initial
experiments showed that the approaches produce slightly different results which
demand further evaluation.

For both LIG and SHAP -based methods, we use the following approach: after
obtaining a corresponding vector for a pair, we first discard the first and the last
element of the vector (scores for the [CLS] and [SEP] tokens). Then we discard all
“unused” tokens (which represent the entities) from the vector and then we choose
the token(s) with the highest scores as the trigger(s) for that particular pair. By
repeating the process for all positive pairs and for all layers, we obtain 25 LIG-based
prediction sets (each based on choosing a particular layer as the best layer), and two
SHAP-based prediction sets (with and without [CLS] and [SEP] tokens) and then we
compare the prediction sets against the gold-standard and calculate evaluation
scores.
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C. Post-processing heuristic rules
Initial experiments showed that none of the two methods yield great evaluation
scores, because sometimes tokens that are not actual triggers get the highest
scores. To improve the results, we implemented the following post-processing
heuristics. After a vector is calculated, and before selecting the token(s) with the
highest score, we search all tokens in the vector and discard any token if one of the
following rules applies:

● If the token is fully composed of white space(s) or punctuation mark(s) not
found in the development set triggers (“-”, “.”,”/” punctuation marks are
actually valid triggers in the trigger development set).

● If \n or \t character is found inside the token text.
● If the token is a “.” character and it is the first or the last token in the sequence

(after removing [CLS] and [SEP] tokens)
● If the token is “.'' character, is located in the middle of the snippet, and it is not

in the “[unused1].[unused1]” pattern.
● If the token belongs to a list of closed class words, such as pronouns,

prepositions, conjugations, etc. The complete list of closed class words used
is given in Supplementary Material Section 4E.

The aforementioned rules are obtained by inspecting the heatmaps and SHAP
outputs for the (positive) pairs in the trigger development set. Finally, it is worth
mentioning that our method can provide multiple disjoint trigger spans for a
Complex_formation relationship, since we are finding the token(s) in a vector with
the maximum score (i.e., if there are multiple tokens with the same highest score,
they will all be returned as recognized triggers).
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D. An example output for LIG and SHAP methods
The following shows the outputs of SHAP and part of the heatmap obtained by running layer integrated gradients with Captum.
Please note that the two candidate named-entities are replaced with [unused1] tokens.

SHAP output:

As SHAP result shows, the highest scores belong to ‘-’, [unused1] and ‘complex’ tokens. This is logical, as removing [unused1]
tokens from the input should change the prediction outcome, i.e., the positive label (Complex_formation). This is the reason why we
remove [unused1] tokens from the output of SHAP and LIG methods before finding the token with the highest score.

The following is a part of the heatmap, obtained by running the LIG algorithm on the same sentence. As we notice, there are a lot of
high hits around the [unused1] tokens, as well as the ‘-’ token and ‘Complex’ token. As we notice, lower layers in the network
(closer to the input), have higher numbers for the ‘-’ and ‘complex’ tokens, but higher layers (closer to the output), have higher
scores for the [unused1] tokens. Also note that the numbers for each row do not sum up to 100.
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E. Closed class words in trigger word detection

