COMPARISON 1: ANY IMPLEMENTATION STRATEGY VS NO ACTIVE INTERVENTION

	udy or Subgroup		erimen SD	al Total	Me		ontrol SD	Total	Weigh		nean difference andom, 95% Cl	Std. mean IV, Rando		Clinical practice (dichotomous)	Study or Subgroup	Experim Events		Co Events		Weight	Odds ra IV, Random,		ds ratio dom, 95% Cl
	n-2007	20.8	11.8			38.5	13.5	13			.35 [-2.22 , -0.49]									-			
	den-1997a Ingwane-2021a	2.52 60.33	0.66	2		2.78 53.29	0.52 5.89	11 10			0.41 [-1.14 , 0.32] 0.39 [-1.10 , 0.32]	-			VanGaal-2011a Oneil-2016	573 1449	1081 1648					49 , 0.69] 58 , 0.92]	-
	ngwane-2021a ng-2008	3.81	0.51			3.94 3.94	5.89 0.39	10			0.39 [-1.10 , 0.32] 0.28 [-0.84 , 0.27]	_			Bruce-2007b	1449	77				0.73 [0.		-
Oni	iki-2003b	-1.56	0.63	6	0	-1.4	0.6	30	1.4	4% -0	0.26 [-0.70 , 0.18]	_			Huizing-2009	22	42					30, 2.02]	
	nidi-2020	3.47	0.81	3		3.61	0.59	24			0.19 [-0.72 , 0.34]	-			Chan-2013	14	18					12, 5.16]	
	uld-1997 ssos-2022	4.31 80.7	2.35 14.9	1	-	4.73 81.7	2.18	15 50).18 [-0.89 , 0.53]).07 [-0.46 , 0.32]	-	-		Parker-2013	55	304					53, 1.16]	
	ingwane-2021b	62.8	9.52	4		61.7 63.29	5.89	11).07 [-0.46 , 0.32]).05 [-0.72 , 0.61]	1	-		Hendryx-1998	62	76					34 , 2.30]	
Edv	wards-2007	38.38	1.02	2		38.42	1.01	35		4% -0	0.04 [-0.53 , 0.45]	-	-		McDonald-2005a	106	121					37, 2.48]	<u> </u>
	land-2007	5.57	5.173	36		5.77	5.585	268			0.04 [-0.19 , 0.12]				VanGaal-2011b	74	196	76	196	2.1%	0.96 [0.	64 , 1.44]	+
	ntz-2001b an-2013	35 1.1	15.1 0.77	3		35.4 1.1	13.4 0.51	16 8).03 [-0.62 , 0.56]).00 [-0.87 , 0.87]	-	-		Hasselblad-2022	80	1959	77	1841	2.2%	0.98 [0.	71 , 1.34]	+
	rita-2014	4.1	0.6	4		4.1	0.6	36			0.00 [-0.45 , 0.45]				Fakih-2012	49	86		84	2.0%	1.04 [0.	57 , 1.91]	+
	kälä-2014	-2.47	1.38			-2.61	67	96			0.00 [-0.31 , 0.32]				vanLieshout-2015	113	995				1.12 [0.	83 , 1.51]	+
	rghese-2014 rvinen-2017	66.67 60.74	36.19 28.83	1		65.69 59.42	36.07 25.67	17 26			0.03 [-0.67 , 0.72]	-	-		Wood-2021	168	847	-			1.14 [0.		+
	nson-2019	-39.64	28.83	10			25.67	100).05 [-0.49 , 0.59]).08 [-0.20 , 0.36]	1			Berry-2022	795	964					95 , 1.50]	-
	esi-2013	1.93	12.32	29		0.85	8.29	280	1.5		0.10 [-0.06 , 0.27]				Jones-1998	31	63					58 , 2.47]	+-
	Rond-2000b	26.6	28.4	34		23.4	26.6	350			0.12 [-0.03 , 0.27]				Curtis-2011	1840	2238					04 , 1.40]	-
	ntz-2001a Ifin-2011	37 71.9	13.3 31	3		35.4 67.5	13.4 26.3	17 4).12 [-0.46 , 0.69]).13 [-1.26 , 1.52]	-	-		Fairall-2005 Nakatani-2012	226 23	1000 51					98 , 1.51]	-
	dener-2023	5.39	0.4	2		5.33	26.3	26).13 [-1.26 , 1.52]	_	_		Nakatani-2012 McDonald-2005b	23 108	51 121				1.30 [0.		+-
	ng-2019	14.31	0.63			14.19	0.98	12		3% 0	0.14 [-0.64 , 0.93]	-	-		Forberg-2016	93	121				1.30 [0. 1.34 [0.		
	dman-2004	-14.91	9.25	18		16.68	13.68	183			0.15 [-0.05 , 0.36]		-		Välimäki-2022	311	1666					14 , 1.65]	
	yer-2001 alal-2020	-1.71 7.66	1.897 1.86	14 5		-1.95 7.15	1.05 3.89	139 53).16 [-0.08 , 0.39]).17 [-0.22 , 0.55]				vonLengerke-2017	73	103					78 , 2.44]	L.
Ogo	den-1997b	2.9	0.44	2	1	2.78	0.52	12	1.3	3% 0	0.25 [-0.46 , 0.96]	1			Kalinowski-2015	6	73					41,5.64] -	
	yre-2012	21	2.28			20.39	2.43	51			0.26 [-0.13 , 0.64]		-		deRond-2000a	188	229					02, 2.48]	L
	ai-2011a umans-2005	26.3 4.39	3.6 0.48	4		25.4 4.19	3.2 0.85	48 73		.,).26 [-0.15 , 0.67]).29 [-0.04 , 0.61]		-		Bruce-2007a	13	81				1.64 [0.		_
	umans-2005 Jush-2017	4.39	0.48	5		4.19	0.85	43			0.29 [-0.04 , 0.61] 0.31 [-0.08 , 0.71]				Evans-2007	870	49061	405	45762	2.3%	2.02 [1.	80 , 2.28]	-
Kim	n-2014	2.43	4.66	1		1.2	2.51	16			0.32 [-0.39 , 1.03]		_		Westbrook-2017	674	1175	451	1177	2.3%	2.17 [1.	84 , 2.55]	-
	snain-2019	3.19	0.47			3.05	0.36	80			0.33 [0.02 , 0.64]		-		Huizing-2006	17	24	- 19	36	1.4%	2.17 [0.	73 , 6.51]	+
	1sink-2013 ommi-2021	1.63 33	0.65 22.24	1		1.42 25	0.52 21.04	20 10).35 [-0.32 , 1.03]).36 [-0.46 , 1.17]	-	-		Snelgrove-Clarke-2015	28	94	-			2.19 [1.	18 , 4.08]	
	-2010	3.7	0.77		4 7	3.4	0.73	6).37 [-0.73 , 1.47]	_	_		Teesing-2020	47	128				2.22 [1.		
Fra	incke-1997	15	2.6	3	2	13.7	3.6	39	1.4		0.40 [-0.07 , 0.88]		-		Schneider-2006	210	284				2.31 [1.		-
	mer-2020	3.66	0.45	3		3.43	0.66	29		.,	0.41 [-0.10 , 0.91]		-		Kroth-2006	575	44339				2.41 [2.		-
	lvaux-2004 har-2017	-45.29 1.88	13.58	5		50.82 1.72	13.26 0.42	50 97			0.41 [0.02 , 0.80] 0.45 [0.16 , 0.74]		-		Mancheril-2021	155	268 32				2.52 [1.]		-
	ruyama-2022	4.7	3.2	4		3.3	2.8	38			0.46 [0.01 , 0.91]		-		Smeland-2022 Pauwels-2018	12						83, 8.13]	
	-2020	6.61	1.23	8	-	6.01	1.32	76			0.47 [0.16 , 0.78]		-		Mazzuca-1987	85 23	105 49				2.62 [1.	43 , 4.79] 27 , 7.33]	
	rnburg-2019 ang-2009	3.61 40.88	0.52	4		3.33 39.2	0.61 3.31	42 16			0.49 [0.06 , 0.92]).51 [-0.20 , 1.21]		-		Lee-2015	60	102					79, 5.63]	
	odadadi-2013	40.88 81.57	3.17	4		39.2 77.8	6.99	31			0.53 [0.06 , 1.01]		-		Locke-2011	19	22				3.38 [0.7		
Fra	incke-1996	2.3	4.6			0.5	1.3	58		1%	0.55 [0.16 , 0.94]		-		Titler-2009	1	6				3.55 [0.12		
	iki-2003a	-1.02	0.66	6		-1.4	0.6 4.91	30			0.59 [0.14 , 1.03]		-		Blanco-Mavillard-2021	101	740	31			3.61 [2.		· · ·
	n-2022 aill-2018	37.9 1.42	5.36 0.51	3		34.77 1.07	4.91 0.48	30 11			0.60 [0.08 , 1.12]).68 [-0.18 , 1.54]		-		Koh-2009	21	21	17	18	0.4%	3.69 [0.1		
	hzadi-2019	68.6	32.43	2		48.6	15.41	26			0.78 [0.21 , 1.34]		_		Lundgren-1999	29	36	10	19	1.3%	3.73 [1.1	0, 12.65]	
Yun	n-2022	84.56	7.68	1		78.33	7.43	12		2% 0	0.80 [-0.04 , 1.63]				Nowalk-2005	591	1534	- 7	53	1.7%	4.12 [1.	85 , 9.18]	
	med-2019 elands-2004	59.6 12.24	34.6 6.48	18		29.5 6.5	34.18 4.36	44 24			0.87 [0.53 , 1.21] 1.02 [0.42 , 1.62]		-		Gengiah-2021	33229	35164				4.40 [4.		· ·
	ki-Turja-Rostedt-2020	3.14	0.40		-	2.51	4.30 0.64	12			1.02 [0.42 , 1.82]		-		Collins-2021	338	374				4.41 [2.		-
Will	kinson-2008	13.76	4.17	8	4	9.39	3.59	86	1.4	1%	1.12 [0.80 , 1.44]		-		Carroll-2012	49	55				4.41 [1.6		——
	ight-1997	98.09	3.52	3		90.95	7.28	30			1.23 [0.68 , 1.79]		-		Kyriacos-2015	4	30				4.46 [0.4	· ·	
	mon-2022 Barbieri-2020	32.2 5.2	3.46 0.72			25.32 3.97	6.9 1	70 101			1.25 [0.89 , 1.62] 1.41 [1.10 , 1.71]		-		Marcantonio-2010	30	74 43				4.55 [1.7		
	ande-2020	93.5	8.32	8		78.8	11.4	80			1.47 [1.12 , 1.82]		1		Tornvall-2009	21					4.77 [1.5	-	
	mati-2022	93.64	13.89	1		72.76	13.09	13		2%	1.50 [0.61 , 2.39]		-		Murtaugh-2005a Saevareid-2019	16 15	114 40				4.82 [1.0 5.40 [1.6		
	marverdi-2019 ne-1996	28.4 0.43	4.337	20		21.47 0.28	4.15 0.09	9 200			1.55 [0.47 , 2.64] 1.57 [1.35 , 1.80]				Mever-2003	158	40				5.81 [3.		
	ne-1996 no-2022	0.43 18.03	0.1 1.98	20		0.28 13.45	0.09	200			1.57 [1.35 , 1.80] 1.73 [1.17 , 2.30]		-		Murtaugh-2005b	28	439				6.01 [1.7		
	rami-2019	16.52	2.08	6		11.21	2.84	65			2.12 [1.69 , 2.55]		2		Manias-2011	11	13				6.42 [1.0		
	gherzadeh-2021	118.45	4.27	6		00.49	10.34	67			2.24 [1.80 , 2.68]		-		Senarath-2007	24	24				7.98 [0.39		
	vak-2019 namgholi-2020	30.09 72.84	3.49 7.8	5		23 47.48	2.17 8.3	58 21			2.45 [1.95 , 2.94] 3.09 [2.17 , 4.01]		-		Wagner-2005	3	24				8.95 [0.44		
	hooni-2018	14.3	1.5			47.40 8.8	0.5	60			3.64 [3.05 , 4.23]		-		Srikrajang-2005	102	116	47	108	1.9%	9.46 [4.8		
Нар	pp-2014a	7.37	0.42	1	0	5.52	0.41	5	0.6	5%	4.18 [2.13 , 6.22]				Davies-2002	35	37	23	36	1.0%	9.89 [2.0		
	rifsanaiey-2022a	59.96	3.47	5		46.02	2.5	25			4.33 [3.47 , 5.19]				Shevlin-2002	78	205	7	143	1.7%	11.93 [5.3		
	pp-2014b rifsanaiev-2022b	7.5 64.37	0.41	1		5.52 46.02	0.41 2.5	5 25			4.55 [2.37 , 6.72] 4.90 [3.96 , 5.84]				Ziyaeifard-2018	20	73				56.33 [3.33		→
	deghi-2018	50.75	2.48	5		40.02 32.42	3.42	50			6.09 [5.14 , 7.04]				Lacko-1999	6	6		2	0.2%	65.00 [0.99 ,	4259.47]	
	hi-2021	251.47	8.83			83.32	11.28	55			6.68 [5.71 , 7.65]												1.
Gha	azali-2020	13.83	0.19	6	9	9.48	0.18	74	0.4	1% 23.4	40 [20.63 , 26.17]				Total (95% CI)		149133			100.0%	2.11 [1.]	70 , 2.62]	•
Tota	tal (95% CI)			450	1			4012	100.0)% (0.94 [0.72 , 1.15]				Total events:	44163	207 00	34206		1). 12 - 077	,	H	
Het	terogeneity: Tau ² = 0.82;					0001); l²	= 95%						· .		Heterogeneity: Tau ² = 0.				< 0.0000	1); I* = 95%	0	0.01 0.1	1 10 10 Eavours imp i
	st for overall effect: Z = 8.	.46 (P < 0.0	00001)									10 -5 0	5 10		Test for overall effect: Z	– 0.02 (P <	0.00001	,				Favours no intervention	Favours imp. i

nt		Exp	erimenta	al		Control			Std. mean difference	Std. mean difference
omes	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
inuous)	Manias-2011	-3.14	3.26	1	-4.17	3.26	1		Not estimable	
	Rantz-2001b	10.2	4.2	10	15.2	6.1	16	5.2%	-0.89 [-1.72 , -0.05]	
	Rantz-2001a	13.8	7	37	15.2	6.1	17	7.8%	-0.20 [-0.78, 0.37]	-
	Cleland-2007	3.14	0.457	99	3.2	0.451	78	11.6%	-0.13 [-0.43 , 0.17]	-
	Curtis-2011	69.67	20.74	632	68.8	23.14	632	13.7%	0.04 [-0.07 , 0.15]	
	vanLieshout-2015	4.9	1.52	865	4.8	1.53	631	13.8%	0.07 [-0.04 , 0.17]	
	Galfin-2011	-3.33	1.46	6	-3.49	1.61	21	4.6%	0.10 [-0.81 , 1.01]	
	Boumans-2005	7.35	1.07	46	6.93	1.58	46	10.0%	0.31 [-0.10 , 0.72]	-
	Wilkinson-2008	-17.4	8	59	-20.2	7.6	68	10.8%	0.36 [0.01 , 0.71]	+
	Ziyaeifard-2018	-2.3	0.46	73	-3.18	1.27	73	11.0%	0.92 [0.58 , 1.26]	+
	DeBarbieri-2020	-6.1	3.2	101	-10.4	4.9	90	11.5%	1.05 [0.74 , 1.35]	-
	Total (95% CI)			1929			1673	100.0%	0.23 [-0.01 , 0.47]	•
	Heterogeneity: Tau ² =	0.10; Chi2	= 71.95, d	if = 9 (P <	0.00001)	I ² = 87%				ľ
	Test for overall effect:	Z = 1.91 (F	= 0.06)							-4 -2 0 2 4
	Test for subgroup diffe	rences: No	t applicat	ole					Favours	s no intervention Favours imp. interve

