

Figure S1. Expression of miR-26 family members and Ctdsp host genes in differentiating ESCs and during mouse development.

(A) Schematic representation of the differentiation protocol. Scale bars: $250\mu m$ (B) Expression pattern of pre-miR-26a1, -26a2, -26b and *Ctdsp1*, *Ctdsp2* and *CtdspL* during WT ESC differentiation. n=4 biological replicates, mean \pm SD. (C) qRT-PCR analyses of precursor and mature miR-26 and *Ctdsp1/2/L* in the brain of mice during embryonal development and in adult brains, n = 4 biological replicates, mean \pm SD.

miR-26a-2

Figure S2. Generation and validation of miR-26 KO ES cell lines. (**A**) Shown are the *Ctdsp* loci, the location of miR-26 family members and the guide RNAs for Cas9-nickase deletion. WT sequences are represented by a red solid arrow, deletions by open areas. Individual ESC clone names are indicated. (**B**) miR- 26b-, miR-26a1- and miR-26a2-specific PCR analysis on genomic DNAs of WT and of miR-26 KO ESC clones. Predicted sizes of the deletions are indicated. (**C**) qRT-PCR analysis specific for pre-miR-26a1, pre-miR-26a2 and pre-miR-26b using RNA samples of WT and of KO ESCs clones. (**D**) Screen shots of *Ctdsp1, CtdspL* and *Ctdsp2* loci and detected reads using RNA-Seq data of WT and miR-26 KO ESC clones.

Figure S3. KO of miR-26 family members leaves differentiation of ESCs to neural progenitor cells (NPCs) unaffected. (A) Scheme of individual stages of in vitro differentiation from ESCs to NPCs (top). Phase contrast panels show representative morphological changes of WT and miR-26 KO cultures during neural differentiation from undifferentiated ESCs via embryoid bodies (EBs) to attached EBs (att. EBs). Also shown are SOX2- and NESTIN-specific immunostainings of WT, KO^{26b}, dKO^{26a1/a2} and tKO^{26b/a1/a2} NPC cultures (day 10, right column). Scale bars: 250µm. (B) gRT-PCR analysis specific for Oct3/4, Sox2, Nanog and Rex1 in WT and miR-26 KO ESCs, n=3 biological replicates, mean ± SD. (C) Quantification of cumulative population doublings (CPD) of WT and miR-26 KO cultures ESCs throughout 4 passages (ESCs re-plated every 2nd day), n = 3 biological replicates, mean ± SD. (D) Single cell suspensions of WT and miR-26 KO EBs on day 2 and 4 were prepared and average cell numbers were determined (1×10⁶ ESCs plated at day 0), n = 3 biological replicates, mean ± SD. (E) Quantification of immunostainings shown in panel A (right column). Frequencies of SOX2⁺ and NESTIN⁺ cells are indicated, n = 3 biological replicates, mean ± SD. (F) MSI1specific immunostainings of WT and miR-26 KO NPC cultures (day 10) and their quantification (right), n = 3 biological replicates, mean \pm SD. Scale bars: 100 μ m.

Figure S4. Apoptosis and cell cycle regulation in NPC cultures

A) Flow cytometric apoptosis and cell death analysis in WT and miR-26 KO NC cultures. Representative FACS plot (Annexin5 vs. PI) at day 15 of differentiation (left) and quantification of Annexin5- and Propidiumiodide-positive cells at day 10, 12 and 15 of differentiation (right), n = 3 biological replicates, mean ± SD. (**B**) Cell cycle phase analyses of WT and tKO^{26b/a1/a2} NC cultures (day 15). The frequencies of G₀/G₁, S/G₂/M-type cells are shown in the bar chart (right). n=3 biological replicates, * p < 0,05 (t-test). (**C**) qRT-PCR analysis of the cell cycle regulators p16^{INK4A}, p19^{Arf} and p21^{Cip1} in cell cultures at day 15 of differentiation. n = 3 biological replicates, mean ± SD, * p < 0,05, ** p < 0,01, *** p < 0,001 (ANOVA). (**D**) Representative immunostaining of BrdU incorporation and costaining with MSI1 of cell cultures at d10 and d12 of neural differentiation. Frequencies of marker+ cell are shown on the right, n=3 biological replicates, mean ± SD. Scale bars. 100 µm, * p < 0,05, ** p < 0,01 (ANOVA).