CCWords = {'&', "'cause", "'n", "'n'", "'til", 'I', 'a', 'aboard', 'about',
'above', 'across', 'after', 'against', 'ago','albeit', 'all', 'along',
'alongside', 'although', 'always', 'am', 'amid', 'among', 'amongst', 'an',
'and', 'any', 'anybody', 'anyhow', 'anyone', 'anything', 'anytime',
'anyway', 'anywhere', 'are', 'around', 'as', 'astride', 'at','atop', 'be',
'because', 'been', 'before', 'behind', 'being', 'below', 'beneath',
'beside', 'besides', 'between','beyond', 'billion', 'billionth', 'both',
'but', 'by', 'can', 'cannot', 'could', 'de', 'despite', 'did', 'do','does',
'doing', 'done', 'down', 'during', 'each', 'eight', 'eighteen',
'eighteenth', 'eighth', 'eightieth', 'eighty','either', 'eleven',
'eleventh', 'en', 'enough', 'et', 'every', 'everybody', 'everyone',
'everything', 'everywhere','except', 'few', 'fewer', 'fifteen',
'fifteenth', 'fifth', 'fiftieth', 'fifty', 'first', 'five', 'for',
'fortieth','forty', 'four', 'fourteen', 'fourteenth', 'fourth', 'from',
'had', 'has', 'have', 'having', 'he', 'her', 'here', 'hers', 'herself',
'him', 'himself', 'his', 'how', 'hundred', 'hundredth', 'if', 'in',
'inside', 'into', 'is','it', 'its', 'itself', 'least', 'less', 'lest',
'like', 'little', 'many', 'may', 'me', 'might', 'million', 'millionth',
'mine', 'minus', 'more', 'most', 'much', 'must', 'my', 'myself', 'near',
'neither', 'never', 'next', 'nine', 'nineteen', 'nineteenth', 'ninetieth',
'ninety', 'ninth', 'no', 'nobody', 'none', 'nor', 'not', 'nothing',
'notwithstanding', 'now', 'nowhere', 'of', 'off', 'on', 'one', 'oneself',
'onto', 'opposite', 'or', 'our', 'ours', 'ourselves', 'out', 'outside',
'over', 'par', 'past', 'per', 'plus', 'post', 'second', 'seven',
'seventeen', 'seventeenth', 'seventh', 'seventieth', 'seventy', 'shall',
'she', 'should', 'since', 'six', 'sixteen', 'sixteenth', 'sixth',
'sixtieth', 'sixty', 'so', 'some', 'somebody', 'somehow', 'someone',
'something', 'sometime', 'somewhere', 'ten', 'tenth', 'than', 'that',
'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', 'these',
'they', 'third', 'thirteen', 'thirteenth', 'thirtieth', 'thirty', 'this',
'those', 'though', 'thousand', 'thousandth', 'three', 'through',
'throughout', 'till', 'times', 'to', 'too', 'toward', 'towards', 'twelfth',
'twelve', 'twentieth', 'twenty', 'two', 'under', 'underneath', 'unless',
'unlike', 'until', 'unto', 'up', 'upon', 'us', 'v.', 'versus', 'via',
'vs.', 'was', 'we', 'were', 'what', 'when', 'where', 'whereas', 'whether',
'which', 'while', 'who', 'whom', 'whose', 'why', 'will', 'willing', 'with',
'within', 'without', 'worth', 'would', 'yes', 'yet', 'you', 'your',
'yours', 'yourself', 'yourselves', 'zero'}
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6. Distribution of entities and relations in the

ComplexTome corpus

The distribution of number of entities in the ComplexTome corpus. Most of the
documents have between 5 and 40 entities in total, corresponding to all NE types we have
annotated in ComplexTome (i.e. Protein, Complex, Family and Chemical).

The distribution of the number of relations in the ComplexTome corpus. This
distribution is heavily skewed to the left with the vast majority of the documents in
ComplexTome having no relation annotations, while for those that have annotations only a
few have more than 7 relations in the same document.
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7. Table with results of relation extraction error

analysis results for the best model on the test set

Screenshots of the errors from BRAT are available via the associated Zenodo project. You
can find a link to the Zenodo project in the paper. If you wish to setup a BRAT server to view
the errors yourself, please follow the instructions provided through the annotation
documentation https://katnastou.github.io/annodoc-physical-protein-interaction-corpus/.
FN: False Negative, FP: False Positive

