
Supplementary material for PolypNextLSTM: A

lightweight and fast polyp video segmentation

network using ConvNext and ConvLSTM

Debayan Bhattacharya1†, Konrad Reuter1*†, Finn Behrendt1,
Lennart Maack1, Sarah Grube1, Alexander Schlaefer1

1Institute of Medical Technology and Intelligent Systems, Technische
Universitaet Hamburg, Hamburg, Germany.

*Corresponding author(s). E-mail(s): konrad.reuter@tuhh.de;
†These authors contributed equally to this work.

Abstract

This document serves as the supplementary material to the main paper titled
”PolypNextLSTM: A lightweight and fast polyp video segmentation network
using ConvNext and ConvLSTM”

Keywords: video, polyp, segmentation, CNN

1 Experiments with ’Seen’ test set configuration

Tables 1 display the comprehensive performance evaluations of various methods on
SUN-SEG-Easy test sets, categorized as ’Easy Seen’ and ’Hard Seen’. Our model
consistently surpasses all comparative models across all metrics, including ’seen’ and
’unseen’ scenarios. As expected, ’seen’ cases generally yield higher overall metrics in
both ’Easy’ and ’Hard’ scenarios.

In Table 1, our PolypNextLSTM demonstrates superior performance, with a Dice
increase of +0.0219 (+2.53%) compared to the second-best model, SANet—an image-
based approach.

1



Easy Seen Hard Seen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

Im
a
g
e

DeepLab [1] 0.8538 0.7821 7.497 0.8270 0.8298 0.7472 11.75 0.7925 39.63M 54
PraNet [2] 0.8632 0.8009 7.300 0.8552 0.8432 0.7713 9.590 0.8236 32.55M 45
SANet [3] 0.8643 0.7967 7.810 0.8492 0.8444 0.7695 10.90 0.8185 23.90M 71
TransFuse [4] 0.8370 0.7675 9.696 0.8234 0.8060 0.7285 13.35 0.7911 26.27M 63
CASCADE [5] 0.8618 0.7981 7.574 0.8554 0.8360 0.7629 10.90 0.8203 35.27M 54

V
id
e
o

COSNet [6] 0.8212 0.7492 10.30 0.8158 0.8016 0.7229 12.87 0.7742 81.23M 16
HybridNet [7] 0.8462 0.7668 7.337 0.8559 0.8140 0.7288 9.735 0.8126 101.5M 67
PNSNet [8] 0.8513 0.7864 7.527 0.8332 0.8295 0.7564 9.755 0.7989 26.87M 61
PNS+ [9] 0.8590 0.7980 7.212 0.8545 0.8336 0.7650 10.02 0.8136 26.87M 57
SSTAN [10] 0.8517 0.7856 8.655 0.8436 0.8328 0.7588 12.36 0.8215 30.15M 101
Ours 0.8862 0.8272 5.808 0.8843 0.8643 0.7948 8.802 0.8532 21.95M 108

Table 1 Comparison to various state-of-the-art models on the seen cases. The top five models are
image models, while the bottom five are video-based models.

We also present the Dice score results categorized by visual attributes in Table 2
for the ’Easy Seen’ test set and in Table 3 for the ’Hard Seen’ test set. In the ’Easy
Seen’ set, our model excels in multiple attributes excluding FM, OV and SV. While
our model performs competitively in other categories, the largest margin appears in
IB, where PNS+ outperforms by +0.0283 (+3.77%). In the ’Hard Unseen’ test set, our
model emerges as the top performer across most categories. Particularly noteworthy
is the substantial improvement in IB again, showcasing +0.0302 (+3.47%) compared
to the second-best model (CASCADE). Given the generally lower scores, IB stands
out as the most challenging category in ’Seen’ test set as well.

SI IB HO GH FM SO LO OCC OV SV

Im
a
g
e

DeepLab[1] 0.7534 0.6033 0.9359 0.8260 0.7779 0.8298 0.9005 0.8497 0.7907 0.7728
PraNet[2] 0.8115 0.7003 0.9508 0.8120 0.7568 0.8275 0.9176 0.8808 0.7958 0.7659
SANet[3] 0.8001 0.7294 0.9295 0.8272 0.7420 0.8516 0.8897 0.8759 0.7882 0.7733
TransFuse[4] 0.6923 0.6151 0.8901 0.8036 0.7874 0.8178 0.8609 0.8157 0.7829 0.7383
CASCADE[5] 0.7972 0.7231 0.8787 0.8336 0.7858 0.8607 0.8417 0.8743 0.7548 0.7956

V
id
e
o

COSNet[6] 0.7139 0.6080 0.8842 0.7798 0.7541 0.7844 0.8542 0.8266 0.7518 0.7504
HybridNet[7] 0.7962 0.7169 0.9226 0.8111 0.7592 0.8193 0.8755 0.8745 0.7638 0.7757
PNSNet[8] 0.8368 0.7420 0.9361 0.7784 0.7388 0.8157 0.8981 0.8937 0.7704 0.7523
PNS+[9] 0.8501 0.7505 0.9341 0.7994 0.7722 0.8218 0.8929 0.9015 0.8005 0.7862
SSTAN[10] 0.7814 0.6928 0.9479 0.8032 0.7513 0.8093 0.9110 0.8609 0.7873 0.7746
Ours 0.8574 0.7788 0.9643 0.8379 0.7616 0.8691 0.9274 0.9040 0.7992 0.7872

Table 2 Comparison of the dice score divided by the visual attributes occurring in the clips of the
”Easy Seen” test set. The best score for each category is marked in bold.