nowledge		Exp	erimenta	al		Control			Std. mean difference	Std. mean difference
ontinuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Hlungwane-2021a	54.61	12.15	33	70.05	12.4	10	2.7%	-1.24 [-2.00 , -0.48]	
	Hlungwane-2021b	62.18	13.6	40	70.05	12.4	11	2.8%	-0.58 [-1.26 , 0.10]	
	Ogden-1997b	2.9	0.77	21	3.26	0.92	11	2.7%	-0.43 [-1.16 , 0.31]	
	Omidi-2020	3.89	0.38	33	3.97	0.44	24	2.9%	-0.19 [-0.72 , 0.33]	-
	Morita-2014	7.4	1.4	40	7.4	1.4	36	3.0%	0.00 [-0.45 , 0.45]	_
	Grommi-2021	12.79	8.34	14	12.75	7.514	10	2.6%	0.00 [-0.81 , 0.82]	
	Karvinen-2017	6.26	1.4	27	6.23	1.63	26	2.9%	0.02 [-0.52 , 0.56]	
	Filmer-2020	3.79	0.57	33	3.74	0.54	29	2.9%	0.09 [-0.41 , 0.59]	_
	Ogden-1997a	3.36	0.66	22	3.26	0.92	12	2.8%	0.13 [-0.58 , 0.83]	
	Koh-2009	10.3	1.8	11	9.8	1.8	9	2.6%	0.27 [-0.62 , 1.15]	
	Huang-2009	12.74	1.43	16	11.77	1.88	16	2.8%	0.57 [-0.14 , 1.27]	
	Yang-2019	5.2	1.58	13	4.13	1.82	12	2.7%	0.61 [-0.20 , 1.41]	
	Kim-2014	27	3.36	15	23.26	5.57	16	2.7%		
	Passos-2022	80.4	6.2	50	75	6.9	50	3.0%	0.82 [0.41 , 1.23]	-
	Kyriacos-2015	61.4	27.9	18	41.2	16.22	18	2.8%	0.87 [0.18 , 1.55]	
	Maruyama-2022	7.9	7.9	41	1.3	6.8	38	3.0%	0.88 [0.42 , 1.35]	_
	Lim-2020a	55.8	9.61	5	46.45	8.47	5	2.1%	0.93 [-0.41 , 2.28]	
	Lin-2008	11.59	3.69	42	7.87	3.37	39	3.0%	1.04 [0.58 , 1.51]	
	Memon-2022	17.97	3.49	70	13.61	4.04	70	3.0%	1.15 [0.79 , 1.51]	_
	Bano-2022	11.38	2.26	34	8.91	1.91	33	2.9%		
	Kim-2022	17.5	1.22	30	15.2	1.85	30	2.9%	1.45 [0.88 , 2.02]	_
	Varghese-2014	20	2.56	15	14	4.95	17	2.7%	1.46 [0.66 , 2.25]	
	Lim-2020b	55.8	9.61	5	39.8	9.58	5	1.9%	1.51 [0.00 , 3.01]	
	Akande-2020	85.9	9.26	82	69.5	10.3	80	3.0%		_
	Sung-2008	82.21	8.75	24	67.92	7.17	26	2.8%	1.77 [1.10 , 2.43]	
	Yun-2022	29.73	1.8	12	24.57	3.32	12	2.5%		
	Alhalal-2020	40.96	5.17	51	30.26	5.89	53	3.0%	1.91 [1.45 , 2.38]	
	Kavak-2019	9.24	1.56	53	6.67	1.08	58	3.0%		
	Lim-2020c	61.1	4.26	5	46.45	8.47	6	1.9%		
	Jeihooni-2018	9.3	1.3	60	5.2	2.6	60	3.0%	1.98 [1.54 , 2.42]	
	Zarifsanaiey-2022a	8.28	1.93	50	4.28	1.57	25	2.8%	2.18 [1.58 , 2.77]	
	Liu-2010	15.3	2.4	85	9.4	2.5	76	3.0%	2.40 [1.99 , 2.81]	
	Lim-2020d	61.1	4.26	4	39.8	9.58	5	1.5%	2.44 [0.44 , 4.44]	
	Tsai-2011a	6.7	1.5	45	3.3	1	48	2.9%	2.66 [2.10 , 3.23]	
	Gomarverdi-2019	19.53	0.929		14.6	2.164		2.0%		
	Sadeghi-2018	14.38	0.64	50	10.63	1.56	50	2.9%		
	Zarifsanaiey-2022b	8.95	0.92	50	4.28	1.57	25	2.7%		
	Total (95% CI)			1208			1060	100.0%	1.16 [0.82 , 1.49]	
	Heterogeneity: Tau ² =	0.94; Chi2:	= 416.12.			1); l ² = 91				
	Test for overall effect:					.,,				-4 -2 0 2 4

	1200	1000	100.070	1.10 [0.01 , 1.40]			•		
Heterogeneity: Tau ² = 0.94; Chi ² = 416.12, df	= 36 (P < 0.00001); I ² = 91%								
Test for overall effect: Z = 6.74 (P < 0.00001)							2		
Test for subgroup differences: Not applicable				Favours n	io interv	ention	Favours	s imp. in	tervention

Patient outcomes (dichotomous)	Study or Subgroup	Experin Events	nental Total	Cont Events	trol Total	Weight	Odds ratio IV, Random, 95% Cl	Odds ratio IV, Random, 95% Cl
(410110101110400)	Mancheril-2021	242	268	209	210	3.3%	0.04 [0.01 , 0.33]	
	Välimäki-2022	1	13	4	12	2.6%	0.17 [0.02 , 1.78]	·
	Oneil-2016	1	1000	2	1000	2.5%	0.50 [0.05 , 5.52]	
	Marcantonio-2010	22	43	42	70	9.4%	0.70 [0.32 , 1.50]	
	Blanco-Mavillard-2021	269	726	280	754	13.1%	1.00 [0.81 , 1.23]	+
	Forberg-2016	316	674	259	618	13.1%	1.22 [0.98 , 1.52]	-
	Senarath-2007	21	223	17	223	10.1%	1.26 [0.65 , 2.46]	
	Wagner-2005	32	44	34	51	8.5%	1.33 [0.55 , 3.22]	_ .
	Meyer-2003	39	483	21	459	11.0%	1.83 [1.06 , 3.16]	
	Collins-2021	118	363	31	234	11.8%	3.15 [2.04 , 4.88]	-
	Lee-2015	49	103	18	102	10.3%	4.23 [2.23 , 8.03]	
	Lundgren-1999	29	36	2	19	4.3%	35.21 [6.55 , 189.26]	
	Total (95% CI)		3976		3752	100.0%	1.46 [0.96 , 2.22]	•
	Total events: Heterogeneity: Tau ² = 0	1139 24: Chiž -	60 50 df	919 - 11 (P < 1	0.00001)	12 - 0.40/		
	Test for overall effect: Z Test for subgroup differe	= 1.76 (P =	0.08)		0.00001)	, 1 - 04 /0		0.01 0.1 1 10 100 s no intervention Favours imp. intervention

Perceived control		Ex	periment			Control			Std. mean difference	Std. mean difference
(continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
	Ogden-1997b	5.1	1.44	21	5.3	1.18	11	5.0%	-0.14 [-0.87 , 0.59]	
	Woodcock-1999	4.35	0.72	29			20			1
	Roelands-2004	25.2	2.66	25	25.25	2.72	24	5.3%		
	Edwards-2007	-3.02	13.01	45			18			
	Ogden-1997a	5.43	0.79	22	5.3	1.18	12	2 5.0%		
	Khodadadi-2013	56.73	6.61	42	55.12	3.91	31			
	Bernburg-2019	2.9	0.5	44	2.71	0.51	42	5.6%		
	Kim-2022	39.4	5.06	30	37.13	6.7	30	5.4%	0.38 [-0.13 , 0.89]	L
	Tsai-2011a	25.4	4	45	23.8	3.9	48	5.6%		-
	Morita-2014	4.5	0.8	40	4.1	1.1	36	5.6%		
	Sung-2008	83.12	6.94	24	79.19	10.19	26	5.3%		
	Liu-2010	3.8	0.77	85	3.4	0.72	76	5.8%	0.53 [0.22 , 0.85]	-
	Yun-2022	83.86	12.6	12	75.3	9.31	12	4.7%		
	Wilkinson-2008	104.65	13.65	63	90.85	20.16	71	5.7%	0.79 [0.44 , 1.14]	-
	Galfin-2011	8	1	4	6.8	1.1	4	3.1%	0.99 [-0.55 , 2.54]	
	Karvinen-2017	8.46	1.28	27	6.99	1.43	26	5.3%	1.07 [0.49 , 1.65]	
	Alhalal-2020	5.35	1.08	51	3.29	1.41	53	5.6%	1.62 [1.18 , 2.07]	-
	Sadeghi-2018	33.61	2.48	50	26.36	3.32	50	5.4%		
	Jeihooni-2018	16.9	2.6	60	9.1	1.5	60	5.3%	3.65 [3.06 , 4.24]	
	Total (95% CI)			719			650	100.0%	0.74 [0.35 , 1.13]	•
	Heterogeneity: Tau ² =	0.66; Chi ²	= 195.79	df = 18 (P < 0.000	001); I ² = 91	1%			•
	Test for overall effect:	Z = 3.73 (I	P = 0.000	2)					-	-4 -2 0 2 4
	Test for subgroup diffe	erences: N	ot applica	ble					Favours no	intervention Favours imp. intervention
ocial norms										
continuous)		Expe	rimental		Control		St	d. Mean D	lifference	Std. Mean Difference
	Study or Subgroup	Mean	SD To	tal Mea	n SD	Total W	eiaht	IV. Rando	om. 95% Cl	IV. Random, 95% Cl
	Roelands-2004	25.33		25 24.8			3.4%	/	0.43, 0.69]	— —
	Edwarda 2007	2 6 0		46 7.0			n e o/.		0.05 1.061	L

Intention		Exp	perimenta	al		Control			Std. mean difference	Std. mean difference
(continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Morita-2014	6.2	0.7	40	6.2	0.6	36	37.1%	0.00 [-0.45 , 0.45]	-
	Chan-2013	3.7	0.68	18	3.3	0.86	11	29.2%	0.52 [-0.25 , 1.28]	
	Edwards-2007	-0.09	2.26	44	-2.67	2.25	18	33.7%	1.13 [0.54 , 1.71]	-
	Total (95% CI)			102			65	100.0%	0.53 [-0.19 , 1.25]	•
	Heterogeneity: Tau ² =			= 2 (P =	0.01); I ² =	78%				
	Test for overall effect:									-4 -2 0 2 4
	Test for subgroup diffe	erences: No	it applicat	ole					Favours n	o intervention Favours imp. intervention

	Exhe	annen	itai	U U	UTILI UT			stu. Mean Difference	Stu, Mean Direfence
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Roelands-2004	25.33	3.5	25	24.83	3.84	24	49.4%	0.13 [-0.43, 0.69]	
Edwards-2007	-3.69	7.04	45	-7.28	7.04	18	50.6%	0.50 [-0.05, 1.06]	
Total (95% CI)			70			42	100.0%	0.32 [-0.07, 0.72]	•
Heterogeneity: Tau ² =				= 1 (P =	0.36);	I² = 0%			-4 -2 0 2 4
Test for overall effect:	Z = 1.60) (P = 0).11)						Favours no intervention Favours imp. intervention

Attitude (dichotomous) N/A

Skills (continuous)

Experimental Control Std. mean difference Std. mean difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl IV, Random, 95% CI Hasnain-2019 3.59 0.39 85 3.54 0.46 80 12.7% 0.12 [-0.19 , 0.42] 20 11.0% 31 12.0% 0.33 [-0.34 , 1.01] 0.64 [0.17 , 1.12] Jansink-2013 2.37 0.54 15 2.2 0.47 Khodadadi-2013 86.8 11.35 42 81.06 2.98 _ 0.67 [-0.63 , 1.96] 0.70 [0.18 , 1.23] l im-2020d 3.07 0.27 5 2.8 0.44 5 7.6% 30 21.13 Kim-2022 23.2 3.33 2.39 30 11.8% 5 7.5% 0.80 [-0.52 , 2.12] Lim-2020b 3.16 0.37 5 2.8 0.44 Ghazali-2020 197.93 20.27 69 178.07 20.04 74 12.6% 0.98 [0.63 , 1.33] Lim-2020c 3.07 0.27 4 2.61 0.36 6 5 6.9% 1.26 [-0.19 , 2.71] Lim-2020a 3.16 0.37 5 2.61 0.36 6.8% 1.36 [-0.10 , 2.82] Emamgholi-2020 72.84 7.8 40 47.48 8.3 40 11.1% 3.12 [2.46 , 3.78] Total (95% CI) 300 296 100.0% 0.97 [0.42 , 1.52] Heterogeneity: Tau² = 0.59; Chi² = 70.25, df = 9 (P < 0.00001); l² = 87% Test for overall effect: Z = 3.47 (P = 0.0005) -4 -2 Favours no intervention 2 4 Favours imp. intervention Ó Test for subgroup differences: Not applicable

ide			perimenta			Control			Std. mean difference	Std. mean difference
inuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
	Woodcock-1999	84.81	13.08	29	90.55	9.05	20	3.4%	-0.49 [-1.06 , 0.09]	_
	Roelands-2004	25.04	3.57	25	25.79	3.45	24	3.5%	-0.21 [-0.77 , 0.35]	-
	Ogden-1997a	5.05	0.79	22	5.23	1.04	12	3.3%	-0.20 [-0.90 , 0.51]	
	Ogden-1997b	5.05	1.2	21	5.23	1.04	11	3.3%	-0.15 [-0.88 , 0.58]	
	Omidi-2020	3.59	0.65	33	3.68	0.56	24	3.5%	-0.14 [-0.67 , 0.38]	-
	Yang-2019	15.89	2.51	13	16.29	3.24	12	3.2%	-0.13 [-0.92 , 0.65]	_
	Morita-2014	5.7	0.9	40	5.8	0.8	36	3.6%	-0.12 [-0.57 , 0.33]	_
	Lim-2020c	3.67	0.47	5	3.68	0.28	6	2.7%	-0.02 [-1.21 , 1.16]	
	Smeland-2022	32.7	4.51	32	32.7	4.24	26	3.5%	0.00 [-0.52 , 0.52]	
	Lim-2020a	3.69	0.36	5	3.68	0.28	5	2.6%	0.03 [-1.21 , 1.27]	
	Lim-2020d	3.67	0.47	4	3.65	0.43	5	2.5%	0.04 [-1.28 , 1.35]	
	Huang-2009	30.54	3.76	16	30.38	3.41	16	3.3%	0.04 [-0.65 , 0.74]	
	Karvinen-2017	5.16	0.75	27	5.1	0.88	26	3.5%	0.07 [-0.47 , 0.61]	<u> </u>
	Lim-2020b	3.69	0.36	5	3.65	0.43	5	2.6%	0.09 [-1.15 , 1.33]	
	Kim-2014	29.68	8.95	15	28.43	9.45	16	3.3%	0.13 [-0.57 , 0.84]	
	Dudener-2023	4.5	0.42	26	4.44	0.42	26	3.5%	0.14 [-0.40 , 0.69]	<u> </u>
	Francke-1996	7.6	1.3	48	7.4	1.3	58	3.6%	0.15 [-0.23 , 0.54]	_
	Filmer-2020	3.4	0.54	33	3.25	0.76	29	3.5%	0.23 [-0.27 , 0.73]	
	Hasnain-2019	3.36	0.34	85	3.27	0.39	80	3.7%	0.25 [-0.06 , 0.55]	-
	Delvaux-2004	-2.616	0.653	53	-2.848	0.677	58	3.6%	0.35 [-0.03 , 0.72]	-
	Edwards-2007	-27.53	16.328	41	-33.24	15.528	14	3.4%	0.35 [-0.26 , 0.96]	
	Yun-2022	32.43	3.02	12	31.03	2.37	12	3.2%	0.50 [-0.32 , 1.31]	
	Zarifsanaiey-2022a	30.16	5.2	50	27.9	2.38	25	3.5%	0.50 [0.01 , 0.99]	
	Lin-2008	75.71	5.99	42	70.85	5.48	39	3.6%	0.84 [0.38 , 1.29]	-
	Kavak-2019	32.09	1.23	53	28.4	4.08	58	3.6%	1.19 [0.79 , 1.60]	-
	Bagherzadeh-2021	180.5	13.15	64	153.59	18.13	67	3.6%	1.68 [1.28 , 2.08]	-
	Alhalal-2020	5.99	0.92	51	4.06	1.17	53	3.5%	1.82 [1.36 , 2.28]	
	Sadeghi-2018	28.61	1.72	50	23.45	2.78	50	3.5%	2.22 [1.71, 2.72]	-
	Zarifsanaiey-2022b	37.42	2.42	50	27.9	2.38	25	3.2%	3.91 [3.11 , 4.72]	
	Jeihooni-2018	21.6	2	60	13	2	60	3.4%	4.27 [3.62 , 4.93]	
	Total (95% CI)			1010			898	100.0%	0.59 [0.23 , 0.95]	
	Heterogeneity: Tau ² =	0.91; Chi2	= 375.42.	df = 29 (F	- < 0.0000)1); l ² = 92	2%		- / -	· · ·
	Test for overall effect:								-	-4 -2 0 2 4