PubMed ID Relationship ID Entity 1 Entity 2 FP/FN Error Type

8407894 R5 T6 T10 FP ambiguous keyword

8407894 R7 T7 T10 FP ambiguous keyword

8407894 R9 T8 T10 FP ambiguous keyword

8407894 R11 T9 T10 FP ambiguous keyword

8505295 R7 T9 T10 FP ambiguous keyword

8505295 R8 T9 T11 FP ambiguous keyword

8505295 R9 T9 T26 FP ambiguous keyword

8505295 R10 T9 T27 FP ambiguous keyword

9195882 R3 T3 T26 FP ambiguous keyword

9367446 R1 T19 T6 FP ambiguous keyword

9367446 R2 T20 T6 FP ambiguous keyword

16908542 R12 T18 T19 FP ambiguous keyword

19276361 R8 T21 T22 FP ambiguous keyword

29283431 R4 T8 T9 FP ambiguous keyword

20797779_6 R1 T8 T5 FP ambiguous keyword

22958824_7 R2 T8 T9 FP ambiguous keyword

26651479_12 R3 T1 T2 FP ambiguous keyword

28515143_17 R3 T19 T20 FP ambiguous keyword

8407894 R2 T6 T7 FN ambiguous keyword

8407894 R3 T7 T8 FN ambiguous keyword

8407894 R4 T8 T9 FN ambiguous keyword

8407894 R5 T6 T8 FN ambiguous keyword

8407894 R6 T6 T9 FN ambiguous keyword

8407894 R7 T7 T9 FN ambiguous keyword

8407894 R13 T18 T19 FN ambiguous keyword

9115214 R3 T4 T3 FN ambiguous keyword

9115214 R4 T1 T2 FN ambiguous keyword

9195882 R5 T27 T6 FN ambiguous keyword

9506992 R2 T10 T11 FN ambiguous keyword
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PubMed ID Relationship ID Entity 1 Entity 2 FP/FN Error Type

10433269 R13 T5 T4 FN ambiguous keyword

21236256 R4 T3 T4 FN ambiguous keyword

21554248 R19 T21 T22 FN ambiguous keyword

21554248 R23 T20 T22 FN ambiguous keyword

22355353 R2 T3 T11 FN ambiguous keyword

25602519 R7 T18 T19 FN ambiguous keyword

27751725 R5 T32 T10 FN ambiguous keyword

27751725 R6 T31 T10 FN ambiguous keyword

27751725 R7 T30 T10 FN ambiguous keyword

27751725 R8 T29 T10 FN ambiguous keyword

29666278 R19 T10 T28 FN ambiguous keyword

22086907_3 R1 T5 T4 FN ambiguous keyword

23499533_3 R1 T3 T6 FN ambiguous keyword

28515143_17 R3 T12 T13 FN ambiguous keyword

9348293_33 R20 T33 T34 FN ambiguous keyword

11416152 R14 T51 T22 FP annotation error

11416152 R15 T24 T53 FP annotation error

12151385 R9 T13 T18 FP annotation error

16908542 R11 T13 T29 FP annotation error

17194709 R7 T7 T25 FP annotation error

17194709 R8 T24 T25 FP annotation error

20463880 R1 T10 T13 FP annotation error

20463880 R2 T11 T13 FP annotation error

20463880 R3 T12 T13 FP annotation error

24498436 R14 T27 T11 FP annotation error

25938661_25 R1 T6 T7 FP annotation error

11874917 R3 T12 T14 FN annotation error

11897782 R6 T5 T6 FN annotation error

11897782 R11 T10 T12 FN annotation error

11897782 R12 T11 T12 FN annotation error

16738327 R3 T7 T8 FN annotation error

16912044 R5 T23 T4 FN annotation error

16912044 R9 T26 T9 FN annotation error

16912044 R10 T9 T10 FN annotation error

14562105 R5 T30 T17 FP co-reference resolution

16177062 R13 T18 T21 FP co-reference resolution
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PubMed ID Relationship ID Entity 1 Entity 2 FP/FN Error Type