SI IB HO GH FM SO LO OCC OV SV

Im
a
g
e

DeepLab[1] 0.8034 0.8171 0.7703 0.8313 N/A 0.8116 0.7703 0.8565 0.7741 0.7985
PraNet[2] 0.8308 0.8652 0.8046 0.8296 N/A 0.8123 0.8046 0.8703 0.8093 0.8133
SANet[3] 0.8108 0.8703 0.7900 0.8402 N/A 0.8261 0.7900 0.8500 0.7872 0.7854
TransFuse[4] 0.7543 0.7711 0.7142 0.8169 N/A 0.8127 0.7142 0.8599 0.7346 0.8105
CASCADE[5] 0.7973 0.8707 0.7178 0.8383 N/A 0.8411 0.7178 0.8614 0.7419 0.8192

V
id
e
o

COSNet[6] 0.7709 0.8269 0.7086 0.7907 N/A 0.7922 0.7086 0.8378 0.7206 0.7790
HybridNet[7] 0.7806 0.8648 0.7819 0.8028 N/A 0.7789 0.7819 0.8354 0.7630 0.7435
PNSNet[8] 0.8120 0.8559 0.7748 0.8133 N/A 0.8058 0.7748 0.8670 0.7882 0.8144
PNS+[9] 0.8218 0.8568 0.7748 0.8213 N/A 0.8003 0.7748 0.8683 0.7898 0.8140
SSTAN[10] 0.8035 0.8471 0.7872 0.8290 N/A 0.8100 0.7872 0.8677 0.7919 0.7996
Ours 0.8301 0.9005 0.7903 0.8606 N/A 0.8535 0.7903 0.8736 0.7883 0.8174

Table 3 Comparison of the dice score divided by the visual attributes occurring in the clips of the
”Hard Seen” test set. The best score for each category is marked in bold. The ”Hard Seen” test set
does not contain samples for the fast motion category, therefore it is empty.

2



2 Ablation Study

2.1 Backbone comparison without temporal fusion module

To show how much value the temporal fusion module adds to the model, a version
without the temporal fusion modules is trained. Furthermore, different backbones for
the base model are compared. To be more specific, the base model is trained with four
different backbones:

• Reduced ConvNext-tiny (our model of choice)
• Full ConvNext-tiny
• Reduced SwinV2-tiny
• Full SwinV2-tiny

We trained a base model using the full ConvNext-tiny as its backbone to measure
the accuracy impact upon removing the last processing stage. Additionally, we trained
models with both full and reduced SwinV2-tiny [11] backbones. Here, ’reduced’ sig-
nifies the removal of not only the classification layers but also the last processing
stage, known for its higher parameter count. The selection of SwinV2-tiny for compar-
ison stemmed from its performance proximity to ConvNext-tiny on the ImageNet1k
dataset [12], as observed in the performance metrics provided by PyTorch/Torchvision
[13]. Table 4 presents a snapshot from the overall comparison, highlighting the higher
computational cost associated with the Swin model compared to the ConvNext model.

Model Acc@1 Acc@5 Params GFLOPS
ConvNext-tiny 82.520 96.146 28.6M 4.46
SwinV2-tiny 82.072 96.132 28.4M 5.96

Table 4 Comparison of the two considered backbones from [13].
Acc@1 and Acc@5 stands for top 1 and top 5 accuracy on the
ImageNet1k dataset.

In Table 5, a comparison is presented among base models employing four dif-
ferent backbones. Here, ’base model’ refers to an encoder-decoder structure without
temporal fusion modules, with our proposed model utilizing the reduced ConvNext-
tiny backbone. Our model’s results are appended as the final row for comparison.
Notably, the ConvNext backbone consistently outperforms its SwinV2 counterpart.
Specifically, the full ConvNext-tiny backbone surpasses the full SwinV2-tiny, and sim-
ilarly, the reduced ConvNext-tiny outperforms the reduced SwinV2-tiny. Intriguingly,
the results showcase that the reduced ConvNext-tiny backbone achieves performance
levels comparable to those of the full SwinV2-tiny backbone.

Moreover, comparing these results to our proposed model utilizing the bidirec-
tional ConvLSTM reveals significant overall improvement, emphasizing the substantial
advantage conferred by the temporal fusion module over base models.