COMPARISON 2: MULTIFACETED STRATEGY VERSUS SINGLE COMPONENT STRATEGY

Clinical practice (continuous)	Study or Subgroup	Experim Mean SD		Mean	Control SD	Total Wei		ean difference ndom, 95% Cl	ora: mou	n difference om, 95% Cl	Clinical practice (dichotomous)	Study or Subgroup	Experir Events		Cor Events		Weight	Odds ra IV, Random,		Odds IV, Randor	
· · ·	Ogden-1997c		.66 22		0.44			i6 [-1.28 , -0.05]	-	-	、 · ·	Seto-1989b	8	24	46	52	4.8%	0.07.00	02 , 0.22]		
	Sung-2008 Noome-2017		.51 24		0.39 1.1			28 [-0.84 , 0.27] 09 [-0.36 , 0.18]	-	•		Seto-1989a	9	24			5.1%		05,0.41]		
	Chen-2016		.09 147		1.19			07 [-0.37 , 0.24]		1		Cheater-2006e	37	66			5.7%		19,0.61]		
	Jansson-2017		1.5 11		1.7			06 [-0.93 , 1.06]	_	I_		Weaver-2016d	9	27	5		4.3%	-	09,1.86]		_
	Seo-2020		.57 30		2			14 [-0.36 , 0.65]		-		Cheater-2006d	38	66	-	-	5.8%		43 , 1.31]		-
	Sama-2012		1.5 209		1.46			22 [-0.00 , 0.44]		+		Cheater-2006a	38	65			5.8%		48 , 1.48]		
	deRuijter-2018		271 121		1.597			23 [-0.03 , 0.50]		-		McDonald-2005c	106	121	108		5.5%		39, 1.87]		
	Elzeky-2022 Gao-2022		14 35 .97 156		13.9 1.36			37 [-0.10 , 0.85] .53 [0.31 , 0.76]		-		Weaver-2016e	16	25			4.1%		18 , 4.44]		
	Evans-1997		.66 21		28.85			.89 [0.22 , 1.56]		•		Rankin-2013	132	183			5.9%		80, 1.96]		_
	Mousavi-2022		.16 33		0.94			.37 [0.83 , 1.91]				Vicdan-2019	70	110			5.8%		83 , 2.46]	T	
												Esche-2015	2	15			3.4%	1.46 [0.1			
	Total (95% CI)		897			717 10	0.0% 0.	23 [-0.01 , 0.46]		♦		Kalinowski-2015	- 6	73			4.6%		41,5.64]		
	Heterogeneity: Tau ² = 0			P < 0.00001); I ² = 77%							Seto-1991a	20	39			5.6%		84 , 3.49]		_
	Test for overall effect: Z Test for subgroup differ							Favoure	-4 -2 single strategy	0 2 4 Favours multifaceted		Seto-1991b	20	40			5.5%		85,4.03]	Ι	_
	reactor aubgroup uner	ences. Not app	Cable					1 avours	single strategy	Tavours multilaceted		Donati-2020	30	38			5.2%		76 , 5.68]	I	
												Weaver-2016a	22	27			4.1%	3.52 [0.6		I	
												Kyriacos-2019	38	38			2.2%	5.27 [0.24			
												Middleton-2011	242	522			6.0%		40,9.13]		/
												Srikrajang-2005	102	116			5.6%	9.46 [4.8			-
												Harrison-2000	40	48				36.67 [11.71			
												Total (95% CI)	40	1668	0		100.0%	-	76 , 2.40]		
												Total events:	985	1000	1112		100.0%	1.35 [0.	70,2.40]	1	
												Heterogeneity: Tau ² =		- 206 45			1). 12 - 01	9/			
												Test for overall effect:			, ui – 19 (F < 0.0000), i – 3 1	/0	0.01 Favours single s	0.1 1	10 100 Favours multifaceted
												Test for subgroup diff		,	hle				r avours single a	suategy	Tavouis multilaceteu
												root for oubgroup and		or applied	0.0						
Patient outcomes (continuous)	Study or Subgrou		erimental SD To	tal Mear	Contro n SD			an difference Fixed, 95% Cl		difference ed, 95% Cl	Knowledge (continuous)	Study or Subgroup		imental SD To	tal Me	Contr an SD			d. mean difference /, Random, 95% Cl		. mean difference Random, 95% Cl
(continuous)	Chen-2016	-0.36	0.69	88 -0.	.63 0.7	77 82	63.4% 0	.27 [0.05 , 0.49]		•		Johnston-2007	31.2	4.2	17	31.3 5.	17 2	5 9.7%	-0.02 [-0.64 , 0.60]		
	Gao-2022	-2.76	1.12	156 -3	.47 1.4	47 156	36.6% 0	71 [0.42 , 1.00]		Ŧ		Noome-2017		0.849		0.71 0.8		4 11.3%	0.02 [-0.24 , 0.29]		Ţ
												deRuijter-2018		1.242		.845 1.1		3 11.3%	0.03 [-0.24 , 0.29		1
	Total (95% CI) Heterogeneity: Chi ²		(D - 0.00)- I	244		238	100.0% 0	43 [0.26 , 0.61]				Vicdan-2019	14.35	3.52	110	12.9 2.	.09 10	9 11.3%	0.50 [0.23 , 0.77		-
	Test for overall effe			* = 82%					. <u></u>			Seo-2020	10.63	2.33	30	9.2 2.		0 10.2%	0.61 [0.09 , 1.13]		
	Test for subgroup d								100 -50 single strategy	0 50 100 Favours multifaceted		Ogden-1997c	3.36	0.66	22			.1 9.7%	0.63 [0.02 , 1.24]		
									o o,			Jansson-2017	2.8	1.5	11			6 7.4%	0.76 [-0.28 , 1.80]		+
												Sung-2008	82.21 81.8	8.75 11.7		7.92 7. 55.3 1.		6 9.5% 15 9.9%	1.77 [1.10 , 2.43]		
												Elzeky-2022 Mousavi-2022	8.58	11.7	33			3 9.9% 3 9.6%	2.01 [1.43 , 2.60] 2.35 [1.71 , 2.98]		-
												10003201-2022	0.00	1.00	55	4.7 1.		5 5.0%	2.55 [1.71, 2.50]		
												Total (95% CI)			550		47	2 100.0%	0.83 [0.37 , 1.30]		•
												Heterogeneity: Tau ² = 0			= 9 (P < 0.	00001); I² =	91%				
												Test for overall effect: Z								-4	2 0 2 4
												Test for subgroup differ	ences: Not a	pplicable					Favou	rs single stra	tegy Favours multifac
Patient		Experime	ental	Control			Odds ratio		Odds ratio	0	Perceived		Experin	nental		Control		Std. r	mean difference	Std. me	an difference
outcomes	Study or Subgroup	Events	Total Ev	vents To	otal We	eight IV, R	andom, 95	% CI	IV, Random, 98	5% CI	control	Study or Subgroup	Mean SI	D Tota	al Mear	n SD	Total	Weight IV, R	andom, 95% Cl	IV, Ran	dom, 95% Cl
(dichotomous)											(continuous)	doDuiltor 2010	3 006 0	632	121 3.0	C1 0.75	100	50.00/	0.001.0.24.0.401		
	Kyriacos-2019	1	36	1			.06 [0.06 ,					deRuijter-2018 Ogden-1997c				61 0.72 5.1 1.44			0.08 [-0.34 , 0.18] 0.28 [-0.32 , 0.88]		•
	Cheater-2006a	11	55	34			1.14 [0.53		-+			Sung-2008			24 79.				0.44 [-0.12 , 1.00]		
	Cheater-2006e	12	56	30			1.24 [0.58					<i>a</i>					20				1-
	Middleton-2011	13	483	13			1.26 [0.58		-			Total (95% CI)			167		150	100.0%	0.13 [-0.21 , 0.47]		•
	Cheater-2006d	12	55	26	179 2	24.5%	1.64 [0.77	3.52]	+			Heterogeneity: Tau ² = 0.			P = 0.18);	² = 41%					· .
	Total (05%) ON				4475	00.0%	1 20 70 00	1 001				Test for overall effect: Z								-4 -2	0 2 4
	Total (95% CI)	49	685	104	1175 10	0.0%	1.30 [0.89 ,	1.90]	•			Test for subgroup differe	ences: Not ap	plicable					Favours s	ngle strategy	Favours multifaceted
	Total events: Heterogeneity: Tau ²		0.52 44-	104 4 (P = 0.9	7): 12 - 00/				<u> </u>												
	Test for overall effect			4 (P = 0.9)	r), 1* = 0%	5		0.01 avours single s	0.1 1 trategy E	10 100 avours multifaceted											
	Test for subgroup dif							avours single s	ualeyy Fi	avours munilaceted											
	reactor aungroup dif	ICICILES. NOL	applicable																		
Intention						N/A					Social norms						N	/A			
(continuous)											(continuous)										
Attitude						N/A					Skills						N.	/A			
(dichotomous)											(continuous)										

Attitude		Exp	perimenta	al		Control			Std. mean difference	Std. mean difference
(continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Ogden-1997c	5.05	0.79	22	5.05	1.2	21	19.0%	0.00 [-0.60 , 0.60]	
	deRuijter-2018	4.231	0.586	121	4.195	0.614	103	56.9%	0.06 [-0.20 , 0.32]	•
	Seo-2020	41.43	3.66	30	39.53	3.42	30	24.1%	0.53 [0.01 , 1.04]	-
	Total (95% CI)			173			154	100.0%	0.16 [-0.13 , 0.45]	•
	Heterogeneity: Tau ² =	0.02; Chi2	= 2.76, df	= 2 (P =	0.25); I ² =	28%				ſ
	Test for overall effect:	Z = 1.10 (P	= 0.27)							-4 -2 0 2 4
	Test for subgroup diffe	erences: No	t applicat	ole					Favours	single strategy Favours multifaceted

COMPARISON 3: STRATEGIES INCLUDING INDIVIDUAL CLINICIAN EDUCATION (ICE) AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE ICE

Study or Subgroup	Ex Mean	SD	al Total	M	Mean	SD SD	Total \		Std. mean difference IV, Random, 95% Cl	Std. mean difference IV, Random, 95% Cl	practice (dichotomous)	Study or Subgroup	Experin Events		Con Events		Weight	Odds ratio IV, Random, 95% CI	Odds IV, Randor
Kim-2007	20.8	11.8		13	38.5	13.5	13	1.3%	-1.35 [-2.22 , -0.49]		(dichotonious)	Seto-1989a	9	25	46	52	1.4%	0.07 [0.02 , 0.24]	
Ogden-1997a	2.52	0.66		22	2.78	0.52	12	1.4%	-0.41 [-1.12 , 0.30]			Seto-1989b	8	23		63		0.13 [0.05 , 0.37]	
Hlungwane-2021a	60.33	7.83		33	63.29	5.89	10	1.4%	-0.39 [-1.10 , 0.32]				-						
Sung-2008	3.81	0.51		24	3.94	0.39	26	1.5%	-0.28 [-0.84 , 0.27]	_		VanGaal-2011a	573	1081				0.58 [0.49 , 0.69]	-
Jo-2015	52.9	9.08			55.09	5.6	20	1.5%	-0.28 [-0.90 , 0.33]			Bruce-2007b	6	77	5	48	1.3%	0.73 [0.21 , 2.53]	
Omidi-2020	3.47	0.81		33	3.61	0.59	24	1.6%	-0.19 [-0.72 , 0.34]			Oneil-2016	1449	1648	1420	1563	2.2%	0.73 [0.58 , 0.92]	-
Passos-2022	80.7	14.9		50	81.7	12.4	50	1.6%	-0.07 [-0.46 , 0.32]	_		Huizing-2009	22	42	17	29	1.6%	0.78 [0.30 , 2.02]	_
Chen-2016	0.64	0.93		88	0.71	1.16	82	1.7%	-0.07 [-0.37 , 0.23]	T		Chan-2013	14	18		11		0.78 [0.12 , 5.16]	
	62.8	9.52			63.29	5.89	02 11	1.7%		1		Parker-2013			-				
Hlungwane-2021b		9.52		40 66		5.585	263	1.5%	-0.05 [-0.72 , 0.61]	-			55	304				0.78 [0.53 , 1.16]	-
Cleland-2007	5.57				5.77				-0.04 [-0.20 , 0.12]	1		Cheater-2006c	113	197				0.81 [0.47 , 1.40]	-
Rantz-2001b	35	15.1		35	35.4	13.4	16	1.5%	-0.03 [-0.62 , 0.56]	+		Hendryx-1998	62	76	40	48	1.6%	0.89 [0.34 , 2.30]	-
Quintard-2010	957	108		36	959	106	38	1.6%	-0.02 [-0.47 , 0.44]	+		McDonald-2005c	53	60	108	121	1.6%	0.91 [0.34 , 2.42]	_
Morita-2014	4.1	0.6		40	4.1	0.6	36	1.6%	0.00 [-0.45 , 0.45]	+		VanGaal-2011b	74	196	76	196	2.1%	0.96 [0.64 , 1.44]	
Chan-2013	1.1	0.77		14	1.1	0.51	8	1.3%	0.00 [-0.87 , 0.87]			McDonald-2005b	53	61				0.96 [0.38 , 2.42]	
Varghese-2014	66.67	36.19		15	65.69	36.07	17	1.5%	0.03 [-0.67 , 0.72]	+		Fakih-2012	49	86		84			
Karvinen-2017	60.74	28.83		27	59.42	25.67	26	1.6%	0.05 [-0.49 , 0.59]	+								1.04 [0.57 , 1.91]	-
Jansson-2017	5.3	1.5		11	5.2	1.7	6	1.3%	0.06 [-0.93 , 1.06]			Cheater-2006b	153	238		78		1.07 [0.63 , 1.81]	-
Johnson-2019	-39.64	64.07		00	-45.37	81.41	100	1.7%	0.08 [-0.20 , 0.36]	1		vanLieshout-2015	113	995	81	787	2.1%	1.12 [0.83 , 1.51]	-
Teresi-2013	1.93	12.32		95	0.85	8.29	280	1.7%	0.10 [-0.06 , 0.27]			Wood-2021	168	847	51	286	2.1%	1.14 [0.81 , 1.61]	_
Pitkälä-2014	-2.47	1.38		65	-2.61	0.23	67	1.6%	0.12 [-0.23 , 0.46]	Γ		Jones-1998	31	63				1.20 [0.58 , 2.47]	
Rantz-2001a	-2.47	13.3		37	35.4	13.4	17	1.5%	0.12 [-0.46 , 0.69]	Ť		Fairall-2005	226	1000				1.22 [0.98 , 1.51]	7
Dudener-2023	5.39	0.4		37 26	35.4 5.33	0.46	26	1.5%	0.12 [-0.46 , 0.69]	+			1840						1
										+		Curtis-2011	1010	2238				1.24 [1.07 , 1.43]	
Yang-2019	14.31	0.63			14.19	0.98	12	1.4%	0.14 [-0.64 , 0.93]			Nakatani-2012	23	51	19	49	1.8%	1.30 [0.58 , 2.88]	-
Seo-2020	6.73	1.57		30	6.47	2	30	1.6%	0.14 [-0.36 , 0.65]	+		Välimäki-2022	764	4089	585	4089	2.2%	1.38 [1.22 , 1.55]	
Feldman-2004	-14.91	9.25			-16.68	13.68	183	1.7%	0.15 [-0.05 , 0.36]	F		Vicdan-2019	70	110			2.0%	1.43 [0.83 , 2.46]	
Alhalal-2020	7.66	1.86		51	7.15	3.89	53	1.6%	0.17 [-0.22 , 0.55]	+		Kalinowski-2015	6	73		72		1.52 [0.41 , 5.64]	
Cone-1996	0.43	0.1	2	00	0.28	0.9	200	1.7%	0.23 [0.04 , 0.43]	-		Bruce-2007a	13	81		49		1.68 [0.56 , 5.05]	
Ogden-1997b	2.9	0.44		21	2.78	0.52	11	1.4%	0.25 [-0.48 , 0.98]										-
Sayre-2012	21	2.28		53	20.39	2.43	51	1.6%	0.26 [-0.13 , 0.64]	_		Evans-2007	870	49061				2.02 [1.80 , 2.28]	
Arzani-2020	28.98	2.36		50	28.22	3.23	50	1.6%	0.27 [-0.13 , 0.66]	L		Donati-2020	30	38	27	42	1.6%	2.08 [0.76 , 5.68]	-
Boumans-2005	4.39	0.48		74	4.19	0.85	73	1.7%	0.29 [-0.04 , 0.61]			Westbrook-2017	674	1175	451	1177	2.2%	2.17 [1.84 , 2.55]	
Aloush-2017	14.1	4.4		59	12.8	3.7	43	1.6%	0.31 [-0.08 , 0.71]			Huizing-2006	17	24	. 19	36	1.5%	2.17 [0.73 , 6.51]	
Kim-2014	2.43	4.66		15	1.2	2.51	16	1.4%	0.32 [-0.39 , 1.03]	-		Snelgrove-Clarke-2015	28	94				2.19 [1.18 , 4.08]	
Hasnain-2019	3.19	4.00		85	3.05	0.36	80	1.4%											
	1.63	0.47		15		0.50	20		0.33 [0.02, 0.64]	-		Teesing-2020	47	128				2.22 [1.24 , 3.98]	
Jansink-2013	1100	0.00			1.42	0.02		1.5%	0.35 [-0.32 , 1.03]			Cheater-2006d	166	210				2.28 [1.29 , 4.02]	
Grommi-2021	33	22.236		14	25	21.04	10	1.4%	0.36 [-0.46 , 1.17]	+		Schneider-2006	210	284	157	285	2.1%	2.31 [1.63 , 3.29]	
Elzeky-2022	64.08	14		35	58.8	13.9	35	1.6%	0.37 [-0.10 , 0.85]			Mancheril-2021	155	268	74	210	2.1%	2.52 [1.74 , 3.66]	
Liu-2010	3.7	0.77		85	3.4	0.73	76	1.7%	0.40 [0.08 , 0.71]			Smeland-2022	12	32		32		2.60 [0.83 , 8.13]	
Francke-1997	15	2.5		32	13.7	3.6	39	1.6%	0.41 [-0.06 , 0.88]										1
Maruyama-2022	4.7	3.2		41	3.3	2.8	38	1.6%	0.46 [0.01 , 0.91]			Pauwels-2018	85	105				2.62 [1.43 , 4.79]	
Liu-2020	6.61	1.23		89	6.01	1.32	101	1.7%	0.47 [0.18 , 0.76]	-		Mazzuca-1987	23	49				3.06 [1.27 , 7.33]	
Huang-2009	40.88	3.17		16	39.2	3.31	16	1.5%	0.51 [-0.20 , 1.21]			Lee-2015	60	102	32	103	2.0%	3.17 [1.79 , 5.63]	
Khodadadi-2013	81.57	7		42	77.8	6.99	31	1.6%	0.53 [0.06 . 1.01]			Titler-2009	1	6	0	6	0.4%	3.55 [0.12 , 105.82]	
Francke-1996	2.3	4.6		48	0.5	1.3	58	1.6%	0.55 [0.16 , 0.94]			Blanco-Mavillard-2021	101	740	31	739	2.1%	3.61 [2.38 , 5.47]	
Kim-2022	37.9	5.36			34 77	4.91	30	1.6%	0.60 [0.08 , 1.12]			Koh-2009	21	21				3.69 [0.14 , 96.22]	
Magill-2018	1.42	0.51		11	1.07	0.48	12	1.4%	0.68 [-0.16 . 1.53]										
	68.6	32.43		26	48.6	15.41	26	1.4%				Nowalk-2005	591	1534		53		4.12 [1.85 , 9.18]	
Behzadi-2019									0.78 [0.21 , 1.34]			Gengiah-2021	33229	35164				4.40 [4.17 , 4.64]	
Yun-2022	84.56	7.68			78.33	7.43	12	1.4%	0.80 [-0.04 , 1.63]	<u>├</u> ──		Collins-2021	338	374	166	244	2.1%	4.41 [2.85 , 6.83]	
Roelands-2004	12.24	6.48		25	6.5	4.36	24	1.5%	1.02 [0.42 , 1.62]			Carroll-2012	49	55	37	57	1.6%	4.41 [1.61, 12.09]	
Maki-Turja-Rostedt-2020	3.14	0.56		17	2.51	0.64	12	1.4%	1.03 [0.24 , 1.82]			Kyriacos-2015	4	30		30		4.46 [0.47 , 42.51]	
Wilkinson-2008	13.76	4.17		84	9.39	3.59	86	1.7%	1.12 [0.80 , 1.44]	-		,		74		46			-
Memon-2022	32.2	3.46		70	25.32	6.9	70	1.6%	1.25 [0.89 , 1.62]	-		Marcantonio-2010	30		-			4.55 [1.71 , 12.06]	
Akande-2020	93.5	8.32		82	78.8	11.4	80	1.6%	1.47 [1.12 , 1.82]	-		Murtaugh-2005a	16	114		61		4.82 [1.07 , 21.69]	
Nemati-2022	93.64	13.89			72.76	13.09	13	1.3%	1.50 [0.61 , 2.39]			Kyriacos-2019	38	38	36	38	0.4%	5.27 [0.24 , 113.60]	
Gomarverdi-2019	28.4	4.337			21.47	4.15	6	1.0%	1.51 [0.16 , 2.86]			Daly-2009	57	65	100	175	1.8%	5.34 [2.41, 11.87]	
Bano-2022	18.03	1.98			13.45	3.13	33	1.5%	1.73 [1.17 . 2.30]			Saevareid-2019	15	40		40		5.40 [1.60 , 18.20]	
	98.09				13.45 90.95	3.13	33	1.5%					158	40					
Wright-1997		3.52							2.08 [1.44 , 2.72]			Meyer-2003						5.81 [3.99 , 8.47]	
Bagherzadeh-2021	118.45	4.27			100.49	10.34	67	1.6%	2.24 [1.80 , 2.68]			Murtaugh-2005b	28	118				6.01 [1.75 , 20.69]	
Kavak-2019	30.09	3.49		53	23	2.17	58	1.6%	2.45 [1.95 , 2.94]			Manias-2011	11	13	6	13	0.9%	6.42 [1.00 , 41.21]	
Emamgholi-2020	72.84	7.8			47.48	8.3	21	1.3%	3.09 [2.17 , 4.01]			Senarath-2007	24	24	21	24	0.5%	7.98 [0.39 , 163.33]	
Jeihooni-2018	14.3	1.5		60	8.8	1.5	60	1.5%	3.64 [3.05 , 4.23]			Srikrajang-2005	102	116		108		9.46 [4.81 , 18.59]	
Happ-2014a	7.37	0.42		10	5.52	0.41	5	0.7%	4.18 [2.13 , 6.22]	I									
Zarifsanaiey-2022a	59.96	3.47			46.02	2.5	25	1.3%	4.33 [3.47 , 5.19]	_		Davies-2002	35	37				9.89 [2.04 , 47.97]	
Happ-2014b	7.5	0.41		10	5.52	0.41	5	0.6%	4.55 [2.37 , 6.72]			Rhew-1999a	242	1101				12.03 [8.01 , 18.08]	
Zarifsanaiey-2022b	64.37	4.17			46.02	2.5	25	1.3%	4.90 [3.96 , 5.84]			Rhew-1999b	305	1221	26	1180	2.1%	14.78 [9.81 , 22.26]	
Zarifsanaley-2022b Sadeghi-2018	64.37 50.75	4.17 2.48			46.02 32.42	3.42	25 50	1.3%	4.90 [3.96 , 5.84] 6.09 [5.14 , 7.04]			Lacko-1999	6	6		2		65.00 [0.99 , 4259.47]	
Elahi-2021	50.75 251.47	2.48 8.83			32.42 183.32	3.42 11.28	50 55	1.3% 1.3%	6.68 [5.71 , 7.65]			Ziyaeifard-2018	28	73		73		92.08 [5.49 , 1545.31]	
Total (95% CI)			35	10			3179	100.0%	0.82 [0.60 , 1.03]	•		Total (95% CI)		106673		98252	100.0%	2.04 [1.62 , 2.56]	
Heterogeneity: Tau ² = 0.70); Chi ² = 10	53.88, df	= 66 (F	P < 0.0	00001);	l² = 94%				'		Total events:	43753		33651				
Test for overall effect: Z =			. (.		. ,,				-	-4 -2 0 2 4		Heterogeneity: Tau ² = 0.		491 83		< 0.0000	1)· I² = 96º	6	
									Favoure n	-4 -2 U 2 4 o int./not ICE Favours ICE		Test for overall effect: Z				- 0.0000	1,1 - 307		01 0.1 1 io int./not ICE
Test for subgroup difference																			