16177062 R14 T18 T42 FP co-reference resolution

16209941 R24 T32 T5 FP co-reference resolution

16209941 R26 T32 T6 FP co-reference resolution

16209941 R28 T32 T7 FP co-reference resolution

16209941 R30 T32 T8 FP co-reference resolution

16260776 R1 T5 T6 FP co-reference resolution

16260776 R2 T5 T7 FP co-reference resolution

20406818 R8 T25 T27 FP co-reference resolution

23022657_23 R2 T6 T8 FP co-reference resolution

10446169 R12 T12 T13 FN co-reference resolution

15485920 R6 T19 T20 FN co-reference resolution

15485920 R9 T24 T25 FN co-reference resolution

16177062 R16 T21 T42 FN co-reference resolution

16908542 R1 T5 T6 FN co-reference resolution

16908542 R3 T1 T2 FN co-reference resolution

16908542 R4 T1 T3 FN co-reference resolution

20406818 R6 T26 T27 FN co-reference resolution

23022657_23 R1 T9 T8 FN co-reference resolution

1719979 R1 T6 T7 FP convoluted text excerpt

1719979 R2 T6 T8 FP convoluted text excerpt

9858532 R8 T11 T12 FP convoluted text excerpt

15449939 R6 T18 T19 FP convoluted text excerpt

17435760 R1 T2 T3 FP convoluted text excerpt

18317453 R3 T3 T4 FP convoluted text excerpt

24498436 R15 T13 T29 FP convoluted text excerpt

25569479_19 R1 T12 T13 FP convoluted text excerpt

9195882 R4 T27 T28 FP convoluted text excerpt

10585430 R6 T31 T26 FP convoluted text excerpt

11416152 R10 T10 T38 FP convoluted text excerpt

11416152 R11 T41 T15 FP convoluted text excerpt

11416152 R12 T42 T16 FP convoluted text excerpt

11416152 R13 T20 T50 FP convoluted text excerpt

12135708 R7 T18 T19 FP convoluted text excerpt

11520069 R2 T13 T3 FN convoluted text excerpt

11520069 R4 T14 T3 FN convoluted text excerpt

11520069 R5 T15 T3 FN convoluted text excerpt
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PubMed ID Relationship ID Entity 1 Entity 2 FP/FN Error Type

11520069 R6 T14 T4 FN convoluted text excerpt

11520069 R7 T15 T4 FN convoluted text excerpt

11520069 R8 T13 T4 FN convoluted text excerpt

11867544 R2 T19 T5 FN convoluted text excerpt

12151385 R14 T21 T34 FN convoluted text excerpt

12151385 R15 T21 T22 FN convoluted text excerpt

14670962 R4 T21 T9 FN convoluted text excerpt

15449939 R11 T16 T15 FN convoluted text excerpt

16209941 R17 T42 T18 FN convoluted text excerpt

16209941 R18 T42 T19 FN convoluted text excerpt

19228687 R1 T1 T2 FN convoluted text excerpt

19228687 R2 T4 T3 FN convoluted text excerpt

21236256 R15 T11 T12 FN convoluted text excerpt

21807881 R2 T3 T2 FN convoluted text excerpt

21827752 R5 T12 T5 FN convoluted text excerpt

9348293_33 R11 T17 T18 FN convoluted text excerpt

9348293_33 R12 T16 T18 FN convoluted text excerpt

9348293_33 R17 T27 T28 FN convoluted text excerpt

7524088 R2 T4 T6 FN convoluted text excerpt

8505295 R9 T14 T16 FN convoluted text excerpt

8505295 R10 T17 T16 FN convoluted text excerpt

10770935 R2 T3 T7 FN convoluted text excerpt

21347367 R5 T6 T15 FN convoluted text excerpt

8521815 R4 T8 T27 FN convoluted text excerpt

10446169 R11 T21 T11 FN convoluted text excerpt

11416152 R10 T13 T40 FN convoluted text excerpt

11416152 R14 T43 T16 FN convoluted text excerpt

11416152 R15 T43 T44 FN convoluted text excerpt

11521196 R1 T15 T14 FN convoluted text excerpt

11521196 R2 T15 T12 FN convoluted text excerpt

12151385 R8 T17 T15 FN convoluted text excerpt

17572495 R10 T22 T20 FN convoluted text excerpt

21554248 R9 T11 T9 FN convoluted text excerpt

21554248 R10 T11 T35 FN convoluted text excerpt

23533635 R4 T28 T6 FN convoluted text excerpt

23533635 R8 T28 T8 FN convoluted text excerpt
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PubMed ID Relationship ID Entity 1 Entity 2 FP/FN Error Type

8505295 R11 T22 T23 FP rare keyword

14562105 R4 T26 T8 FP rare keyword

15223 R1 T1 T2 FN rare keyword

2002555 R2 T5 T4 FN rare keyword

10666337 R6 T13 T6 FN rare keyword

11520069 R13 T18 T8 FN rare keyword

11520069 R14 T18 T7 FN rare keyword

11713274 R5 T27 T28 FN rare keyword

11897782 R3 T1 T3 FN rare keyword

16209941 R22 T44 T23 FN rare keyword

16717095 R13 T27 T9 FN rare keyword

16717095 R14 T27 T8 FN rare keyword

16908542 R13 T14 T30 FN rare keyword

16908542 R14 T15 T30 FN rare keyword

16912044 R11 T9 T11 FN rare keyword

17194709 R13 T21 T5 FN rare keyword

17194709 R14 T21 T22 FN rare keyword

18628300 R3 T9 T12 FN rare keyword

19276361 R5 T2 T32 FN rare keyword

20129058 R8 T1 T2 FN rare keyword

20129058 R10 T12 T13 FN rare keyword

20129058 R11 T14 T15 FN rare keyword

23533635 R11 T26 T11 FN rare keyword

25602519 R3 T15 T16 FN rare keyword

27120157 R29 T22 T23 FN rare keyword
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8. Table with results of trigger word detection