3



Easy Unseen Hard Unseen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

SwinV2-tiny 0.7304 0.6493 21.99 0.6822 0.7257 0.6422 21.42 0.6919 34.38M 71
reduced SwinV2-tiny 0.7052 0.6260 21.88 0.6573 0.6921 0.6095 21.19 0.6564 13.83M 85
ConvNext-tiny 0.7360 0.6615 20.03 0.6952 0.7508 0.6717 17.89 0.7238 34.62M 112
reduced ConvNext-tiny 0.7264 0.6514 18.32 0.6796 0.7340 0.6552 16.77 0.6975 13.99M 135
Ours 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

Table 5 Results of the base model using different backbone networks for the unseen cases.

2.2 Bidirectional vs Unidirectional ConvLSTM

To validate the efficacy of the bidirectional ConvLSTM model, we conducted a com-
parison with a model utilizing only a unidirectional ConvLSTM. Table 6 presents the
results of this comparison. While the unidirectional ConvLSTM demonstrates some
improvement over the base model, the magnitude of enhancement is relatively mod-
est. In contrast, the bidirectional approach used in PolypNextLSTM approach yields a
substantial performance boost, underscoring the advantage of bidirectional temporal
feature flow for optimal performance.

Easy Unseen Hard Unseen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

Base Model 0.7264 0.6514 18.32 0.6796 0.7340 0.6552 16.77 0.6975 13.99M 135
Unidirectional ConvLSTM 0.7318 0.6591 18.00 0.6889 0.7451 0.6660 16.22 0.7124 24.60M 108
Ours 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

Table 6 Comparison of the results using a single direction ConvLSTM vs. using a bidirectional
ConvLSTM for the unseen cases.

2.3 Choice of Temporal Fusion Module

To prove the effectiveness of the bidirectional ConvLSTM as the module for temporal
fusion, four popular temporal fusion approaches are investigated. The modules are
designed in a way, that they can directly replace the bidirectional ConvLSTM in our
proposed model.

2.3.1 Channel Stacking

A straightforward approach involves stacking encoded images along the channel dimen-
sion and subsequently passing them through 2D convolutions, as illustrated in Figure
1. This method employs two 2D convolutions, each followed by batch normalization
and ReLU activation. Both convolutional layers use a 3 × 3 kernel size and 1 × 1
padding to maintain the input dimension. For an input shape of F × C × H × W
(where F denotes the number of frames, C the channels, H the image height, and
W the width), stacking the images along the channel dimension generates a tensor of
F ·C×H ×W . The first convolution compresses the channel dimension by a factor of
F , resulting in a shape of C ×H ×W . Subsequently, the second convolution expands
the channel dimension back to F · C ×H ×W . This reduction is crucial for limiting
parameters, yet it may lead to information loss. To mitigate this, a skip connection
spanning the entire module is introduced. Reformatting the data restores the input
dimension to F × C ×H ×W .

4



2.3.2 3D convolutions

Utilizing 3D convolutions offers a means to integrate temporal information into con-
volutions without requiring a data reshaping process. This approach aligns with the
methodology employed in the Hybrid2D/3D network presented in [7]. Similar to the
channel stacking method, our approach incorporates two 3D convolutions, each fol-
lowed by batch normalization and ReLU activation functions. A kernel size of 3 and
padding of 1 are applied to maintain the input dimensions. Notably, this varies from
the Hybrid2D/3D network approach, where the kernel size and padding were adjusted
to reduce the frame dimension (F ) to 1. A visual representation of this process is
depicted in Figure 2. The module begins by swapping the frame dimension with the
channel dimension to align with the input format expected by the 3D convolution
layer. Eventually, the channels are swapped back to restore the initial input dimension.

Fig. 1 Visualization of the channel stacking
module. F is the number of frames, C the number
of channels and H&W the height and width.

Fig. 2 Visualisation of the 3D convolution
approach. Again, F is the frame dimension, C the
number of channels and H&W are the height and
width.

2.3.3 Multi-Headed Attention

In [10], the utilization of two Multi-Head Attention modules was proposed to incorpo-
rate both temporal and spatial attention into the model. We adopt a similar approach,
implementing a module that uses Multi-Head Attention (MHA) specifically along the
temporal dimension to interrelate frames. However, for spatial attention, we adopt
the Shifted Window (Swin) Multi-Head Attention V2 module from the SwinV2 trans-
former [11]. This adaptation enhances spatial attention efficiency, particularly for

5



higher image resolutions. To facilitate a more localized operation, a secondary Swin
attention module establishes connections between restricted regions, mirroring the
strategy in SwinV2 transformers. Additionally, linear feed-forward layers are incorpo-
rated after the attention modules, maintaining skip connections between sub-modules
to mimic transformer structures. The structure is illustrated in Figure 3. Both Swin
attention blocks employ four heads and a window size of 8× 8. The first block oper-
ates without shifts, while the second shifts windows by 4× 4. Two linear layers form
the feed-forward layers, expanding the channel dimension by 4 and then reducing it
back to the initial input channels, following the transformer pattern. ReLU activation
functions follow each linear layer, with layer normalization applied after each module
(Attention or Linear Layers).