Patient outcomes (continuous)	Study or Subgroup		seriment SD	ai Totai	Mean	Control SD	Total	Weight	Std. mean difference IV, Random, 95% Cl		difference om, 95% Cl	Knowledge (continuous)	Study or Subgroup	Exp Mean	erimental SD 1	otal	0 Mean	Control SD	Total		Std. mean difference IV, Random, 95% Cl	Std. mean difference IV, Random, 95% Cl
(continuous)	Manias-2011	-3.14	3.26	1	-4.17	3.26	1		Not estimable				Hlungwane-2021a	54.61	12.15	33	70.05	12.4	10	2.4%	-1.24 [-2.00 , -0.48]	
	Rantz-2001b	10.2	4.2	10	15.2	6.1	16	3.9%	-0.89 [-1.72 , -0.05]	_	_		Hlungwane-2021b	62.18	13.6	40	70.05	12.4	11	2.5%	-0.58 [-1.26 , 0.10]	
	Rantz-2001a	13.8	7	37	15.2	6.1	17	6.6%	-0.20 [-0.78 , 0.37]	_	-		Carrico-2007	0.72	0.18	10	0.81	0.17	10	2.2%	-0.49 [-1.39 , 0.40]	
	Cleland-2007	3.14	0.457	99	3.2	0.451	78	12.2%	-0.13 [-0.43 , 0.17]	-	-		Ogden-1997b	2.9	0.77	21	3.26	0.92	12	2.4%	-0.43 [-1.14 , 0.29]	
	Curtis-2011	69.67	20.74	632	68.8	23.14	632	16.7%	0.04 [-0.07 , 0.15]		•		Omidi-2020	3.89	0.38	33	3.97	0.44	24	2.6%	-0.19 [-0.72 , 0.33]	+
	vanLieshout-2015	4.9	1.52	865	4.8	1.53	631	16.8%	0.07 [-0.04 , 0.17]		•		Johnston-2007	31.2	4.2	17	31.3	5.17	25	2.5%	-0.02 [-0.64 , 0.60]	+
	Boumans-2005	7.35	1.07	46	6.93	1.58	46	9.5%	0.31 [-0.10 , 0.72]		+		Morita-2014	7.4	1.4	40	7.4	1.4	36		0.00 [-0.45 , 0.45]	+
	Wilkinson-2008	-17.4	8	59	-20.2	7.6	68	10.9%	0.36 [0.01 , 0.71]		-		Grommi-2021	12.786	8.341	14	12.75	7.514	10		0.00 [-0.81 , 0.82]	
	Chen-2016	-0.36	0.69	88	-0.63	0.77	82	12.1%	0.37 [0.06 , 0.67]		+		Karvinen-2017	6.26	1.4	27	6.23	1.63	26		0.02 [-0.52 , 0.56]	+
	Ziyaeifard-2018	-2.3	0.46	73	-3.18	1.27	73	11.1%	0.92 [0.58 , 1.26]		+		Rutherford-Hemming-2016	67.7	15.9	35	66.4	16	29		0.08 [-0.41 , 0.57]	+
													Ogden-1997a	3.36	0.66	22	3.26	0.92	11		0.13 [-0.60 , 0.85]	+-
	Total (95% CI)			1910			1644	100.0%	0.17 [-0.02 , 0.35]		•		Koh-2009	10.3	1.8	11	9.8	1.8	9	2.3%	0.27 [-0.62 , 1.15]	
	Heterogeneity: Tau ² =	0.05; Chi2:	= 38.41, 0	df = 8 (P <	< 0.00001);	l² = 79%					í		Vicdan-2019	14.35	3.52	110	12.9	2.09	109		0.50 [0.23 , 0.77]	-
	Test for overall effect:	Z = 1.77 (P	9 = 0.08)							-4 -2	0 2 4		Huang-2009	12.74	1.43	16	11.77	1.88	16		0.57 [-0.14 , 1.27]	
	Test for subgroup diffe	erences: No	t applical	ble					Favours	no int./not ICE	Favours ICE		Yang-2019	5.2	1.58	13	4.13	1.82	12		0.61 [-0.20 , 1.41]	
													Seo-2020	10.63	2.33	30	9.2	2.27	30		0.61 [0.09 , 1.13]	
													Jansson-2017	2.8	1.5	11	1.8	0.4	6	2.1%	0.76 [-0.28 , 1.80]	+
													Kim-2014	27	3.36	15	23.26	5.57	16		0.79 [0.05 , 1.52]	
													Passos-2022	80.4	6.2	50	75	6.9	50	2.7%	0.82 [0.41 , 1.23]	

Perceived

(continuous)

control

Total (95% CI) Heterogeneity: Tau ² = 0.83; C Test for overall effect: Z = 6.7				0001); I² =	91%	1224	100.0%	1.03 [0.73 , 1.33]	-4 -2 0 2
			1375						
Zarifsanaiey-2022b	8.95	0.92	50	4.28	1.57	25	2.3%	3.94 [3.13 , 4.74]	
Sadeghi-2018	14.38	0.525	50	10.63	1.56	50	2.5%	3.12 [2.53 , 3.71]	
Gomarverdi-2019	19.53	0.929	6	14.6	2.164	6	1.4%	2.73 [0.98 , 4.48]	
Lim-20200	61.1	4.26	4 5	39.8	9.58	5	1.4%	2.60 [0.68 , 4.51]	
_im-2020c	61.1	4.26	4	39.8	9.56	6	2.7%	2.40 [1.99, 2.81]	-
Zarifsanaiey-2022a _iu-2010	0.20	2.4	50 85	4.28 9.4	2.5	25	2.5%	2.18 [1.58 , 2.77] 2.40 [1.99 , 2.81]	
Elzeky-2022	81.8	11.7	35 50	55.3 4.28	14.2	35	2.5%	2.01 [1.43 , 2.60]	
leihooni-2018	9.3 81.8	1.3	60 35	5.2 55.3	2.6	60 35	2.6% 2.5%	1.98 [1.54 , 2.42]	-
(avak-2019	9.24	1.56	53 60		1.08 2.6	58 60	2.6%	1.92 [1.47 , 2.37]	-
Alhalal-2020		5.17	51 53	30.26 6.67				1.91 [1.45 , 2.38]	
run-2022	29.73 40.96	1.8 5.17	12 51	24.57 30.26	3.32 5.89	12 53	2.2% 2.6%	1.87 [0.88 , 2.85]	
Sung-2008	82.21	8.75	24	67.92	7.17	26	2.5%	1.77 [1.10 , 2.43]	
Akande-2020	85.9	9.26	82	69.5	10.3	80	2.7%	1.67 [1.31 , 2.03]	-
.im-2020b	55.8	9.61	5	39.8	9.58	5	1.6%	1.51 [0.00 , 3.01]	
/arghese-2014	20	2.56	15	14	4.95	17	2.3%	1.46 [0.66 , 2.25]	
(im-2022	17.5	1.22	30	15.2	1.85	30	2.5%	1.45 [0.88 , 2.02]	
3ano-2022	11.38	2.26	34	8.91	1.91	33	2.6%	1.17 [0.64 , 1.69]	
/lemon-2022	17.97	3.49	70	13.61	4.04	70	2.7%	1.15 [0.79 , 1.51]	-
in-2008	11.59	3.69	42	7.87	3.37	39	2.6%	1.04 [0.58 , 1.51]	
.im-2020a	55.8	9.61	5	46.45	8.47	5	1.8%	0.93 [-0.41 , 2.28]	+
/laruyama-2022	7.9	7.9	41	1.3	6.8	38	2.6%	0.88 [0.42 , 1.35]	-
(yriacos-2015	61.4	27.9	18	41.2	16.22	18	2.4%	0.87 [0.18 , 1.55]	
Passos-2022	80.4	6.2	50	75	6.9	50	2.7%	0.82 [0.41 , 1.23]	
(im-2014	27	3.36	15	23.26	5.57	16	2.4%	0.79 [0.05 , 1.52]	
Jansson-2017	2.8	1.5	11	1.8	0.4	6	2.1%	0.76 [-0.28 , 1.80]	+
Seo-2020	10.63	2.33	30	9.2	2.27	30	2.6%	0.61 [0.09 , 1.13]	
rang-2019	5.2	1.58	13	4.13	1.82	12	2.3%	0.61 [-0.20 , 1.41]	<u> </u>
luang-2009	12.74	1.43	16	11.77	1.88	16	2.4%	0.57 [-0.14 , 1.27]	<u> </u>
/icdan-2019	14.35	3.52	110	12.9	2.09	109	2.7%	0.50 [0.23 , 0.77]	-
(oh-2009	10.3	1.8	11	9.8	1.8	9	2.3%	0.27 [-0.62 , 1.15]	
Ogden-1997a	3.36	0.66	22	3.26	0.92	11	2.4%	0.13 [-0.60 , 0.85]	+
Rutherford-Hemming-2016	67.7	15.9	35	66.4	16	29	2.6%	0.08 [-0.41 , 0.57]	1
Carvinen-2017	6.26	1.4	27	6.23	1.63	26	2.6%	0.02 [-0.52 , 0.56]	+

Control

2.72

1.18

6.7

1.43

1.41

1.5

atient Itcomes		Experin		Cont			Odds ratio	Odds ratio
ichotomous)	Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Mancheril-2021	242	268	209	210	3.5%	0.04 [0.01 , 0.33]	← →
	Marcantonio-2010	22	43	42	70	9.5%	0.70 [0.32 , 1.50]	
	Cheater-2006b Blanco-Mavillard-2021	26	179	12	63	9.6%	0.72 [0.34 , 1.53]	
	Blanco-Mavillard-2021	269	726	280	754	13.0%	1.00 [0.81 , 1.23]	+
	Cheater-2006c	30	166	11	63	9.5%	1.04 [0.49 , 2.23]	
	Kyriacos-2019	1	36	1	38	2.0%	1.06 [0.06 , 17.56]	
	Senarath-2007	21	223	17	223	10.2%	1.26 [0.65 , 2.46]	_ _ _
	Cheater-2006d	35	166	11	63	9.6%	1.26 [0.60 , 2.67]	_ _ _
	Meyer-2003	39	483	21	459	11.0%	1.83 [1.06 , 3.16]	_ _
	Collins-2021	118	363	31	234	11.8%	3.15 [2.04 , 4.88]	
	Lee-2015	49	103	18	102	10.4%	4.23 [2.23 , 8.03]	
	Total (95% CI)		2756		2279	100.0%	1.26 [0.81 , 1.94]	•
	Total events:	852		653				-
	Heterogeneity: Tau ² = 0.37	.37; Chi ² =	52.55, df	= 10 (P <	0.00001)	; I² = 81%		0.01 0.1 1 10 100
	Test for overall effect: Z	= 1.03 (P =	0.30)					s no int./not ICE Favours ICE