Figure S5. Generation and validation of Ctdsp2 and Rest 3`UTR miR-26 ts KO ES cell lines. (**A**) Schematic representation of the genomic Ctdsp2 and the Rest loci, the location of miR-26 target sites and the guide RNAs for Cas9-nickase deletion are indicated. WT sequences are represented by a red solid arrow, deletions by open areas. Individual ESC clone names are indicated on the left. (**B**) miR-26 target site-specific PCR analysis on genomic DNAs of WT and of miR-26 target site KO ESC clones.

Figure S6. REST/miR network and the global downregulation of RE1 proteincoding genes in miR-26 KO cells

(**A**) Scheme of REST to miR / miR to REST regulation. REST regulated miRs and their predicted targeting to REST complex members are shown (http://www.targetscan.org/mmu_71/).

(**B**) Global down- (red) and upregulated (green) protein-coding genes with a RE1 sequence 10 kb upstream and 10 kb downstream of transcriptional start site in tKO^{26b/a1/a2} cells compared to WT cells at day 15 of differentiation. Pie chart shows numbers of down- and up-regulated transcripts. (**C**) GO Term analyses of downregulated genes shown in A. No GO terms were retrieved for upregulated genes.

Table S1: Genomic target sequences and CRISPRoligonucleotides (Cas9 D10A nickase)

Name	Sequence $(5' - 3')$, PAM sequences underlined
miR-26b 5'A target	GAATTACTTGAACTGGGTCC <u>CGG</u>
miR26b 5'A F	CACCGAATTACTTGAACTGGGTCC
miR26b 5'A R	AAACGGACCCAGTTCAAGTAATTC
miR-26b 3'B target	TTCTCCATTACTTGGCTCGG <u>GGG</u>
miR26b 3'B F	CACCGTTCTCCATTACTTGGCTCGG
miR26b 3'B R	AAACCCGAGCCAAGTAATGGAGAAC
miR-26a1 5'A target	CTGCACTCCGGACGTGCTTG <u>TGG</u>
miR26a1 5'A F	CACCGCTGCACTCCGGACGTGCTTG
miR26a1 5'A R	AAACCAAGCACGTCCGGAGTGCAGC
miR-26a1 5'B target	TCTTTGGCAGTAGACACCCC <u>GGG</u>
miR26a1 5'B F	CACCGTCTTTGGCAGTAGACACCCC
miR26a1 5'B R	AAACGGGGTGTCTACTGCCAAAGAC
miR-26a1 3'A target	CAAGCTTGGCTACAGGCAAA <u>GGG</u>
miR26a1 3'A F	CACCGCAAGCTTGGCTACAGGCAAA
miR26a1 3'A R	AAACTTTGCCTGTAGCCAAGCTTGC
miR-26a1 3'B target	TCCCGGAGACTCAGGACCGG <u>AGG</u>
miR26a1 3'B F	CACCGTCCCGGAGACTCAGGACCGG
miR26a1 3'B R	AAACCCGGTCCTGAGTCTCCGGGAC
miR-26a2 5'A target	CGGCTTGTGTAGGTCCCATCTGG
miR-26a2 5'A F	CACCGCGGCTTGTGTGGGTCCCATC
miR-26a2 5'A R	AAACGATGGGACCTACACAAGCCGC
miR-26a2 5'B target	CTGCTGGAATCCCGTACAGA <u>AGG</u>
miR-26a2 5'B F	CACCGCTGCTGGAATCCCGTACAGA
miR-26a2 5'B R	AAACTCTGTACGGGATTCCAGCAGC
miR-26a2 3'A target	TGGACGGACACAGCCTATCC <u>TGG</u>
miR-26a2 3'A F	CACCGTGGACGGACACAGCCTATCC
miR-26a2 3'A R	AAACGGATAGGCTGTGTCCGTCCAC
miR-26a2 3'B target	TCTTGATTACTTGTTTCTGG <u>AGG</u>
miR-26a2 3'B F	CACCGICIIGAIIACITGTTTCTGG
miR-26a2 5'B R	AAACCCAGAAACAAGTAATCAAGAC
Ctdsp2 A ts target	TATCAAATCATGAAGCAAGGTGG
Ctdsp2 A ts F	CACCGTATCAAATCATGAAGCAAGG
Ctdsp2 A ts R	AAACCCTTGCTTCATGATTTGATAC