This module involves multiple reshapes and dimension swaps to align with the cor-
rect input dimensions for sub-modules, which are not shown in the figure for simplicity.
Instead, the input dimensions for each sub-module are specified. The temporal multi-
attention block requires data in the shape H ·W ×F ×C, considering each pixel in the
input as an embedded patch with C as the patch’s embedding dimension and F as the
sequence length for attention calculation. For the linear layers, the data can revert to
being four-dimensional, with the channel dimension as the last. The shifted window
attention module requires data in the shape F ×H ×W × C, enabling independent
spatial attention computation for each frame.

Fig. 3 Visualization of the Attention based module for including temporal information. The input
shape for the different submodules is given. F is the number of frames, C the channels and H&W the
height and width.

2.3.4 Normalized Self-Attention (NSA) Block

We employ the Normalized Self-Attention Block (NS-Block) from PNSNet [8] and
PNS+ [9] for integrating temporal information. This block applies a locally con-
strained spatio-temporal multi-head attention mechanism. Preceding the NS-Blocks,
the PNSNet/PNS+ integrates a receptive field block (RFB) [14] to enhance backbone-
extracted features and diminish the channel dimension, thereby reducing the compu-
tational load for the NS-Block. Adapting this method, we insert an RFB ahead of
the NS-Blocks. Configured to compress the channel dimension by a factor of 8, the

6



RFB (depicted in Figure 4) operates via a sequence: first passing through a squeeze-
excitation block (visualized in Figure 5), then dividing into four branches utilizing
distinct kernel sizes and dilation rates for varied scale information capture (except for
the 1x1 convolutions, which employ depthwise convolutions).

The module overview (illustrated in Figure 6) deployed in this study starts with
the RFB, followed by two consecutive NS-Blocks interconnected by skip connections,
akin to PNSNet/PNS+. Employing the same configuration as in [9], the NS-Blocks
use a kernel size of 3 and 4 groups (heads). Dilation rates for the first NS-Block are
set to (3, 4, 3, 4), and for the second, they are (1, 2, 1, 2). Ultimately, a linear layer
restores the input shape. Similarly, to counteract potential information loss due to
channel dimension reduction from the RFB, we introduce a skip connection covering
the entire module, akin to the channel stacking approach.

7



Fig. 4 The complete structure of the receptive field block utilized in the NSA module. The input
is passed through a squeeze-excitation block (visualized in Figure 5 and afterwards passed through
four different paths using depthwise convolutions to capture context with different receptive fields.
The results are concatenated and passed through a final convolution.

8



Fig. 5 Visualization of the SE-Block utilized in
the receptive field block.

Fig. 6 Visualization of the NS-Block based mod-
ule. The input is passed through a RFB and
afterwards through two successive NS-Blocks. A
linear layer is added to restore the number of
input channels. Furthermore, various skip connec-
tions are added.

The results are depicted in Table 7. Across all temporal fusion methods, enhance-
ments over the base model are evident. However, the 3D convolutional approach shows
marginal improvement, with metrics closely aligning with the base model. Notably,
our model outperforms all other methodologies across all evaluated metrics, except for
the Hausdorff distance in the hard unseen dataset, where the channel stacking method
displayed superior results. The channel stacking technique consistently performs well
and stands out as the second-best temporal fusion module in this context.

The findings presented in Table 7 affirm the effectiveness of temporal fusion mod-
ule. All temporal fusion techniques exhibit performance improvement with a single
fusion module. However, none achieve a performance comparable to our proposed
model. Surprisingly, the channel stacking method, despite its simplicity, attains com-
mendable performance, outperforming most considered state-of-the-art models. Its
challenge may arise with larger input frames, where the convolutional layers would
demand more parameters, risking information loss due to compressed channel dimen-
sions. With 27.26 million parameters, it’s already the largest model among these
methods.

9



The 3D convolutional approach marginally enhances metrics compared to the base
model. However, its limitation lies in the two successive 3D convolutions with a kernel
size of 3, capturing only a limited number of frames for each output frame. To address
this, a potential solution is using a kernel size of 5× 3× 3, ensuring consideration of
all input frames for each output, albeit resulting in significantly more parameters in
these layers. In contrast, the HybridNet [7] employs two 3D convolutions reducing the
temporal dimension to one, a strategy that increases parameters less steeply for longer
input sequences, albeit producing a single channel feature map per input sequence.

Approaches using temporal attention and NS-Blocks exhibit promising results,
albeit falling short compared to the channel stacking method. Interestingly, our NS-
Block-based model surpasses the PNSNet [8] and PNS+ [9], indicating the efficiency
of ConvNext-tiny as a backbone.