Test for subgroup differences: Not applicable

Heterogeneity: Tau ² = 0.80; Chi ² = 173.74, df =	13 (P < 0.00001); I ² = 93%
Test for overall effect: Z = 3.53 (P = 0.0004)	
Test for subgroup differences: Not applicable	

Study or Subgroup Mean

Ogden-1997b

Roelands-2004

Ogden-1997a

Kim-2022

Morita-2014

Sung-2008

Liu-2010

Yun-2022

Wilkinson-2008

Karvinen-2017

Sadeghi-2018

Jeihooni-2018

Total (95% CI)

Albalal-2020

Khodadadi-2013

Experimental

SD

2.66

12.6

5.1 1.44

25.2

5.43 0.79

56.73 6.61

39.4 5.06

4.5 0.8

3.8 0.77

104.65 13.65

8.46 1.28

33.61 2.48

83.12 6.94

83.86

5.35 1.08

16.9 2.6

Total Mean

21 5.3 1.18

22

40 4.1 1.1

12 75.3 9.31

60 9.1

552

25 25.25

30 37.13

27 6.99

51 3.29

5.3

42 55.12 3.91

24 79.19 10.19

85 3.4 0.72

63 90.85 20.16

50 26.36 3.32

0.89 [0.39 , 1.38]	•	•	
-4 -2	0	2	4
Favours no int./not ICE		Favou	rs ICE

Std. mean difference

IV, Random, 95% Cl

Std. mean difference

-0.14 [-0.85 , 0.57]

-0.02 [-0.58 , 0.54]

0.14 [-0.59 , 0.86]

0.28 [-0.18 , 0.75]

0.38 [-0.13 , 0.89]

0.42 [-0.04 , 0.87]

0.44 [-0.12 , 1.00]

0.53 [0.22 , 0.85]

0.75 [-0.09 , 1.58]

0.79 [0.44 , 1.14]

1.07 [0.49 , 1.65]

1.62 [1.18 , 2.07]

2.46 [1.93 , 2.98]

3.65 [3.06 , 4.24]

SD Total Weight IV, Random, 95% CI

6.7%

6.4%

53 7.4%

50 7.2%

518 100.0%

12 6.8%

24 7.1%

11

31 7.3%

30 7.2%

36 7.4%

26 7.1%

76 7.6%

12

71 7.6%

26 7.1%

60 7.1%

ention ntinuous)	Study or Subgroup	Ex; Mean	sD SD	al Total	Mean	Control SD	Total		td. mean difference V, Random, 95% Cl	Std. mean difference IV, Random, 95% Cl	Social norms (continuous)	Study or Subaroup	Expe Mean	erimental SD_T	otal Me	Control	Total V			Difference dom, 95% Cl	Std. Mean Difference IV. Random, 95% Cl
	Morita-2014	6.2	0.7	40	6.2	0.6	36	68.5%	0.00 [-0.45 , 0.45]			Roelands-2004	25.33		25 24.			-	,	[-0.43, 0.69]	
	Chan-2013	3.7	0.68	18	3.3	0.86	11	31.5%	0.52 [-0.25 , 1.28]	-		deRuijter-2018 Edwards-2007				158 0.803 .28 7.04				[-0.07, 0.45] [-0.05, 1.06]	*
	Total (95% CI) Heterogeneity: Tau ² = (58 = 1 (P =		24%	47	100.0%	0.16 [-0.31 , 0.63]	•		Total (95% CI)			191		145 1	100.0%	0.23	[0.01, 0.45]	◆
	Test for overall effect: 2 Test for subgroup differ			ble					Favou	-4 -2 0 2 4 rs no int./no ICE Favours ICE		Heterogeneity: Tau ^a Test for overall effe				'= 0.56); I*	= 0%			-4 Favours r	-2 0 2 no int./not GCE Favours GCE
ude		Ex	perimer	ntal	Cont	rol		0	dds ratio	Odds ratio	Skills		Exp	erimental		c	ontrol			Std. mean difference	Std. mean difference
hotomous)	Study or Subgrou	p Eve	nts To	otal I	Events	Total	Weigh	t IV, Rai	ndom, 95% Cl	IV, Random, 95% CI	(continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
											-	Hasnain-2019	3.59	0.39	85	3.54	0.46	80	33.2%	0.12 [-0.19 , 0.42]	
	Chan-2013		17	18	11	11	6.6		1 [0.02 , 13.56]			Jansink-2013	2.37	0.54	15	2.2	0.47	20	12.7%	0.33 [-0.34 , 1.01]	
	Vicdan-2019		15	109	9	110	93.4	% 1.	79 [0.75 , 4.29]	+=-		Khodadadi-2013	86.8	11.35	42	81.06	2.98	31	20.8%	0.64 [0.17 , 1.12]	
												Lim-2020d	3.07	0.27	5	2.8	0.44	5	4.1%	0.67 [-0.63 , 1.96]	
	Total (95% CI)			127		121	100.0	% 1.	65 [0.71 , 3.83]	-		Kim-2022	23.2	3.33	30	21.13	2.39	30	18.5%	0.70 [0.18 , 1.23]	
	Total events:		32		20					•		Lim-2020b	3.16	0.37	5	2.8	0.44	5	4.0%	0.80 [-0.52 , 2.12]	
	Heterogeneity: Tau	2 - 0.00.		153 df) //7)· /2 -	- 0%		- F			Lim-2020c	3.07	0.27	4	2.61	0.36	6	3.3%	1.26 [-0.19 , 2.71]	
	Test for overall effe	ct: Z = 1	16 (P =	0.25)		,,,, I -	0/0		0.0 Favours n	0 0.1 1 10 100 o int./not ICE Favours ICE		Lim-2020a	3.16	0.37	5	2.61	0.36	5	3.3%	1.36 [-0.10 , 2.82]	
	Test for subgroup d	lifference	s: Not a	pplicab	le							Total (95% CI)			191			182	100.0%	0.49 [0.22 , 0.77]	•
												Heterogeneity: Tau ² = 0.	03; Chi ² =	9.17, df =	7 (P = 0	0.24); I ² = 2	4%				•
												Test for overall effect: Z	= 3.53 (P	= 0.0004)							-4 -2 0 2 4
												Test for subgroup differe	nces: Not	applicable	•					Favours	no int./not ICE Favours ICE
tude		Ex	periment	al		Control		s	td. mean difference	Std. mean difference											
tinuous)	Study or Subaroup	Mean	SD	Total	Mean	SD	Total		V. Random, 95% CI	IV. Random, 95% CI											

Study or Subgroup	Mean	SD	Total	Mean	SD	Total	weight	IV, Random, 95% CI	IV, Random, 95% CI
Jo-2015	139.5	19.01	20	146.92	17.2	21	3.4%	-0.40 [-1.02 , 0.22]	_
Roelands-2004	25.04	3.57	25	25.79	3.45	24	3.4%	-0.21 [-0.77, 0.35]	-
Ogden-1997a	5.05	0.79	22	5.23	1.04	12	3.3%	-0.20 [-0.90 , 0.51]	_
Ogden-1997b	5.05	1.2	21	5.23	1.04	11	3.3%	-0.15 [-0.88 , 0.58]	
Omidi-2020	3.59	0.65	33	3.68	0.56	24	3.5%	-0.14 [-0.67 , 0.38]	_
Yang-2019	15.89	2.51	13	16.29	3.24	12	3.2%	-0.13 [-0.92 , 0.65]	
Morita-2014	5.7	0.9	40	5.8	0.8	36	3.5%	-0.12 [-0.57 , 0.33]	+
Lim-2020c	3.67	0.47	4	3.68	0.28	6	2.6%	-0.02 [-1.29 , 1.24]	
Smeland-2022	32.7	4.51	59	32.7	4.24	48	3.6%	0.00 [-0.38 , 0.38]	+
Lim-2020a	3.69	0.36	5	3.68	0.28	5	2.6%	0.03 [-1.21 , 1.27]	
Lim-2020d	3.67	0.47	5	3.65	0.43	5	2.6%	0.04 [-1.20 , 1.28]	
Huang-2009	30.54	3.76	16	30.38	3.41	16	3.3%	0.04 [-0.65 , 0.74]	-
Karvinen-2017	5.16	0.75	27	5.1	0.88	26	3.5%	0.07 [-0.47 , 0.61]	+
Lim-2020b	3.69	0.36	5	3.65	0.43	5	2.6%	0.09 [-1.15 , 1.33]	
Kim-2014	29.68	8.95	15	28.43	9.45	16	3.3%	0.13 [-0.57 , 0.84]	
Dudener-2023	4.5	0.42	26	4.44	0.42	26	3.5%	0.14 [-0.40 , 0.69]	-
Francke-1996	7.6	1.3	48	7.4	1.3	58	3.6%	0.15 [-0.23 , 0.54]	+
Hasnain-2019	3.36	0.34	85	3.27	0.39	80	3.7%	0.25 [-0.06 , 0.55]	-
Yun-2022	32.43	3.02	12	31.03	2.37	12	3.2%	0.50 [-0.32 , 1.31]	
Zarifsanaiey-2022a	30.16	5.2	50	27.9	2.38	25	3.5%	0.50 [0.01 , 0.99]	
Seo-2020	41.43	3.66	30	39.53	3.42	30	3.5%	0.53 [0.01 , 1.04]	
Lin-2008	75.71	5.99	42	70.85	5.48	39	3.5%	0.84 [0.38 , 1.29]	-
Arzani-2020	115.04	4.81	50	109.4	6.88	50	3.6%	0.94 [0.53 , 1.36]	
Kavak-2019	32.09	1.23	53	28.4	4.08	58	3.6%	1.19 [0.79 , 1.60]	-
Bagherzadeh-2021	180.5	13.15	64	153.59	18.13	67	3.6%	1.68 [1.28 , 2.08]	-
Alhalal-2020	5.99	0.92	51	4.06	1.17	53	3.5%	1.82 [1.36 , 2.28]	-
Elzeky-2022	81.8	11.7	35	55.3	14.2	35	3.4%	2.01 [1.43 , 2.60]	
Sadeghi-2018	28.61	1.72	50	23.45	2.78	50	3.5%	2.22 [1.71, 2.72]	
Zarifsanaiey-2022b	37.42	2.42	50	27.9	2.38	25	3.2%	3.91 [3.11 , 4.72]	
Jeihooni-2018	21.6	2	60	13	2	60	3.4%	4.27 [3.62 , 4.93]	
Total (95% CI)			1016			935	100.0%	0.68 [0.31 , 1.05]	•
Heterogeneity: Tau ² =	0.94; Chi ² :	= 394.10,	df = 29 (F	< 0.0000	1); l² = 93	%			•
Test for overall effect:									-4 -2 0 2

COMPARISON 4: STRATEGIES INCLUDING GROUP CLINICIAN EDUCATION (GCE) AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE GCE