error analysis results for the best model on the test

set

Screenshots of the errors from BRAT are available via the associated Zenodo project. You
can find a link to the Zenodo project in the paper. If you wish to setup a BRAT server to view
the errors yourself, please follow the instructions provided through the annotation
documentation https://katnastou.github.io/annodoc-physical-protein-interaction-corpus/.
The first part of the results is the PMID of the document (e.g. 10080948) followed by the two
entities (e.g. T13 & T14 for the 2nd cell in the first column) for which the trigger words
annotations have been made in the provided text snippet. *4 examples (Table B) are counted
as TP due to acceptable alternative annotations detected by the annotator and thus only 17
are counted as FP+FN
FN: False Negative, FP: False Positive

A) Correct trigger word detected in documents with multiple triggers (TP) (Total count: 63)

PMID_EID1_EID2 detected not detected

10080948_T13_T14 - interaction

10096561_T28_T29 - interactions

10229231_T11_T12 / interaction

10229231_T3_T4 / interaction

10229231_T3_T5 / interaction

10395652_T18_T8 complex recruited

10395652_T19_T8 complex recruited

10395652_T5_T6 associates complex

10704443_5_T2_T3 complex comprises

10704443_5_T2_T4 complex comprises

10704443_5_T2_T5 complex comprises

10704443_5_T3_T4 complex comprises

10704443_5_T3_T5 complex comprises

10704443_5_T4_T5 complex comprises

12024017_T13_T2 / complex

12024017_T21_T10 / complex

12897057_T11_T12 complex /

12897057_T14_T15 / complex

12897057_T18_T19 / complex

15225555_T12_T13 targets yeast two-hybrid
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15225555_T12_T14 targets yeast two-hybrid

1700011_T5_T6 / heterodimers

1700011_T7_T8 / heterodimers

1763325_T6_T7 - complex

19141288_18_T1_T2 complex /

19141288_18_T7_T8 complex /

19141288_18_T20_T21 saturation Kd

19656901_T38_T8 - associations

19656901_T7_T37 - associations

20541251_2_T7_T12 interaction -

21685921_32_T23_T1 - complexes

21685921_32_T24_T3 - complexes

22210188_T14_T5 partner yeast two-hybrid

22210188_T14_T6 partner yeast two-hybrid

22210188_T4_T5 partner yeast two-hybrid

22210188_T4_T6 partner yeast two-hybrid

22210188_T7_T8 interaction immunoprecipitation

22675546_10_T11_T2 coimmunoprecipitated complex

22675546_10_T14_T4 complex -

22675546_10_T1_T2 coimmunoprecipitated complex

22675546_10_T9_T2 coimmunoprecipitated complex

24465968_22_T8_T9 - complex

24498054_T19_T1 / complex

24498054_T22_T6 / complex

26996158_T15_T16 - complex

27044741_T33_T25 - complex

7492771_T11_T12 / heterodimers

7492771_T15_T16 / heterodimers

7492771_T5_T6 / heterodimers

7537762_T10_T11 binding ligand

8098618_T18_T19 - heterodimer

8098618_T21_T22 - heterodimer

8626752_T1_T2 association complexes

8626752_T1_T3 association complexes
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8626752_T6_T7 - heterocomplexes

9512491_T17_T18 - complex

9512491_T17_T19 -
-

complex

9512491_T18_T19 - complex

9512491_T7_T17 - complex

9512491_T7_T18 -
-

complex

9512491_T7_T19 -
-

complex

9733846_T11_T12 - interaction

9733846_T15_T16 - interaction

B) Word detected not a trigger (FP+FN) (Total count: 21)