The NSA approach offers competitive results, running at 74 frames per second
(FPS) but with the least trainable parameters (14.22 million), marginal increase over
the base model parameter count (13.99 million). Attention-based approaches and
ConvLSTM-based models hold an advantage—they adapt effortlessly to varying input
sequence lengths without altering the parameters, unlike convolution-based methods
that increase parameters with input sequence length, hindering speed and training
ease.

This approach proves effective for most temporal fusion modules, aligning with the
concept of independently encoding images and forming connections on fully encoded
states, a strategy common in four of the five compared video-based models [6–9].

Easy Unseen Hard Unseen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

Base Model 0.7264 0.6514 18.32 0.6796 0.7340 0.6552 16.77 0.6975 13.99M 135
Channel Stacking 0.7543 0.6824 16.86 0.7182 0.7608 0.6846 14.06 0.7391 27.26M 125
3D Convolutions 0.7292 0.6558 18.24 0.6850 0.7368 0.6577 16.38 0.7012 21.95M 115
MHA 0.7382 0.6666 17.82 0.7000 0.7482 0.6730 15.50 0.7219 21.09M 105
NSA 0.7429 0.6691 18.39 0.7024 0.7569 0.6793 16.03 0.7298 14.22M 74
Ours 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

Table 7 Experiment 1, unseen cases: Average results of the cross validation from experiment 1 on
the unseen polyp cases. The best performing model for each metric is marked in bold.

2.4 Placement of Temporal Fusion Module in the skip
connections

Incorporating additional temporal fusion modules at skip connections, as illustrated in
Figure 8, retains the original backbone network structure without modification. This
strategy aims to obtain more detailed predictions by extending the temporal fusion to
higher resolutions through multiple skip connections.

10



Fig. 7 Visualization of the approach
to include temporal information into
the base network. A temporal fusion
module is placed only after the last
encoder stage and before the decoding
begins.

Fig. 8 Visualization of the approach for including
temporal information. Additionally to the tempo-
ral fusion block in the first experiment there are
also temporal fusion modules at the skip connec-
tions.

The results are depicted in Table 8. Once more, all temporal fusion modules exhibit
improvements over the base model, particularly demonstrating enhanced performance
on the ’hard’ dataset. In comparison, our model excels in dice, IOU, and recall. Nev-
ertheless, this time, the temporal attention approach yields the best results for HD95
across both test sets. Notably, the MHA approach and the 3D convolutions exhibit
more pronounced improvements in this model configuration than in the approach
of placing the temporal fusion module only in the bottleneck, showcasing enhanced
performance. The improved HD95 metric may be attributed to the fact that edge align-
ment of predicted and ground truth mask is better due to the temporal processing at
high resolutions. Surprisingly, the ConvLSTM model, which integrates additional bidi-
rectional ConvLSTMs at skip connections, results in a decrement in performance. Due
to the introduction of additional temporal fusion modules, the models generally exhibit
slower processing speeds compared to the first approach. Despite this, all models out-
perform the base model, indicating the viability of this general approach. Notably, for
the channel stacking approach, the incorporation of extra temporal fusion modules at
skip connections leads to slightly inferior results (-0.0172 (2.28%) / -0.0124 (1.63%)
dice for the easy/hard test set). A similar impact is observed for the ConvLSTM
approach, essentially our proposed model with added bidirectional ConvLSTMs at skip
connections (-0.0273 (3.55%) / -0.0348 (4.44%) dice on the easy/hard test set). The
utilization of skip connections typically offers enhanced gradient flow through network
layers, yet the addition of modules might disrupt this gradient flow, affecting perfor-
mance. Surprisingly, the 3D convolution approach showcases substantial improvement

11



with added modules at skip connections, achieving state-of-the-art performance. Both
attention-based approaches also display enhanced performance. Particularly, the MHA
method demonstrates impressive results, outperforming other state-of-the-art meth-
ods. However, the increased computational burden and slower processing speeds limit
its immediate application. This approach underscores the choice of shifted window
attention over regular multi-head attention for the spatial dimension, as it avoids
excessive computational demands.

Easy Unseen Hard Unseen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

Base Model 0.7264 0.6514 18.32 0.6796 0.7340 0.6552 16.77 0.6975 13.99M 135
Bi. ConvLSTM 0.7413 0.6688 18.42 0.7029 0.7490 0.6690 16.92 0.7177 24.44M 81
Channel Stacking 0.7371 0.6655 17.51 0.6958 0.7484 0.6724 14.75 0.7229 31.41M 114
3D Convolutions 0.7558 0.6825 17.44 0.7140 0.7598 0.6823 15.02 0.7318 24.44M 96
MHA 0.7635 0.6920 15.45 0.7287 0.7754 0.7000 13.40 0.7547 23.33M 55
NSA 0.7503 0.6774 17.83 0.7104 0.7675 0.6898 15.21 0.7389 14.47M 30
Ours 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

Table 8 Experiment 2, unseen cases: Average results of the cross validation from experiment 2 on
the unseen polyp cases. The best performing model for each metric is marked in bold.