Study or Subgroup	Ex Mean	perim SD		otal	Mean	Cont SI		Total	Weight	Std. mean difference IV, Random, 95% CI	Std. mean differen IV, Random, 95% (Clinical practice	Study or Subgroup	Experin Events	nental Total	Cont Events		Weight	Odds ratio IV, Random, 95% Cl	Odds ratio IV, Random, 95
Kim-2007	20.8	1	1.8	13	38.	5	13.5	13	1.3%	-1.35 [-2.22 , -0.49]		(dichotomous)	Seto-1989b	17	49	23	26	1.1%	0.07 [0.02 , 0.26]	
Ogden-1997c	2.52		.66	11	2.	9	0.44	21	1.3%	-0.71 [-1.46 , 0.05]				100	175					
Ogden-1997a	2.52	0	.66	11	2.7	8	0.52	23	1.4%	-0.45 [-1.17 , 0.28]			Daly-2009	50	63					
Hlungwane-2021a	60.33	7	.83	33	63.2	9	5.89	10	1.4%	-0.39 [-1.10 , 0.32]			Seto-1989c							
Arzani-2020	28.22	3	.23	50	28.9	8 3	2.36	50	1.5%	-0.27 [-0.66 , 0.13]	-		VanGaal-2011a	573	1081					-
Omidi-2020	3.47	0	.81	33	3.6	1	0.59	24	1.4%	-0.19 [-0.72 , 0.34]	-		Funk-2017	4449	4587	4495	4587			-
Gould-1997	4.31	2	.35	16	4.7	3	2.18	15	1.4%	-0.18 [-0.89 , 0.53]	_		Oneil-2016	1449	1648	1420	1563	2.4%	0.73 [0.58 , 0.92]	-
Noome-2017	4.26	1	.09	147	4.3	6	1.1	84	1.5%	-0.09 [-0.36 , 0.18]	+		Michaels-2007	6	77	10	97	1.4%	0.74 [0.25 , 2.12]	
Passos-2022	80.7	1	4.9	50	81.	7	12.4	50	1.5%	-0.07 [-0.46 , 0.32]	+		Huizing-2009	22	42	17	29	1.5%	0.78 [0.30 , 2.02]	
Hlungwane-2021b	62.8	9	.52	40	63.2	9	5.89	11	1.4%	-0.05 [-0.72 , 0.61]			Chan-2013	14	18	9	11	0.7%		
Edwards-2007	38.38	1	.02	29	38.4	2	1.01	35	1.5%	-0.04 [-0.53 , 0.45]	-		Parker-2013	55	304	76	346	2.2%		
Cleland-2007	5.57	5.	173	366	5.7	7 5	5.585	263	1.6%	-0.04 [-0.20 , 0.12]	-		Bruce-2007b	6	40		81			_
Rantz-2001b	35	1	5.1	35	35.	4	13.4	16	1.4%	-0.03 [-0.62 , 0.56]	+		VanGaal-2011b	74	196	10				
Chan-2013	1.1	0	.77	14	1.	1	0.51	8	1.3%	0.00 [-0.87 , 0.87]			Hasselblad-2022	80	195					-
Morita-2014	4.1		0.6	40	4.	1	0.6	36	1.5%	0.00 [-0.45 , 0.45]	+									+
Pitkälä-2014	-2.47	1	.38	65	-2.6	1	1	67	1.5%	0.12 [-0.23 , 0.46]	+		Bucknall-2022	1609	1747		1731			+
deRond-2000b	26.6	2	8.4	341	23.	4 :	26.6	350	1.6%	0.12 [-0.03 , 0.27]	-		Esche-2015	3	29		39			
Rantz-2001a	37		3.3	37	35.		13.4	17	1.4%	0.12 [-0.46 , 0.69]	+-		Fakih-2012	49	86					-
Galfin-2011	71.9		31	4	67.		26.3	4	1.0%				Abraham-2019a	400	2550	218	1492	2.4%		+
Dudener-2023	5.39		0.4	26	5.3	3	0.46	26	1.4%	0.14 [-0.41 , 0.68]	+-		vanLieshout-2015	114	995	81	787	2.3%	1.13 [0.83 , 1.52]	+
Yang-2019	14.31	C	.63	13	14.1	9	0.98	12	1.3%	0.14 [-0.64 , 0.93]			Wood-2021	168	847	51	286	2.3%		-
Feldman-2004	-14.91	9	.25	188	-16.6	8 1	3.68	183	1.6%	0.15 [-0.05 , 0.36]	-		Seto-1991c	53	139					
Meyer-2001	-1.71	1.4		143	-1.9	-	1.05	139	1.5%	0.16 [-0.08 , 0.39]	+		Jones-1998	31	63					
Alhalal-2020	7.66		.86	51	7.1	-	3.89	53	1.5%		+		Curtis-2011	1840	2238					+
Sarna-2012	1.74		1.5	209	1.4	1	1.46	124	1.5%		-		Abraham-2019b							-
deRuijter-2018	7.707		271	121	7.37		.597	103	1.5%		-			582	3307					-
Sayre-2012	21	2	.28	53	20.3	9	2.43	51	1.5%	0.26 [-0.13 , 0.64]	+		Rankin-2013	132	183		184			+
Tsai-2011a	26.3		3.6	45	25.		3.2	48	1.5%	0.26 [-0.15 , 0.67]	+		Välimäki-2022	764	4092					-
Jo-2015	55.09		5.6	21			9.08	20	1.4%				Kalinowski-2015	6	73		72			
Aloush-2017	14.1		4.4	59	12.	8	3.7	43	1.5%	0.31 [-0.08 , 0.71]	-		deRond-2000a	188	229	176	237	2.2%	1.59 [1.02 , 2.48]	-
Kim-2014	2.43		.66	15	1.		2.51	16	1.4%	0.32 [-0.39 , 1.03]	+		Seto-1991b	40	79	14	39	1.7%	1.83 [0.83 , 4.03]	
Hasnain-2019	3.19		.47	85	3.0		0.36	80	1.5%		-		Evans-2007	870	49061	405	45762	2.4%	2.02 [1.80 , 2.28]	
Jansink-2013	1.63		.65	15	1.4		0.52	20	1.4%		+		Donati-2020	30	38	27	42	1.5%	2.08 [0.76 , 5.68]	
Grommi-2021	33			14	2		21.04	10	1.3%	,,			Huizing-2006	17	24			1.4%		
Liu-2010	3.7		.77	85	3.		0.73	76	1.5%	0.40 [0.08 , 0.71]	-		Snelgrove-Clarke-2015	28	94					
Francke-1997	15		2.6	32	13.		3.6	39	1.5%	0.40 [-0.07 , 0.88]	-		Teesing-2020	47	128					
Filmer-2020	3.66		.45	33	3.4		0.66	29	1.5%					4/	120					-
Delvaux-2004	-45.29		.58	52			3.26	50	1.5%				Weaver-2016a		-					
Maruyama-2022	4.7		3.2	41	3.		2.8	38	1.5%	0.46 [0.01 , 0.91]			Bruce-2007c	7	41		77			
Liu-2020	6.61		.23	89	6.0		1.32	101	1.5%	0.47 [0.18 , 0.76]	-		Smeland-2022	12	32		32			
Bernburg-2019	3.61		.52	44	3.3		0.61	42	1.5%	0.49 [0.06 , 0.92]			Pauwels-2018	85	105					
Huang-2009	40.88	3	.17	16	39.		3.31	16	1.4%				Gengiah-2021	32229	35164	26140	32839	2.5%	2.81 [2.69 , 2.95]	
Khodadadi-2013	81.57		7	42	77.		6.99	31	1.5%	0.53 [0.06 , 1.01]			Mazzuca-1987	23	49	11	49	1.6%	3.06 [1.27 , 7.33]	
Francke-1996	2.3		4.6	48	0.	-	1.3	58	1.5%	0.55 [0.16 , 0.94]			Lee-2015	60	102	32	103	2.0%	3.17 [1.79 , 5.63]	-
Kim-2022	37.9	-	.36	30	34.7	-	4.91	30	1.5%	0.60 [0.08 , 1.12]			Locke-2011	19	22	15	23	1.0%	3.38 [0.76, 14.98]	
Magill-2018	1.42		.51	11	1.0		0.48	11	1.3%				Titler-2009	1	6	0	6	0.3%	3.55 [0.12 , 105.82]	
Behzadi-2019	68.6			26	48.		5.41	26	1.4%	0.78 [0.21 , 1.34]			Blanco-Mavillard-2021	101	740	31	739			-
Yun-2022	84.56		.68	12	78.3		7.43	12	1.3%	0.80 [-0.04 , 1.63]			Kaner-2003b	48	68				3.68 [1.60 , 8.47]	
Ahmed-2019	59.6	0.1.1		184	29.		1.182	44	1.5%	0.87 [0.53 , 1.21]	-									
Evans-1997	69.3		.66	22			28.85	18	1.4%				Koh-2009	21	21					
Roelands-2004	12.24		.48	25	6.		4.36	24	1.4%				Nowalk-2005	591	1534		53		4.12 [1.85 , 9.18]	-
Maki-Turja-Rostedt-2020	3.14		.56	17	2.5		0.64	12	1.3%	1.03 [0.24 , 1.82]			Collins-2021	338	374				4.41 [2.85 , 6.83]	-
Wilkinson-2008	13.76		.17	84	9.3		3.59	86	1.5%	1.12 [0.80 , 1.44]	-		Kaner-2003a	50	68				4.44 [1.92 , 10.30]	
Bano-2022	11.38		.26	34	8.9		1.91	33	1.5%	1.17 [0.64 , 1.69]			Kyriacos-2015	4	30		30	0.5%	4.46 [0.47 , 42.51]	
Memon-2022	32.2		.46	70		-	6.9	70	1.5%		-		Weaver-2016c	8	9	16	25	0.6%	4.50 [0.48 , 42.00]	
DeBarbieri-2020	5.2 93.5		.72	101 82	3.9		1	90	1.5%		-		Marcantonio-2010	30	74	6	46	1.5%	4.55 [1.71 , 12.06]	
Akande-2020			.32 .89		78. 72.7		11.4 3.09	80 13	1.5%	1.47 [1.12 , 1.82]			Tornvall-2009	21	43		30	1.3%	4.77 [1.54 , 14.79]	
Nemati-2022	93.64			13						1.50 [0.61 , 2.39]			Kyriacos-2019	38	38					
Gomarverdi-2019	28.4			9	21.4		4.15	9	1.2%	1.55 [0.47 , 2.64]	—		Saevareid-2019	15	40		40		5.40 [1.60 , 18.20]	
Cone-1996	0.43		0.1	200	0.2		0.09	200	1.5%	1.57 [1.35 , 1.80]	-		Mever-2003	158	40		40			—
Akrami-2019	16.52		.08	65	11.2		2.84	65	1.5%											-
Bagherzadeh-2021	118.45		.27	64	100.4		0.34	67	1.5%	2.24 [1.80 , 2.68]			Manias-2011	11	13		13			
Kavak-2019	30.09		.49	53	2		2.17	58	1.5%		-		Weaver-2016b	7	9	-	27		7.00 [1.20 , 40.83]	I
Emamgholi-2020	72.84		7.8 1.5	21 60	47.4		8.3	21 60	1.2%	3.09 [2.17 , 4.01]	-		Senarath-2007	24	24					
Jeihooni-2018					8.	-	1.5			3.64 [3.05 , 4.23]			Srikrajang-2005	102	116		108		9.46 [4.81 , 18.59]	·
Happ-2014a	7.37		.42	10	5.5	-	0.41	5	0.7%	4.18 [2.13 , 6.22]	-		Davies-2002	35	37	23	36	0.9%	9.89 [2.04 , 47.97]	
Zarifsanaley-2022a	59.96		.47	50	46.0		2.5	25	1.3%	4.33 [3.47 , 5.19]			Middleton-2011	30	65	3	44	1.2%		
Happ-2014b	7.5		.41	10	5.5		0.41	5	0.6%	4.55 [2.37 , 6.72]			Lundgren-1999	11	15		8			
Zarifsanaiey-2022b	64.37		.17	50	46.0		2.5	25	1.2%	4.90 [3.96 , 5.84]			Harrison-2000	28	33		35		43.40 [10.59 , 177.87]	—
Sadeghi-2018	50.75		.48	50	32.4		3.42	50	1.2%	6.09 [5.14 , 7.04]			1011001-2000	20		4		1.0%	-00[10.00,177.07]	
Elahi-2021	251.47		.83	55	183.3		11.28	55	1.2%	6.68 [5.71 , 7.65]			T-4-1 (05% OI)		115581		4040-4	100.0%	4 04 14 50 0 100	.
Ghazali-2020	13.83	0	.19	69	9.4	8	0.18	74	0.5%	23.40 [20.63 , 26.17]			Total (95% CI)	1000	115581		104251	100.0%	1.81 [1.50 , 2.19]	♦
											.		Total events:	47980		39167				
Total (95% CI)				4352	0.007		0.54	3773	100.0%	0.96 [0.73 , 1.19]	♦		Heterogeneity: Tau ² = 0.3				< 0.0000	1); l² = 94		.01 0.1 1
Heterogeneity: Tau ² = 0.85				1 (P <	U.00001	i); l ² =	95%						Test for overall effect: Z =						Favours n	o int./not GCE Fa
Test for overall effect: Z = 8											-4 -2 0 2		Test for subgroup differe							

		Exp	erimenta	al		Control			Std. mean difference	Std. mean difference
	dy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
;) — Man	nias-2011	-3.14	3.26	1	-4.17	3.26	1		Not estimable	
Ran	tz-2001b	10.2	4.2	10	15.2	6.1	16	5.9%	-0.89 [-1.72 , -0.05]	
Ran	tz-2001a	13.8	7	37	15.2	6.1	17	9.2%	-0.20 [-0.78 , 0.37]	-
Clel	and-2007	3.14	0.457	99	3.2	0.451	78	14.8%	-0.13 [-0.43 , 0.17]	-
Curt	tis-2011	69.67	20.74	632	68.8	23.14	632	18.3%	0.04 [-0.07 , 0.15]	•
vanl	Lieshout-2015	4.9	1.52	865	4.8	1.53	631	18.4%	0.07 [-0.04 , 0.17]	•
Galf	fin-2011	-3.33	1.46	6	-3.49	1.61	21	5.2%	0.10 [-0.81 , 1.01]	
Wilk	inson-2008	-17.4	8	59	-20.2	7.6	68	13.6%	0.36 [0.01, 0.71]	-
DeB	Barbieri-2020	-6.1	3.2	101	-10.4	4.9	90	14.7%	1.05 [0.74 , 1.35]	+
Tota	al (95% CI)			1810			1554	100.0%	0.14 [-0.11 , 0.38]	
Hete	erogeneity: Tau ² =	0.08; Chi ² =	= 49.91, c	if = 7 (P <	0.00001)	l² = 86%				ľ
Test	for overall effect:	Z = 1.10 (P	= 0.27)						-	-4 -2 0 2
Test	for subgroup diffe	rences: No	t applicat	le					Favours no	int./not GCE Favours

	Exp	periment	al		Control			Std. mean difference	Std. mean difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Hlungwane-2021a	54.61	12.15	33	70.05	12.4	10	2.6%	-1.24 [-2.00 , -0.48]	
Hlungwane-2021b	62.18	13.6	40	70.05	12.4	11	2.7%		
Omidi-2020	3.89	0.38	33	3.97	0.44	24	2.8%		_
Funk-2017	70.2	15.5	9	71	14.3	8	2.4%	-0.05 [-1.00 , 0.90]	
Morita-2014	7.4	1.4	40	7.4	1.4	36	2.9%		+
Grommi-2021	12.786	8.341	14	12.75	7.514	10	2.6%		
Noome-2017	0.73	0.849	147	0.71	0.825	84	3.0%		1
deRuijter-2018	14.876	1.242	121	14.845	1.109	103	3.0%	0.03 [-0.24 , 0.29]	1
Rutherford-Hemming-2016	67.7	15.9	35	66.4	16	29	2.8%		+
Filmer-2020	3.79	0.57	33	3.74	0.54	29	2.8%	0.09 [-0.41, 0.59]	1
Ogden-1997a	3.36	0.66	11	3.26	0.92	23	2.7%	0.12 [-0.60 , 0.83]	-
Koh-2009	10.3	1.8	11	9.8	1.8	9	2.5%	0.27 [-0.62 , 1.15]	
Huang-2009	12.74	1.43	16	11.77	1.88	16	2.7%	0.57 [-0.14 , 1.27]	
Yang-2019	5.2	1.58	13	4.13	1.85	12	2.6%		L.
Ogden-1997c	3.36	0.66	11	2.9	0.77	21	2.6%		L
Kim-2014	27	3.36	15	23.26	5.57	16	2.6%	0.79 [0.05 , 1.52]	
Passos-2022	80.4	6.2	50	75	6.9	50	2.9%		-
Kyriacos-2015	61.4	27.9	18	41.2	16.22	18	2.7%	0.87 [0.18, 1.55]	
Maruyama-2022	7.9	7.9	41	1.3	6.8	38	2.9%	0.88 [0.42 , 1.35]	
Lim-2020a	55.8	9.61	5	46.45	8.47	5	2.0%	0.93 [-0.41 , 2.28]	
Lin-2008	11.59	3.69	42	7.87	3.37	39	2.9%	1.04 [0.58 , 1.51]	-
Bano-2022	11.38	2.26	34	8.91	1.91	33	2.8%		-
Memon-2022	17.97	3.49	70	13.16	4.04	70	2.9%		-
Kim-2022	17.5	1.22	30	15.2	1.85	30	2.8%		
Lim-2020b	55.8	9.61	5	39.8	9.58	5	1.9%		
Akande-2020	85.9	9.26	82	69.5	10.3	80	2.9%		-
Yun-2022	29.73	1.8	12	24.57	3.32	12	2.4%	1.87 [0.88 , 2.85]	
Alhalal-2020	40.96	5.17	51	30.26	5.89	53	2.9%		-
Kavak-2019	9.24	1.56	53	6.67	1.08	58	2.9%		-
Lim-2020c	61.1	4.26	5	46.45	8.47	6	1.8%	1.93 [0.38 , 3.49]	
Jeihooni-2018	9.3	1.3	60	5.2	2.6	60	2.9%		-
Zarifsanaiey-2022a	8.28	1.93	50	4.28	1.57	25	2.8%	2.18 [1.58 , 2.77]	
Liu-2010	15.3	2.4	85	9.4	2.5	76	2.9%	2.40 [1.99 , 2.81]	-
Lim-2020d	61.1	4.26	4	39.8	9.58	5	1.5%		
Tsai-2011a	6.7	1.5	45	3.3	1	48	2.8%		-
Gomarverdi-2019	19.53	0.929	9	14.6	2.164	9	2.0%		
Sadeghi-2018	14.38	0.64	50	10.63	1.56	50	2.8%		_
Zarifsanaiey-2022b	8.95	0.92	50	4.28	1.57	25	2.6%		
Total (95% CI)			1433			1236	100.0%	1.07 [0.73 , 1.40]	
Heterogeneity: Tau ² = 0.97;	Chi ² = 520.	18, df = 3	7 (P < 0.0	00001); I ² =	93%				•
Test for overall effect: Z = 6.									-4 -2 0 2

Patient outcomes (dichotomous)	Study or Subgroup	Experin Events		Cont Events	trol Total	Weight	Odds ratio IV, Random, 95% Cl	Odds ratio IV, Random, 95% Cl	Perceived control (continuous)	Study or Subgroup	Exp Mean	erimenta SD		Mean	Control SD	Total		Std. mean difference IV, Random, 95% Cl
(Oneil-2016	1	1000	2	1000	1.0%	0.50 [0.05 , 5.52]		(,	deRuijter-2018	3.006	0.632	121	3.061	0.72	103	6.5%	-0.08 [-0.34 , 0.18]
	Marcantonio-2010	22	43		70	6.2%				Woodcock-1999	4.35	0.72	29	4.4	0.68	20	5.9%	-0.07 [-0.64 , 0.50]
					1000					Edwards-2007	-3.02	13.01	45	-3.94	11.96	18	6.0%	0.07 [-0.48 , 0.62]
	Bucknall-2022	29	1000		1000			+		Ogden-1997a	5.43	0.79	11	5.3	1.18	23	5.6%	0.12 [-0.60 , 0.84]
	Abraham-2019a	1505	4740		2157			•		Ogden-1997c	5.43	0.79	11	5.1	1.44	21	5.5%	0.26 [-0.48 , 0.99]
	Abraham-2019b	1223	3712		2158			•		Khodadadi-2013	56.73	6.61	42	55.12	3.91	31	6.1%	0.28 [-0.18 , 0.75]
	Blanco-Mavillard-2021	269	726		754	13.1%	1.00 [0.81 , 1.23]	+		Bernburg-2019	2.9	0.5	44	2.71	0.51	42	6.2%	0.37 [-0.05 , 0.80]
	Kyriacos-2019	1	36	1	38	0.8%	1.06 [0.06 , 17.56]			Kim-2022	39.4	5.06	30	37.13	6.7	30	6.1%	0.38 [-0.13 , 0.89]
	Middleton-2011	13	483	13	603	6.1%	1.26 [0.58 , 2.73]			Tsai-2011a	25.4	4	45	23.8	3.9	48	6.3%	0.40 [-0.01 , 0.81]
	Senarath-2007	21	223	17	223	7.2%	1.26 [0.65 , 2.46]			Morita-2014	4.5	0.8	40	4.1	1.1	36	6.2%	0.42 [-0.04 , 0.87]
	Meyer-2003	39	483	21	459	8.6%	1.83 [1.06 , 3.16]	_ _		Liu-2010	3.8	0.77	85	3.4	0.72	76	6.4%	0.53 [0.22 , 0.85]
	Collins-2021	118	363	31	234	10.1%	3.15 [2.04 , 4.88]	-		Yun-2022	83.86	12.6	12	75.3	9.31	12	5.3%	0.75 [-0.09 , 1.58]
	Lee-2015	49	103	18	102	7.5%				Wilkinson-2008	104.65	13.65	63	90.85	20.16	71	6.3%	0.79 [0.44 , 1.14]
	Lundgren-1999	29	36		19		35.21 [6.55 , 189.26]			Galfin-2011	8	1	4	6.8	1.1	4	3.5%	0.99 [-0.55 , 2.54]
	Zanagron 1000	20		-		2.070	00.21 [0.00 ; 100.20]			Alhalal-2020	5.35	1.08	51	3.29	1.41	53	6.2%	1.62 [1.18 , 2.07]
	Total (95% CI)		12948		8817	100.0%	1.37 [1.07 , 1.77]			Sadeghi-2018	33.61	2.48	50	26.36	3.32	50	6.0%	2.46 [1.93 , 2.98]
	Total events:	3319	12340	1926	0017	100.0 %	1.57 [1.67 , 1.77]			Jeihooni-2018	16.9	2.6	60	9.1	1.5	60	5.9%	3.65 [3.06 , 4.24]
	Heterogeneity: Tau ² = 0			= 12 (P <	0.00001)	; I² = 84%	υ.			Total (95% CI)			743				100.0%	0.75 [0.33 , 1.17]
	Test for overall effect: Z						Favours n	o int./not GCE Favours GCE		Heterogeneity: Tau ² =				o < 0.0000	1); I ² = 93	5%		
	Test for subgroup different	ences: Not	applicabl	e						Test for overall effect:	Z = 3.48 (P	= 0.0005)					