Ctdsp2 3'B target Ctdsp2 B ts F Ctdsp2 B ts R	TATTCAAAAACTTGAACTGT <u>AGG</u> CACCGTATTCAAAAACTTGAACTGT AAACACAGTTCAAGTTTTTGAATAC
Rest ts 3´A target Rest ts 3´A F	TCCTCTTACATTAACTCCCG <u>AGG</u> CACCGTCCTCTTACATTAACTCCCG
Rest ts 3'A R	AAACCGGGAGTTAATGTAAGAGGAC
Rest ts 3´B target	AGCTCGTGCAGGCAGGTGCA <u>AGG</u>
Rest ts 3´B F	CACCGAGCTCGTGCAGGCAGGTGCA
Rest ts 3´B R	AAACTGCACCTGCCTGCACGAGCTC
Rest ts 5´A target	TAACTTAATTTATATAAAGC <u>AGG</u>
Rest ts 5´A F	CACCGGTAACTTAATTTATATAAAGC
Rest ts 5´A R	AAACGCTTTATATAAATTAAGTTAC
Rest ts 5´B target	GAAAAAAAAGAGATTTTAAT <u>TGG</u>
Rest ts 5´A F	CACCGGAAAAAAAAGAGATTTTAAT
Rest ts 5´A R	AAACATTAAAATCTCTTTTTTTTC

Table S2: PCR oligonucleotides

A cDNA primer (qRT-PCRs)

Name	Sequence (5' - 3')
Gapdh F	TGGAGAAACCTGCCAAGTATG
Gapdh R	TCATACCAGGAAATGAGCTTGA
Rpl4 F	TTGGGTTGTATTCACTCTGCG
Rpl4 R	CAGACCAGTGCTGAGTCTTGG
Oct4 F	CCGTGAAGTTGGAGAAGGTG
Oct4 R	GAAGCGACAGATGGTGGTCT
Sox2 F	GCGGAGTGGAAACTTTTGTCC
Sox2 R	CGGGAAGCGTGTACTTATCCTT
Nanog F	TCTTCCTGGTCCCCACAG TTT
Nanog R	GCAAGAATAGTTCTCGGGATGAA
Ctdsp1 F	CCCAGTCCAGTACCTGCTTC
Ctdsp1 R	CATCTATCTCCACCGGGATG
Ctdsp2 F	GGAAGGGACCTGAGGAAAAC
Ctdsp2 R	CCTCGAAGACTGGAATCAGG
CtdspL F	GTTGAAATCGACGGAACCAT
CtdspL R	GCCAAGCTGGCAGTAAAGAG
Neurod1 F	ATGACCAAATCATACAGCGAGAG
Neurod1 R	CCAGCGACACTGAGTCCTG
Neurog1 F	CCAGCGACACTGAGTCCTG
Neurog1 R	CGGGCCATAGGTGAAGTCTT
Msi1 F	TAAAGTGCTGGCGCAATCG
Msi1 R	TCTTCGTCCGAGTGACCATCT
Pax6 F	TACCAGTGTCTACCAGCCAAT
Pax6 R	TGCACGAGTATGAGGAGGTCT
Ncam1 F	ACCACCGTCACCACTAACTCT
Ncam1 R	TGGGGCAATACTGGAGGTCA
Tubb3 F	TTCTGGTGGACTTGGAACCT
Tubb3 R	CGCACGACATCTAGGACTGA
Rest F	CATGGCCTTAACCAACGACAT
Rest R	CGACCAGGTAATCGCAGCAG
p16 ^{Ink4A} F	GTACCCCGATTCAGGTGATG
p16 ^{Ink4A} R	GGAGAAGGTAGTGGGGTCCT