2.5 Placement of Temporal Fusion Module after every encoder
block

In this strategy, we integrate temporal fusion directly into the encoder structure.
Post each encoder block, a dedicated temporal fusion module is inserted, leveraging
temporal information before downsampling the data. The objective behind integrating
this fusion mechanism directly within the encoder is to amplify the quality of extracted
features at each encoding stage, ultimately aiming for enhanced overall performance.
The schematic representation of this approach is depicted in Figure 9.

12



Fig. 9 The third approach for including temporal information. Additionally to the temporal fusion
modules from experiment 1 there are temporal fusion modules after the encoding blocks to include
temporal information already during encoding.

The results for this model configuration, where temporal fusion modules are
directly embedded within the encoder, are presented in Table 9. Surprisingly, apart
from the channel stacking approach that displays slight improvements, the other mod-
els demonstrate a notable decline in performance across most metrics. However, while
the channel stacking approach exhibits promising results on the ’Easy’ dataset, its
performance on the ’Hard’ dataset significantly lags behind our proposed model. Typ-
ically, the models from the third approach are performing suboptimally on the ’hard’
test set.

Easy Unseen Hard Unseen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

Base Model 0.7264 0.6514 18.32 0.6796 0.7340 0.6552 16.77 0.6975 13.99M 135
Bi. ConvLSTM 0.7245 0.6496 20.65 0.6900 0.7040 0.6262 20.86 0.6865 24.44M 81
Channel Stacking 0.7544 0.6820 16.02 0.7189 0.7413 0.6671 15.52 0.7151 31.41M 114
3D Convolutions 0.6896 0.6179 22.55 0.6491 0.6582 0.5846 23.50 0.6329 24.44M 96
MHA 0.7044 0.6255 22.95 0.6630 0.6693 0.5923 23.24 0.6446 23.33M 55
NSA 0.6792 0.6026 24.86 0.6412 0.6532 0.5762 24.38 0.6290 14.47M 30
Ours 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

Table 9 Experiment 3, unseen cases: Average results of the cross validation from experiment on
the seen polyp cases. The best performing model for each metric is marked in bold.

This approach demonstrates limited success, where only the channel stacking mod-
ule exhibits enhanced performance compared to the base model. Both this approach
and the temporal fusion at skip connection share identical components arranged dif-
ferently, resulting in matching speeds and parameter counts. We conjecture the core

13



issue seems to arise from introducing new, untrained layers into a pre-trained back-
bone, causing weight interference and resulting in suboptimal outcomes. However, the
channel stacking approach might still fare better due to its skip connection allowing
an alternative gradient path. It contrasts with the NSA module, which also utilizes a
skip connection but relies on more complex architecture.

Generally, amending the carefully crafted backbone architecture by adding inter-
mediate layers might not be a favourable strategy. However, employing a different
training strategy could potentially yield better results. For instance, freezing the Con-
vNext layers and initially training the remaining network for a few epochs could allow
the temporal modules to adapt to the ConvNext model’s pre-trained weights before
fine-tuning the entire model.

In summary, both the approaches described in Section 2.8 and Section 2.9 showcase
performance enhancements across various temporal fusion modules. None of these
models outperform our proposed model. While the MHA method described in Section
2.8 comes close, it is comparatively less computationally efficient and has a low FPS.

2.6 Backbone comparison with temporal fusion module

For further insights into how the removal of the last processing stage from the
ConvNext-tiny backbone impacts the final model, we compare PolypNextLSTM to a
model with similar configuration but using a full ConvNext-tiny backbone. The results
are presented in Table 10. Interestingly, our proposed model performs slightly better
than the model using the full ConvNext backbone. A reason for this could be that
using the full backbone leads to a different input dimension for the bidirectional Con-
vLSTM module (8× 8 instead of 16× 16). The reduction in spatial dimension might
also lead to a loss of spatial information and therefore result in slightly worse perfor-
mance. Considering that pruning the backbone does not only makes the model faster
but also increases the accuracy validates our decision to reduce the backbone model.

Easy Unseen Hard Unseen
Dice IOU HD95 Recall Dice IOU HD95 Recall Params FPS

PolypNextLSTM unpruned 0.7599 0.6849 19.15 0.7203 0.7779 0.6992 16.74 0.7531 66.47M 72
PolypNextLSTM (Ours) 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

Table 10 Comparison of our proposed PolypNextLSTM to a model with similar configuration but
using the full (unpruned) ConvNext-tiny backbone.