Test for subgroup differences: Not applicable

Std. mean difference

IV, Random, 95% CI

Intention (continuous)	Study or Subgroup	E: Mean	kperiment SD	al Total	Mean	Control SD	Total \		itd. mean difference V, Random, 95% Cl	Std. mean difference IV, Random, 95% Cl	Social norms (continuous)	Study or Subgroup	Ex _i Mean	oeriment SD	al Total	(Mean	Control SD	Total		Std. mean difference IV, Random, 95% Cl	Std. mean difference IV, Random, 95% Cl
	Morita-2014	6.2	0.7	40) 6.2	0.6	36	29.8%	0.00 [-0.45 , 0.45]	_		Roelands-2004	25.33	3.5	25	24.83	3.84	24	15.2%	0.13 [-0.43 , 0.69]	_
	deRuijter-2018	6.367	0.593	18	6.287	0.864	11	22.1%	0.11 [-0.64 , 0.86]			deRuiiter-2018	4.107	0.775	121	3.958	0.803	103	69.1%	0.19 [-0.07 , 0.45]	-
	Chan-2013	3.7	0.68	18	3.3	0.86	11	21.8%	0.52 [-0.25 , 1.28]			Edwards-2007	-3.69	7.04	45	-7.28	7.04	18	15.6%	0.50 [-0.05 , 1.06]	Γ
	Edwards-2007	-0.09	2.26	44	-2.67	2.25	18	26.3%	1.13 [0.54 , 1.71]												
	Total (95% CI) Heterogeneity: Tau ² =	0.22; Chi	² = 9.63, dt	120 = 3 (P =		69%	76	100.0%	0.43 [-0.12 , 0.99]	◆		Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:			191 = 2 (P = 0	.56); l² = (0%	145	100.0%	0.23 [0.01 , 0.45]	+ <u>+</u> +
	Test for overall effect: Test for subgroup diffe			ble					Favou	-4 -2 0 2 4 rs no int/no GCE Favours GCE		Test for subgroup diffe			ble					Favours no i	-4 -2 0 2 4 nt./not GCE Favours GCE
Attitude (dichotomous)	Study or Subgrou		xperime ents T		Cont Events	trol Total	Weigh		0dds ratio ndom, 95% Cl	Odds ratio IV, Random, 95% Cl	Skills (continuous)	Study or Subgroup	E> Mean	perimen SD	tal Total	Mean	Control SD	Total	Weight	Std. mean difference IV, Random, 95% CI	Std. mean difference IV, Random, 95% Cl
												Hasnain-2019	3.59	0.39	85	3.54	0.46	80	20.8%	6 0.12 [-0.19 , 0.42]	-
	Chan-2013		17	18	11	1			51 [0.02 , 13.56]			Jansink-2013	2.37	0.54	15	2.2	0.47	20	11.6%	6 0.33 [-0.34 , 1.01]	
	Harrison-2000		29	34	20	3	4 78.4	6 4.0	06 [1.26 , 13.07]			Lim-2020d	3.07	0.27	4	2.8	0.44	5	4.3%	6 0.64 [-0.73 , 2.01]	
												Khodadadi-2013	86.8	11.35	42	81.06	2.98	31	16.1%	6 0.64 [0.17 , 1.12]	
	Total (95% CI)			52		4	5 100.0	6 2.5	9 [0.48 , 13.87]			Kim-2022	23.2	3.33					14.9%		
	Total events:		46		31							Lim-2020b	3.16	0.37		2.0			4.6%		+
	Heterogeneity: Tau	u² = 0.58	; Chi² = '	.37, df	= 1 (P = (0.24); I ²	= 27%		0.	01 0.1 1 10 100		Ghazali-2020	197.93						19.6%		-
	Test for overall effe	ect: Z =	1.11 (P =	0.27)						experimental] Favours [control]		Lim-2020c	3.07	0.27		2.61	0.36		4.3%		
	Test for subgroup	differend	es: Not a	pplicab	le							Lim-2020a	3.16	0.37	5	2.61	0.36	5	3.9%	6 1.36 [-0.10 , 2.82]	
												Total (95% CI)			260			256	100.0%	6 0.64 [0.33 , 0.95]	♦
												Heterogeneity: Tau ² =				= 0.03); l²	= 53%				
												Test for overall effect: Test for subgroup diff								Favours n	-4 -2 0 2 4 o int./not GCE Favours GCE

tude		Exp	perimenta	al		Control			Std. mean difference	Std. mean difference
ntinuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
	Arzani-2020	109.4	6.88	50	115.04	4.81	50	3.4%	-0.94 [-1.36 , -0.53]	-
	Woodcock-1999	84.81	13.08	29	90.55	9.05	20	3.2%	-0.49 [-1.06 , 0.09]	
	Roelands-2004	25.04	3.57	25	25.79	3.45	24	3.2%	-0.21 [-0.77 , 0.35]	
	Ogden-1997a	5.05	0.79	11	5.22	1.04	23	3.1%	-0.17 [-0.89 , 0.55]	
	Omidi-2020	3.59	0.65	33	3.68	0.56	24	3.3%	-0.14 [-0.67 , 0.38]	-
	Yang-2019	15.89	2.51	13	16.29	3.24	12	3.0%	-0.13 [-0.92 , 0.65]	_
	Morita-2014	5.7	0.9	40	5.8	0.8	36	3.3%	-0.12 [-0.57 , 0.33]	_
	Lim-2020c	3.67	0.47	5	3.68	0.28	6	2.5%	-0.02 [-1.21 , 1.16]	
	Smeland-2022	32.7	4.51	32	32.7	4.24	26	3.3%		_
	Oaden-1997c	5.05	0.79	11	5.05	1.2	21	3.0%	0.00 [-0.73 , 0.73]	
	Lim-2020a	3.69	0.36	5	3.68	0.28	5	2.4%	0.03 [-1.21 , 1.27]	
	Lim-2020d	3.67	0.47	4	3.65	0.43	5	2.3%	0.04 [-1.28 , 1.35]	
	Huang-2009	30.54	3.76	16	30.38	3.41	16	3.1%	0.04 [-0.65 , 0.74]	
	deRuijter-2018	4.231	0.586	121	4.195	0.614	103	3.4%		1
	Lim-2020b	3.69	0.36	5	3.65	0.43	5	2.4%	0.09 [-1.15 , 1.33]	
	Kim-2014	29.68	8.95	15	28.43	9.45	16	3.1%	0.13 [-0.57 , 0.84]	
	Dudener-2023	4.5	0.42	26	4.44	0.42	26	3.2%		
	Francke-1996	7.6	1.3	48	7.4	1.3	58	3.4%	0.15 [-0.23 , 0.54]	
	Filmer-2020	3.4	0.54	33	3.25	0.76	29	3.3%	• • •	
	Hasnain-2019	3.36	0.34	85	3.27	0.39	80	3.4%	0.25 [-0.06 , 0.55]	
	Delvaux-2004	-2.616	0.653	53	-2.848	0.677	58	3.4%	0.35 [-0.03 , 0.72]	
	Edwards-2007	-27.53	16.328	41	-33.24	15.528	14	3.2%	0.35 [-0.26 , 0.96]	
	Jo-2015	146.92	17.2	21	139.5	19.01	20	3.2%	0.40 [-0.22 , 1.02]	T
	Yun-2022	32.43	3.02	12	31.03	2.37	12	2.9%	0.50 [-0.32 , 1.31]	-
	Zarifsanaiey-2022a	30.16	5.2	50	27.9	2.38	25	3.3%	0.50 [0.01 , 0.99]	
	Lin-2008	75.71	5.99	42	70.85	5.48	39	3.3%	0.84 [0.38 , 1.29]	
	Kavak-2019	32.09	1.23	53	28.4	4.08	58	3.4%		
	Bagherzadeh-2021	180.5	13.15	64	153.59	18.13	67	3.4%	1.68 [1.28 , 2.08]	-
	Alhalal-2020	5.99	0.92	51	4.06	1.17	53	3.3%	1.82 [1.36 , 2.28]	
	Sadeghi-2018	28.61	1.72	50	23.45	2.78	50	3.3%	2.22 [1.71 , 2.72]	
	Zarifsanaiev-2022b	37.42	2.42	50	27.9	2.38	25	3.0%	3.91 [3.11 , 4.72]	
	Jeihooni-2018	21.6	2.42	60	13	2.50	60	3.1%	4.27 [3.62 , 4.93]	_
	00110011-2010	21.0	2	00	10	2	00	0.170	4.27 [0.02 , 4.00]	
	Total (95% CI)			1154			1066	100.0%	0.54 [0.19 , 0.89]	◆
	Heterogeneity: Tau ² =	0.89; Chi ²	= 433.15,	df = 31 (F	<pre>< 0.0000</pre>	01); I² = 93	%			
	Test for overall effect:	Z = 3.04 (F	= 0.002)						-	-4 -2 0 2 4

COMPARISON 5: STRATEGIES INCLUDING REMINDERS AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE REMINDERS

Clinical		Exp	erimenta	al	c	Control			Std. mean difference	Std. mean difference	Clinical			Exper	imental	Con	trol		Odds ratio	Odds	ratio
practice (continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total V	Veight	IV, Random, 95% CI	IV, Random, 95% CI	practice (dichotor	Study	y or Subgroup	Events		Events		Weight	IV, Random, 95% Cl	IV, Rando	
(continuous)	Park-2021	3.76	0.71	30	4.69	0.35	28	8.4%	-1.62 [-2.22 , -1.02]	-	(diction		2010	20		20	20	0.6%	0.10.00.01		
	Kim-2007 Oniki-2003b	20.8 -1.56	11.8 0.63	13 60	38.5 -1.4	13.5 0.6	13 30	7.9% 8.6%	-1.35 [-2.22 , -0.49]				cos-2019	36			38		0.19 [0.01 , 4.08]	•	
	Yang-2019	-1.56	0.63	13		0.98	30 12	8.0%	-0.26 [-0.70 , 0.18] 0.14 [-0.64 , 0.93]	-			er-2013	55			346			-	
	Oniki-2003a	-1.02	0.66	60	-1.4	0.50	30	8.6%	0.59 [0.14 , 1.03]				nall-2022	1609			1731		0.98 [0.76 , 1.25]	-	
	Kim-2022	37.9	5.36	30		4.91	30	8.5%	0.60 [0.08 , 1.12]	-		McDo	nald-2005a	106	6 121	51	59	3.4%	1.11 [0.44 , 2.78]	_	
	Behzadi-2019	68.6	32.43	26	48.6	15.41	26	8.4%	0.78 [0.21 , 1.34]	-		McDo	nald-2005b	108	B 121	52	59	3.3%	1.12 [0.42 , 2.97]	_	
	Yun-2022	84.56	7.68	12		7.43	12	7.9%	0.80 [-0.04 , 1.63]			Fairal	1-2005	226	6 1000	193	999	5.8%	1.22 [0.98 , 1.51]		•
	Maki-Turja-Rostedt-2020	3.14	0.56	17		0.64	12	8.0%	1.03 [0.24 , 1.82]			Forbe	erg-2016	93	3 105	87	102	3.8%	1.34 [0.59 , 3.01]	_	
	Mousavi-2022 Akande-2020	6.07 93.5	1.16 8.32	33 82	4.61 78.8	0.94 11.4	33 80	8.5% 8.7%	1.37 [0.83 , 1.91] 1.47 [1.12 , 1.82]	-		Välim	äki-2022	764	4 4092	585	4089	6.0%			
	Jelhooni-2018	93.5	0.32	60	70.0 8.8	11.4	60	8.4%	3.64 [3.05 , 4.23]	+			II-2012	49			180		1.49 [0.91 , 2.43]		
	0011001112010	14.0	1.0	00	0.0	1.0	00	0.470	0.04 [0.00 , 4.20]				brook-2017	674			1177				- -
	Total (95% CI)			436			366	100.0%	0.61 [-0.11 , 1.33]	•			ng-2020	47			111				
	Heterogeneity: Tau ² = 1.52			11 (P < 0.	.00001); l²	= 95%								575			45823				-
	Test for overall effect: Z =									-4 -2 0 2 4		Kroth									•
	Test for subgroup difference	es: Not app	olicable						Favours no inf	./not Remin Favours Re	inders		heril-2021	155			210				+
													and-2022	12			32			-	-
													uca-1987	23			49				—
												Blanc	o-Mavillard-202				739	5.3%	3.61 [2.38 , 5.47]		+
												Koh-2	2009	2	1 21	17	18	0.6%	3.69 [0.14 , 96.22]		
												Corte	z-2016	38	B 100	13	100	4.2%	4.10 [2.02 , 8.33]		
												Nowa	lk-2005	591	1 1534	7	53	3.8%	4.12 [1.85, 9.18]		
												Kvria	cos-2015	4	4 30	1	30	1.1%	4.46 [0.47 , 42.51]	_	
												,	ugh-2005a	16			61				
													ugh-2005b	28		-	61				
													ajang-2005	102			108				
													eton-2011	242			350				
																					-
												Snevi	in-2002	78	8 205	7	143	3.8%	11.93 [5.31 , 26.83]		
												Total	(95% CI)		57195		56668	100.0%	2.44 [1.89 , 3.17]		•
												Total	events:	5753	3	3681					•
												Heter	ogeneity: Tau ² =	= 0.29; Chi ² :	= 240.95, 0	if = 24 (P ·	< 0.00001	1); l ² = 90%	6	0.01 0.1 1	10 100
												Test f	or overall effect:	: Z = 6.79 (P	< 0.00001)				o int./not Remin	Favours Reminders
												Test f	or subgroup diff	erences: No	t applicabl	e					
Patient							N/A				Knowledg	ar									
outcomes							11/7				(continue	· .	or Subaroup	Experin Mean SD			Control SD	Total V	Std. mean differer Veight IV. Random, 95%		an difference dom, 95% Cl
(continuous)											(00111111		or subgroup	wear 5L	iotai	wear	30	iotai v	veight iv, Random, 55%	Ci iv, Kali	uom, 95% Ci
(,												Park-2	021	14 1	1.64 3	0 15.79	0.63	28	10.2% -1.40 [-1.98 , -0	.82]	
												Koh-20	009	10.3	1.8 1	1 9.8	1.8	9	9.3% 0.27 [-0.62 , 1	.15]	—
												Yang-2	2019			3 4.13	1.82	12	9.5% 0.61 [-0.20 , 1	.41]	
													os-2015			8 41.2		18	9.9% 0.87 [0.18 , 1		
												Lin-20				2 7.87	3.37		10.5% 1.04 [0.58 , 1		-
												Kim-20				0 15.2			10.2% 1.45 [0.88 , 2		
												Akand				2 69.5	10.3		10.7% 1.67 [1.31 , 2		-
												Yun-20				2 24.57	3.32	12	8.9% 1.87 [0.88 , 2		_ _
													ni-2018			0 5.2	2.6		10.6% 1.98 [1.54 , 2		-
												Mousa	ivi-2022	8.58 1	1.85 3	3 4.7	1.38	33	10.1% 2.35 [1.71 , 2	.98]	

Total (95% CI)	331	321	100.0%	1.07 [0.41 , 1.74]	•
Heterogeneity: Tau ² = 1.04; Chi	² = 119.05, df = 9 (P < 0.00001); l ²	= 92%			-
Test for overall effect: Z = 3.17	(P = 0.002)				4 -2 0 2 4
Test for subgroup differences: N	lot applicable			Favours no int./	not Remin Favours Reminders