p19 ^{ARF} F	GCTCTGGCTTTCGTGAACAT
p19 ^{ARF} R	CGAATCTGCACCGTAGTTGA
p21 ^{Cip} F	ACATCTCAGGGCCGAAAAC
p21 ^{Cip} R	GGCACTTCAGGGTTTTCTCTT

B miRNA primer (qRT-PCRs)

Name	Cat. No.:
snRNA U6	MS00033740
mmu-miR-26a-5p	MS00032613
mmu-miR-26b	MS00001344
mmu-miR-9-5p	MS00012873
mmu-miR-124-3p	MS00029211
mmu-miR-218-3p	MS00006118
mmu-miR-135a-5p	MS00011130
mmu-miR-26a-2_1_PR	MP00005250
mmu-miR-26a-1_1_PR	MP00005243
mmu-miR-26b_1_PR	MP00005257

C genomic DNA primer (Endpoint PCRs)

Name	Sequence (5' - 3')
miR-26b del F	GTCTTGTGCAGCCCTCTTTC
miR-26b del R	GCTTAGGGGTGATCCACAAA
miR-26a1 del F	GCGCTGGTTGTTGTGTCTAA
miR-26a1 del R	CAGTGAGAGAAGCCCTGGAG
miR-26a2 del F	CATAGACTGGGTGGCGAGTT
miR-26a2 del R	GTTTTCCTCAGGTCCCTTCC
miR-26ts-CTDSP2 F	AACTGCCCTGCACCATAAGC
miR-26ts-CTDSP2 R	TGGCATCCTACAGTTCAAGTTTT

miR-26ts-REST F	CCTCGGCAGAAGCACCG
miR-26ts-REST R	CTGTTTCAGGGGAAGGGAGATTA

D Primer for cloning luciferase reporter constructs (lower case letters show mutation sites)

Name	Sequence (5' - 3')
Rest 3'UTR F	GATCCTCGAGCTGAGCCTCGGCAGAAGC
Rest 3'UTR R	GATCGCGGCCGCATGTTTAACTTATCCTACACAATCTTGACC
Ctdsp2 3'UTR F	GATCCTCGAGCCCATGGGTCCCTAATTAAAGAAGTTG
Ctdsp2 3'UTR R	GATCCTCGAGTGGTTGTCCCAAGTGTTGCTGATCGCGGCCG
	CCAGACTCTTAATGGCATCCTACAG
Rest mut 3'UTR F	ATTGGCTTAGTAAATatCTtaGAGAATTTGCCTGCTT
Rest mut 3'UTR R	AAAGCAGGCAAATTCTctAAGatATTTACTAAGCCAAT
Rest 2.mut 3'UTR F	CTAGTAACTAGTGGTAAcaTTagAATGGTAGCATTCTTTACAGC
Rest 2.mut 3'UTR R	GCTGTAAAGAATGCTACCATTctAAtgTTACCACTAGTTACTAG
Ctdsp2 mut 3'UTR F	TTGTTGTATTCAAAAcaTTagACTGTAGGATGCCATT
Ctdsp2 mut 3'UTR R	AATGGCATCCTACAGTctAAtgTTTTGAATACAACAA