2.7 Number of Frames

We investigate the impact of varying input frames on our proposed PolypNextLSTM.
Figure 10 and Table 11 showcase the results across different metrics concerning the
number of frames for the unseen test set configurations. PolypNextLSTM exhibit
their poorest performance with one or two input frames, gradually improving up to
five frames where a distinct performance peak emerges across all metrics. Beyond
five frames, there is a noticeable decline in results. Hence, empirically, processing five
frames emerges as the optimal configuration where PolypNextLSTM delivers its peak
performance.

14



Fig. 10 Variation of the number of frames for the different test set configurations for four different
metrics. ’Number of Frames’ refers to how many images are processed simultaneously by the network.
For dice score, IOU and recall, higher values indicate better performance. For the Hausdorff distance
lower values refer to a better performance. The coloured interval refers to the minimum and maximum
of the cross-validation. Black circle shows the highest metric.

Easy Unseen Hard Unseen
Frames Dice IOU HD95 Recall Dice IOU HD95 Recall
1 0.7274 0.6541 20.70 0.6910 0.7224 0.6432 20.21 0.6992
2 0.7242 0.6526 18.65 0.6859 0.7023 0.6264 19.24 0.6761
3 0.7480 0.6727 18.53 0.7081 0.7514 0.6733 15.95 0.7293
4 0.7269 0.6537 19.43 0.6864 0.7261 0.6494 18.00 0.6969
5 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641
6 0.7547 0.6812 17.72 0.7163 0.7467 0.6690 16.20 0.7222
7 0.7430 0.6679 18.43 0.6985 0.7413 0.6637 15.91 0.7095
8 0.7496 0.6769 17.84 0.7109 0.7567 0.6784 15.61 0.7292
9 0.7497 0.6760 17.35 0.7074 0.7436 0.6659 15.38 0.7139
10 0.7382 0.6644 18.00 0.6922 0.7449 0.6668 16.69 0.7130

Table 11 Results for the frame variation experiment on the unseen test sets. The best result for
each metric is marked in bold.

Varying the number of frames indicates suboptimal results for sequences of one or
two frames. This implies crucial information spanned across multiple frames, effectively
incorporated by the bidirectional ConvLSTM into the segmentation process. However,
longer sequences do not consistently yield better results, with a peak observed at five
frames and subsequent stagnation or decline. While ConvLSTMs theoretically handle

15



longer sequences, our results suggest that varying the sequence length could be a
crucial hyperparameter linked to dataset complexity. For instance, PNS+ [9] utilizes
one anchor frame and five randomly selected subsequent frames for the same dataset
which is similar to our five frames peak performance.

2.8 Distance between frames

In polyp video segmentation it is common to use five consecutive frames as the input
sequence [7–9]. However, at a frame rate of 30 fps the frames might look too similar
and contain almost the same information. Larger distances between the input could
therefore improve the segmentation results. Table 12 presents the results for Polyp-
NextLSTM trained and tested with frame distances from one to five, where a frame
distance of one means that consecutive frames are used. The sequence length is fixed
to five frames. It can be seen that the best results are achieved for a frame distance
of one, as used for the training of our proposed model.

Frame Easy Unseen Hard Unseen
Distance Dice IOU HD95 Recall Dice IOU HD95 Recall

1 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641
2 0.7474 0.6755 16.65 0.7059 0.7581 0.6813 15.12 0.7310
3 0.7358 0.6625 18.65 0.6916 0.7338 0.6551 16.64 0.6985
4 0.7333 0.6601 17.96 0.6904 0.7446 0.6659 16.15 0.7126
5 0.7361 0.6638 17.13 0.6924 0.7586 0.6823 14.11 0.7277

Table 12 Test results on the unseen test sets for the ConvNextLSTM model trained and tested
with a frame distance of one to five.

3 Results on the PolypGen dataset

We use the PolypGen dataset [15] to validate the generalization capabilities. The
PolypGen dataset consists of both, single frames and sequence data. The sequence data
is further divided into 23 positive examples (2225 frames) and 23 negative examples
(4275 frames). For our tests we only use the positive sequences. In comparison to
SUN-SEG, the PolypGen sequences have a visibly lower frame rate that also differs
from clip to clip. Furthermore, different from SUN-SEG, the positive sequences also
contain various negative frames where no polyp is visible.

Table 13 shows the results of the models trained on SUN-SEG and tested on
PolypGen. Generally it can be seen that the performance metrics are considerably
worse in comparison to the results on the SUN-SEG test set. However, among all
state-of-the-art approaches, our model shows the best performance on the dice score
(+0.0061/+1.119%), the IOU (+0.0087/+1.931%) and the Hausdorff distance (-1.23/-
3.779%). Only for the recall, SSTAN shows the best results.