PMID_EID1_EID2 detected not detected

12093729_T4_T41 MP
in

complex

12093729_T6_T41 MP
in

complex

1700011_T3_T4 together heterodimeric

17452446_T4_T16 forms complex

17452446_T4_T17 forms complex

17452446_T4_T5 forms complex

17452446_T4_T6 forms complex

17452446_T8_T9 components complex

19150429_T1_T2 - interacting

19217404_T18_T19 form hexameric

19217404_T18_T21 form hexameric

19217404_T19_T21 form hexameric

20541251_2_T10_T6* target
bind

complex

20541251_2_T17_T1 binding recruitment

20541251_2_T8_T6* target
bind

complex

22904036_T10_T13 including interacted

22904036_T11_T13 including interacted

22904036_T3_T4 including interacting partners

22904036_T3_T5 including interacting partners
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8626752_T12_T13* - complex

9751051_T1_T2* complex bound

C) No trigger word detected in documents with one trigger word (FN) (Total count: 34)

30

PMID_EID1_EID2 not detected

15314162_T9_T10 binding

17452446_T11_T1 interaction

17452446_T11_T12 interaction

17452446_T12_T1 interaction

19150429_T6_T8 interacts

19217404_T22_T26 receive

19414608_38_T7_T8 interaction

20541251_2_T11_T15 recruitment

21063388_2_T7_T9 interacting

21063388_2_T9_T10 interacting

21907821_T10_T38 binding

21907821_T10_T39 binding

22056990_T10_T3 target

22160715_T8_T4 binding

22160715_T8_T5 binding

22160715_T8_T6 binding

22579246_3_T1_T13 interact

22579246_3_T1_T3 interact

22579246_3_T2_T13 interact

22579246_3_T2_T3 interact

26675234_T12_T14 binds

27044741_T23_T24 -

27044741_T28_T8 -

27044741_T30_T14 -

27044741_T5_T6 -

27044741_T7_T4 -

8649779_T10_T11 subunits

8649779_T10_T12 subunits

8649779_T10_T13 physically interact

8649779_T11_T12 subunits

9171108_T3_T4 associated



D) No trigger word detected in documents with multiple trigger words (FN) Total count: 4

Correct trigger word detected in documents with one trigger word (TP) (Total count: 152)
10080948_T10_T11, 10080948_T1_T2, 10080948_T3_T4, 10080948_T6_T7, 10080948_T8_T9, 10395652_T9_T20,
11959841_T18_T4, 12093729_T10_T11, 12093729_T10_T44, 12093729_T17_T45, 12223469_T14_T15, 12223469_T16_T17,
12223469_T16_T18, 12223469_T1_T2, 12223469_T24_T25, 12223469_T30_T31, 12223469_T6_T7, 12223469_T9_T10,
14973287_T17_T20, 14973287_T17_T5, 14973287_T17_T6, 15107829_T3_T4, 15107829_T3_T5, 15107829_T8_T9,
15150273_T23_T24, 15150273_T29_T2, 15150273_T37_T11, 15150273_T41_T16, 15314162_T8_T9, 16546083_T19_T20,
16546083_T5_T6, 16787403_T19_T5, 16787403_T6_T7, 17452446_T14_T4, 17452446_T15_T4, 17452446_T5_T6,
17666399_T13_T30, 17666399_T7_T22, 17666399_T7_T23, 18029035_T14_T3, 18029035_T4_T6, 18029035_T4_T7,
18455122_T5_T6, 18455122_T5_T7, 19141288_18_T14_T15, 19141288_18_T3_T4, 19150429_T11_T2, 19150429_T11_T3,
19150429_T1_T3, 19150429_T6_T7, 19217404_T11_T12, 19217404_T11_T14, 19217404_T22_T23, 19217404_T26_T28,
19414608_38_T7_T9, 19414608_38_T8_T9, 20472562_T12_T15, 20472562_T12_T16, 20472562_T13_T15,
20472562_T13_T16, 20472562_T18_T20, 20472562_T19_T20, 20541251_2_T11_T22, 20541251_2_T17_T18,
20541251_2_T24_T9, 21063388_2_T12_T13, 21063388_2_T15_T16, 21063388_2_T19_T20, 21063388_2_T3_T5,
21063388_2_T3_T6, 21063388_2_T7_T8, 21985068_5_T2_T17, 21985068_5_T2_T3, 21985068_5_T2_T4,
21985068_5_T2_T5, 22009753_T9_T10, 22160715_T16_T1, 22210188_T11_T12, 22210188_T1_T13, 22210188_T1_T3,
22210188_T2_T13, 22210188_T2_T3, 22210188_T9_T10, 22675546_10_T17_T7, 22675546_10_T18_T7,
22675546_10_T3_T12, 22675546_10_T3_T13, 22675546_10_T6_T15, 22675546_10_T8_T20, 22842725_T3_T16,
22842725_T3_T4, 22904036_T10_T12, 22904036_T10_T14, 22904036_T11_T12, 22904036_T11_T14, 22904036_T9_T10,
22904036_T9_T11, 23446637_T1_T2, 23446637_T8_T16, 23446637_T8_T9, 23498974_T17_T18, 23498974_T17_T19,
24498054_T20_T2, 26675234_T12_T13, 26972597_T27_T28, 26972597_T32_T35, 26972597_T32_T36,
26996158_T10_T11, 26996158_T14_T15, 27334688_T6_T7, 27462423_T10_T11, 27462423_T10_T12, 27462423_T9_T18,
7492771_T1_T2, 7747417_T7_T8, 7747417_T9_T10, 8108127_T20_T21, 8108127_T20_T22, 8156587_T10_T5,
8626752_T10_T11, 8626752_T14_T15, 8626752_T14_T16, 8626752_T17_T19, 8626752_T18_T19, 8626752_T8_T9,
8649779_T11_T13, 8649779_T12_T13, 9171108_T11_T12, 9171108_T13_T14, 9171108_T1_T4, 9171108_T2_T4,
9171108_T9_T10, 9233773_T14_T12, 9233773_T16_T5, 9233773_T16_T6, 9353251_T12_T13, 9353251_T8_T9,
9356494_T12_T13, 9356494_T1_T2, 9356494_T9_T10, 9512491_T25_T26, 9751051_T3_T4, 9794375_T16_T17,
9794375_T16_T18, 17452446_T16_T5, 17452446_T16_T6, 17452446_T17_T5, 17452446_T17_T6, 19141288_18_T18_T19,
26996158_T14_T16, 9233773_T14_T13, 9233773_T14_T4
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9356494_T9_T11 associated