16



PolypGen
Dice IOU HD95 Recall Params FPS

Im
a
g
e

DeepLab [1] 0.5062 0.4376 35.49 0.5314 39.63M 54
PraNet [2] 0.5137 0.4505 33.32 0.5266 32.55M 45
SANet [3] 0.4979 0.4288 34.10 0.4990 23.90M 71
TransFuse [4] 0.4743 0.4122 44.87 0.5162 26.27M 63
CASCADE [5] 0.5050 0.4414 37.82 0.5321 35.27M 54

V
id
e
o

COSNet [6] 0.4095 0.3512 50.16 0.4370 81.23M 16
HybridNet [7] 0.4794 0.4053 32.54 0.4882 101.5M 67
PNSNet [8] 0.4843 0.4162 40.13 0.5183 26.87M 61
PNS+ [9] 0.5031 0.4381 35.74 0.5263 26.87M 57
SSTAN [10] 0.4949 0.4310 43.46 0.5359 30.15M 101
Ours 0.5198 0.4592 31.31 0.5281 21.95M 108

Table 13 Results for the models trained on SUN-SEG on the positive sequence data from the
PolypGen dataset.

The results show that PolypNextLSTM is also able to adapt well to new and
completely different data in comparison to other state-of-the-art methods, as it shows
the best results for dice score, IOU and HD95. However, the overall performance of all
models is rather unsatisfying. A reason for this might be that the SUN-SEG dataset
was completely recorded at a single hospital. This might add some intrinsic bias to
the data due to the used medical equipment and general procedure which makes it
hard for the models to generalize to data from different medical centers.

References

[1] Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. CoRR abs/1706.05587 (2017) 1706.05587

[2] Fan, D.-P., Ji, G.-P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet:
Parallel reverse attention network for polyp segmentation. In: Medical Image
Computing and Computer Assisted Intervention – MICCAI 2020, pp. 263–273.
Springer, Cham (2020)

[3] Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention net-
work for polyp segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 699–708 (2021). Springer

[4] Zhang, Y., Liu, H., Hu, Q.: TransFuse: Fusing Transformers and CNNs for Medical
Image Segmentation (2021)

[5] Rahman, M.M., Marculescu, R.: Medical image segmentation via cascaded
attention decoding. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 6222–6231 (2023)

[6] Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See More, Know More:
Unsupervised Video Object Segmentation with Co-Attention Siamese Networks
(2020)

[7] Puyal, J.G.-B., Bhatia, K.K., Brandao, P., Ahmad, O.F., Toth, D., Kader, R.,
Lovat, L., Mountney, P., Stoyanov, D.: Endoscopic polyp segmentation using

17

https://arxiv.org/abs/1706.05587


a hybrid 2d/3d cnn. In: Medical Image Computing and Computer Assisted
Intervention – MICCAI 2020, pp. 295–305. Springer, Cham (2020)

[8] Ji, G.-P., Chou, Y.-C., Fan, D.-P., Chen, G., Fu, H., Jha, D., Shao, L.: Pro-
gressively normalized self-attention network for video polyp segmentation. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 142–152 (2021). Springer

[9] Ji, G.-P., Xiao, G., Chou, Y.-C., Fan, D.-P., Zhao, K., Chen, G., Gool, L.V.: Video
polyp segmentation: A deep learning perspective. Machine Intelligence Research
19(6), 531–549 (2022) https://doi.org/10.1007/s11633-022-1371-y

[10] Zhao, X., Wu, Z., Tan, S., Fan, D.-J., Li, Z., Wan, X., Li, G.: Semi-supervised
spatial temporal attention network for video polyp segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention,
pp. 456–466 (2022). Springer

[11] Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang,
Z., Dong, L., Wei, F., Guo, B.: Swin Transformer V2: Scaling Up Capacity and
Resolution (2022)

[12] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255 (2009). Ieee

[13] Pytorch: Models and pre-trained weights. accessed: 10.10.2023. https://pytorch.
org/vision/stable/models.html

[14] Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast
object detection. CoRR abs/1711.07767 (2017) 1711.07767

[15] Ali, S., Jha, D., Ghatwary, N., Realdon, S., Cannizzaro, R., Salem, O.E., Lamar-
que, D., Daul, C., Riegler, M.A., Anonsen, K.V., Petlund, A., Halvorsen, P.,
Rittscher, J., Lange, T., East, J.E.: A multi-centre polyp detection and seg-
mentation dataset for generalisability assessment. Scientific Data 10(1) (2023)
https://doi.org/10.1038/s41597-023-01981-y

18

https://doi.org/10.1007/s11633-022-1371-y
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://arxiv.org/abs/1711.07767
https://doi.org/10.1038/s41597-023-01981-y

	Experiments with 'Seen' test set configuration
	Ablation Study
	Backbone comparison without temporal fusion module
	Bidirectional vs Unidirectional ConvLSTM
	Choice of Temporal Fusion Module
	Channel Stacking
	3D convolutions
	Multi-Headed Attention
	Normalized Self-Attention (NSA) Block

	Placement of Temporal Fusion Module in the skip connections
	Placement of Temporal Fusion Module after every encoder block
	Backbone comparison with temporal fusion module
	Number of Frames
	Distance between frames

	Results on the PolypGen dataset