9512491_T27_T28 effector

9990065_T10_T11 radioligand binding

PMID_EID1_EID2 not detected

14707132_T28_T30
two-hybrid screen

target

14707132_T29_T30
two-hybrid screen

target

22675546_10_T4_T5
recruitment
complex

27462423_T11_T12
/

complex



9. Text-mining results for the physical interaction

between two proteins in STRING v11.5 and v12

Example of text excerpts supporting a text-mined physical protein interaction
between TrpA and TrpB from the web interfaces of STRING v11.5 to v12. The same
publication is shown for better comparison between the two versions. Trigger words
are highlighted in v12.

32



References:
[1] A. Vaswani et al., ‘Attention is All you Need’, in Advances in Neural Information
Processing Systems, 2017, vol. 30.

[2] P. Lewis, M. Ott, J. Du, and V. Stoyanov, ‘Pretrained Language Models for Biomedical
and Clinical Tasks: Understanding and Extending the State-of-the-Art’, in Proceedings of the
3rd Clinical Natural Language Processing Workshop, 2020, pp. 146–157.

[3] A. Miranda-Escalada et al., ‘Overview of DrugProt task at BioCreative VII: data and
methods for large-scale text mining and knowledge graph generation of heterogeneous
chemical–protein relations’, Database, vol. 2023, p. baad080, 11 2023.

[4] L. Weber, M. Sänger, S. Garda, F. Barth, C. Alt, and U. Leser, ‘Chemical–protein relation
extraction with ensembles of carefully tuned pretrained language models’, Database, vol.
2022, p. baac098, 11 2022.

[5] J. Luoma et al., ‘S1000: a better taxonomic name corpus for biomedical information
extraction’, Bioinformatics, vol. 39, no. 6, p. btad369, 06 2023.

[6] J. Lee et al., ‘BioBERT: a pre-trained biomedical language representation model for
biomedical text mining’, Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 09 2019.

[7] H.-C. Shin et al., ‘BioMegatron: Larger Biomedical Domain Language Model’, in
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020, pp. 4700–4706.

[8] Y. Liu et al., ‘RoBERTa: A Robustly Optimized BERT Pretraining Approach’. 2020.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding’, in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

33