Patient		Experin		Cont	rol		Odds ratio	Odds ratio
outcomes (dichotomous)	Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
	Mancheril-2021	242	268	209	210	1.8%	0.04 [0.01 , 0.33]	← → → →
	Park-2021	2	27	5	30	2.3%	0.40 [0.07 , 2.26]	
	Bucknall-2022	29	1000	32	1000	16.3%	0.90 [0.54 , 1.51]	-
	Kyriacos-2019	1	38	1	36	0.9%	0.95 [0.06 , 15.71]	
	Blanco-Mavillard-2021	269	726	280	754	30.8%	1.00 [0.81 , 1.23]	
	Cortez-2016	13	100	12	100	8.3%		T
	Forberg-2016	316	674	259	618	30.3%		
	Middleton-2011	13	483	13	603	9.3%	1.26 [0.58 , 2.73]	
	Total (95% CI)		3316		3351	100.0%	1.00 [0.76 , 1.31]	•
	Total events:	885		811				Ť
	Heterogeneity: Tau ² = 0	.05; Chi ² =	13.34, df	= 7 (P = 0	.06); l ² =	48%		0.01 0.1 1 10 100
	Test for overall effect: Z	= 0.03 (P =	0.97)					no int./not Remin Favours Reminders
	Test for subgroup differe	ences: Not a	applicabl	e				
Intention (continuous)						N	/Α	
Attitude (dichotomous)						N	/Α	

rceived		Exp	erimenta	al		Control			Mean difference	Mean difference
ontrol ontinuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
,	Kim-2022	39.4	5.06	30	37.13	6.7	30	6.0%	2.27 [-0.73 , 5.27]	
	Jeihooni-2018	16.9	2.6	60	9.1	1.5	60	93.3%	7.80 [7.04 , 8.56]	
	Yun-2022	83.86	12.6	12	75.3	9.31	12	0.7%	8.56 [-0.30 , 17.42]	_
	Total (95% CI)			102			102	100.0%	7.48 [6.74 , 8.21]	•
	Heterogeneity: Chi ² =	12.29, df =	2 (P = 0.0	002); I ² =	84%					
	Test for overall effect:	Z = 19.97 (P < 0.000	01)						-10 -5 0 5 10
	Test for subgroup diff	erences: No	t applicat	le					Favours no	int./not Remin Favours Remind

Social norms (continuous) Skills

(continuous)

N/A

N/A

Attitude		Exp	perimenta	al		Control			Std. mean difference	Std. mean difference
continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Yang-2019	15.89	2.51	13	16.29	3.24	12	19.7%	-0.13 [-0.92 , 0.65]	_
	Smeland-2022	32.7	4.51	32	32.7	4.24	26	20.3%	0.00 [-0.52 , 0.52]	+
	Yun-2022	32.43	3.02	12	31.03	2.37	12	19.6%	0.50 [-0.32 , 1.31]	
	Lin-2008	75.71	5.99	42	70.85	5.48	39	20.4%	0.84 [0.38 , 1.29]	
	Jeihooni-2018	21.6	2	60	13	2	60	20.0%	4.27 [3.62 , 4.93]	-
	Total (95% CI)			159			149	100.0%	1.10 [-0.41 , 2.60]	
	Heterogeneity: Tau ² =	2.84; Chi ² :	= 119.88,	df = 4 (P	< 0.00001); l² = 979	6			
	Test for overall effect:	Z = 1.43 (P	9 = 0.15)						-	-4 -2 0 2 4
	Test for subgroup diffe	rences: No	t applicat	ole					Favours no in	

COMPARISON 6: STRATEGIES INCLUDING PATIENT-MEDIATED INTERVENTION (PMI) AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE PMI

Clinical practice (continuous)						N/A				Clinical practice (dichotomous)		Experin Events	Total		Total		Odds ratio IV, Random, 95% Cl	Odds ratio IV, Random, 95% Cl
											VanGaal-2011a VanGaal-2011b Berry-2022	573 74 795	1081 196 964	673 76 818	1020 196 1026	11.4% 12.2%	0.96 [0.64 , 1.44] 1.20 [0.95 , 1.50]	•
											Carroll-2012 Teesing-2020	49 373	176 1024	37 187	180 888		1.49 [0.91 , 2.43] 2.15 [1.75 , 2.64]	-
											Westbrook-2017	674	1175	451	1177			
											Blanco-Mavillard-2021	101	740	31	739			
											Nowalk-2005	591	1534	7	53			+
											Marcantonio-2010	30	74	6	46			
											Total (95% CI)		6964		5325	100.0%	1.78 [1.13 , 2.79]	◆
											Total events:	3260		2286				
											Heterogeneity: Tau ² = 0			= 8 (P < 1	0.00001);	l² = 95%		0.01 0.1 1 10 100
											Test for overall effect: Z Test for subgroup differ						Favours	s no int./not PMI Favours PMI
											rescror subgroup uner	ences. Not	applicable					
Patient outcomes (continuous)						N/A				Knowledge (continuous)						N/A		
Patient outcomes (dichotomous)	Study or Subgroup	Experir Events		Con Events	trol Total	Weight	Odds ratio IV, Fixed, 95% Cl		dds ratio xed, 95% Cl	Perceived control (continuous)						N/A		
	Marcantonio-2010 Blanco-Mavillard-2021	22 269					0.70 [0.32 , 1.50 1.00 [0.81 , 1.23		•									
	Total (95% CI) Total events: Heterogeneity: Chi ² = 0 Test for overall effect: 2 Test for subgroup differ	Z = 0.28 (P	= 0.78)	322); I² = 0%		4 100.0%	0.97 [0.79 , 1.19 Favou	0.2 0.5 Irs no int./not PMI	1 2 5 I Favours PMI									
Intention (continuous)						N/A				Social norms (continuous)						N/A		
Attitude (dichotomous)						N/A				Skills (continuous)						N/A		
Attitude (continuous)						N/A												

COMPARISON 7: STRATEGIES INCLUDING AUDIT AND FEEDBACK (A&F) AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE A&F

ical tice tinuous)	Study or Subgroup		sD			SD	Total V		td. mean differer /, Random, 95%		td. mean difference V, Random, 95% Cl	Clinical practice (dichotomous)	Study or Subgroup	Experir Events		Cont Events		Weight	Odds ratio IV, Random, 95% Cl		s ratio m, 95% Cl
,	Park-2021	3.76	0.71	30	4.69	0.35		11.9%	-1.62 [-2.22 , -1		-	(,	Cheater-2006a	46	80	67	86	4.7%	0.38 [0.20 , 0.75]		
	Kim-2007	20.8 35	11.8	13	38.5 35.4	13.5	13 16	9.4%	-1.35 [-2.22 , -0				Cheater-2006c	40 59	94	68	85		0.42 [0.21, 0.83]	_	
	Rantz-2001b Friese-2019	2.3	15.1 0.9	35 121	2.3	13.4 0.9	136	12.0% 15.0%	-0.03 [-0.62 , 0 0.00 [-0.24 , 0		+		VanGaal-2011a	573	1081	673	1020		0.58 [0.49 , 0.69]	-	
	Rantz-2001a	37	13.3	37	35.4	13.4		12.2%	0.12 [-0.46 , 0		1 I		Oneil-2016	1449	1648	1420	1563		0.73 [0.58 , 0.92]	+	
	Yang-2019	14.31	0.63	13	14.19	0.98		10.1%	0.14 [-0.64 , 0		-		Cheater-2006b	46	80	62	97	4.8%	0.76 [0.42 , 1.40]	-	
	Hasnain-2019	3.19	0.47	85	3.05	0.36	80	14.6%	0.33 [0.02 , 0		+		Rhew-1999c	121	550	305	1221	5.3%	0.85 [0.67 , 1.08]	_	Γ
	Zohar-2017	1.88	0.27	95	1.72	0.42	97	14.7%	0.45 [0.16 , 0	0.74]	-		Hendryx-1998	62	76	40	48		0.89 [0.34 , 2.30]		
	Total (95% CI)			429			300	100.0%	-0.18 [-0.60 , 0	241			Cheater-2006e	59	95	62	97	4.9%	0.93 [0.51 , 1.66]		
	Heterogeneity: Tau ² = 0	.29; Chi ² =	51.02, df		0.00001);	l² = 86%	555	100.070	-0.10[-0.00], 0		•		VanGaal-2011b	74	196	76	196	5.1%	0.96 [0.64 , 1.44]		
	Test for overall effect: Z	= 0.85 (P	= 0.40)							-4	-2 0 2 4		Bucknall-2022	1609	1747	1597	1731	5.3%	0.98 [0.76 , 1.25]		Γ
	Test for subgroup different	ences: Not	applicable	е					Favours	s no int./not A&	amp;F Favours A&F		Fakih-2012	49	86	47	84	4.8%	1.04 [0.57 , 1.91]	_	
													Curtis-2011	1840	2238	1766	2238		1.24 [1.07 . 1.43]		-
													Evans-2007	870	49061	405	45762		2.02 [1.80 , 2.28]		•
													Donati-2020	30	38	27	42		2.08 [0.76 , 5.68]		
													Mancheril-2021	155	268	74	210		2.52 [1.74 , 3.66]		-
													Titler-2009	1	6	0	6	1.1%	3.55 [0.12 , 105.82]		
													Blanco-Mavillard-2021	I 101	740	31	739	5.1%	3.61 [2.38 , 5.47]		
													Koh-2009	21	21	17	18		3.69 [0.14 , 96.22]		
													Gengiah-2021	33229	35164	26140	32839	5.4%	4.40 [4.17 , 4.64]		-
													Collins-2021	338	374	166	244		4.41 [2.85 , 6.83]		
													Rhew-1999a	121	551	53	1180	5.2%	5.98 [4.25 , 8.42]		+
													Wagner-2005	5	44	1	51	2.1%	6.41 [0.72 , 57.13]	-	
													Total (95% CI)		94238		89557	100.0%	1.42 [0.94 , 2.13]		•
													Total events:	40858		33097					
													Heterogeneity: Tau ² =			df = 21 (P	< 0.0000	1); l ² = 98	,	0.01 0.1	1 10
													Test for overall effect: Test for subgroup diffe						Favours no in	nt./not A&F	Favours A&
	Study or Subgroup		erimental SD		-	Control SD	Total V		td. mean differe V. Random, 95%		itd. mean difference IV. Random, 95% Cl	Knowledge (continuous)		Experim Mean SD	ental		Control SD	Total V	Std. mean differe		nean difference Indom, 95% Cl
ent omes tinuous)		Mean	SD	Total	Mean	SD		Veight IV	V, Random, 95%	CI I		Knowledge (continuous)	Study or Subgroup	Mean SD	ental Total	Mean	SD		Veight IV, Random, 95%	% CI IV, Ra	nean difference Indom, 95% Cl
omes	Rantz-2001b Rantz-2001a	Mean 10.2 13.8	4.2 7	Total 10 37	Mean 15.2 15.2	SD 6.1 6.1	16 17	Veight IV 19.1% 28.8%	V, Random, 95%	0.05] 0.37]				Mean SD	ental Total	Mean				-0.82] –	
omes	Rantz-2001b	Mean 10.2	SD	Total 1	Mean 15.2	SD 6.1	16 17	Veight IN	-0.89 [-1.72 , -0	0.05] 0.37]			Study or Subgroup M Park-2021 Friese-2019 Koh-2009	Mean SD 14 1. 6.5 10.3	ental Total 64 3 1.6 12 1.8 1	Mean 10 15.79 11 6.9 11 9.8	0.63 67 1.8	28 136 9	Veight IV, Random, 95% 25.9% -1.40 [-1.98 , - 29.1% -0.01 [-0.25 , 21.9% 0.27 [-0.62 ,	-0.82]	
omes	Rantz-2001b Rantz-2001a	Mean 10.2 13.8	4.2 7	Total 10 37	Mean 15.2 15.2	SD 6.1 6.1	16 17 632	Veight IV 19.1% 28.8%	-0.89 [-1.72 , -(-0.20 [-0.78 , (0.04 [-0.07 , (0.05] 0.37] 0.15]			Study or Subgroup M Park-2021 Friese-2019	Mean SD 14 1. 6.5 10.3	ental Total 64 3 1.6 12 1.8 1	Mean 0 15.79 1 6.9	0.63 67 1.8	28 136 9	Veight IV, Random, 95% 25.9% -1.40 [-1.98 , - 29.1% -0.01 [-0.25 ,	-0.82]	
omes	Rantz-2001b Rantz-2001a Curtis-2011	Mean 10.2 13.8 69.67	4.2 7 20.74	Total 10 37 632 679	Mean 15.2 15.2 68.8	6.1 6.1 23.14	16 17 632	Veight IV 19.1% 28.8% 52.2%	V, Random, 95%	0.05] 0.37] 0.15]			Study or Subgroup	Mean SD 14 1. 6.5 10.3	ental Total 64 3 1.6 12 1.8 58 1	Mean 10 15.79 11 6.9 11 9.8 3 4.13	0.63 67 1.8	28 136 9 12	Veight IV, Random, 95% 25.9% -1.40 [-1.98, - 29.1% -0.01 [-0.25, - 21.9% 0.27 [-0.62, - 23.0% 0.61 [-0.20, -	-0.82]	
omes	Rantz-2001b Rantz-2001a Curtis-2011 Total (95% CI) Heterogeneity: Tau ^a = 0 Test for overall effect: Z	Mean 10.2 13.8 69.67 0.10; Chi ² = 2 = 0.90 (P	4.2 7 20.74 5.25, df = = 0.37)	10 37 632 679 = 2 (P = 0.	Mean 15.2 15.2 68.8	6.1 6.1 23.14	16 17 632	Veight IV 19.1% 28.8% 52.2%	 V, Random, 95% -0.89 [-1.72 , -(-0.20 [-0.78 , (0.04 [-0.07 , (-0.21 [-0.66 , (0.05] 0.37] 0.15] 0.25]	V, Random, 95% Cl		Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% CI)	Mean SD 14 1. 6.5 10.3 5.2 1.	ental Total 64 3 1.6 12 1.8 - 58 1 17	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12	Veight IV, Random, 95% 25.9% -1.40 [-1.98 , - 29.1% -0.01 [-0.25 , 21.9% 0.27 [-0.62 ,	-0.82]	
omes	Rantz-2001b Rantz-2001a Curtis-2011 Total (95% CI) Heterogeneity: Tau ² = 0	Mean 10.2 13.8 69.67 0.10; Chi ² = 2 = 0.90 (P	4.2 7 20.74 5.25, df = = 0.37)	10 37 632 679 = 2 (P = 0.	Mean 15.2 15.2 68.8	6.1 6.1 23.14	16 17 632	Veight IV 19.1% 28.8% 52.2%	 V, Random, 95% -0.89 [-1.72 , -(-0.20 [-0.78 , (0.04 [-0.07 , (-0.21 [-0.66 , (0.05] 0.37] 0.15] 0.25]	V, Random, 95% Cl		Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
mes nuous)	Rantz-2001b Rantz-2001a Curtis-2011 Total (95% CI) Heterogeneity: Tau ^a = 0 Test for overall effect: Z	Mean 10.2 13.8 69.67 0.10; Chi ² = 2 = 0.90 (P ences: Not	SD 4.2 7 20.74 5.25, df = = 0.37) applicable	Total 10 37 632 679 = 2 (P = 0.	Mean 15.2 15.2 68.8	5D 6.1 6.1 23.14	16 17 632	Veight N 19.1% 28.8% 52.2% 100.0%	 V, Random, 95% -0.89 [-1.72, - -0.20 [-0.78, (0.04 [-0.07, (-0.21 [-0.66, (Favour 	0.05] 0.37] 0.15] 0.25] -4 's no int/not A8	IV, Random, 95% Cl	(continuous)	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% CI) Heterogeneity: Tau ² = 0.6	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]		andom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curtis-2011 Total (95% CI) Heterogeneity: Tau ^a = 0 Test for overall effect: Z	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Ex	SD 4.2 7 20.74 5.25, df = = 0.37) applicable	Total 1 10 37 632 679 = 2 (P = 0. le	Mean 15.2 15.2 68.8 .07); I ² = 6 Contro	6.1 6.1 23.14 32%	16 17 632 665	Veight N 19.1% 28.8% 52.2% 100.0%	 V, Random, 95% -0.89 [-1.72 , -(-0.20 [-0.78 , (0.04 [-0.07 , (-0.21 [-0.66 , (0.05] 0.37] 0.15] 0.25] 4 rs no int/not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (65% CI) Heterogenetity: Tau* = 0 Test for overall effect: Z Test for subgroup differ Study or Subgroup	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Exp Exp	SD 4.2 7 20.74 5.25, df = 0.37) applicable Deriment bring Dominant	Total 10 37 632 679 2 (P = 0.) le	Mean 15.2 15.2 68.8 .07); I ² = 6 Contro vents	SD 6.1 6.1 23.14 32% ol Total	16 17 632 665 Weight	Veight IV 19.1% 28.8% 52.2% 100.0% IV, Rand	v, Random, 95% -0.89 [-1.72, - -0.20 [-0.78, (0.04 [-0.07, (-0.21 [-0.66, (Favour ds ratio dom, 95% Cl	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	ndom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogeneity: Tau ^a = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Exp Exp	SD 4.2 7 20.74 5.25, df = 0.37) applicable Deriment Dot ST To 2242 242	Total 10 37 632 679 2 (P = 0.) e 10 tai Ev tai Ev 268 268	Mean 15.2 15.2 68.8 .07); I ² = 6 Contro	6.1 6.1 23.14 32%	16 17 632 665	Veight IV 19.1% 28.8% 52.2% 100.0% Odd IV, Rand	V, Random, 95% -0.89 [-1.72, -(-0.20 [-0.78, (-0.20 [-0.78, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.21 [-0.66, (-0.21 [-	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	ndom, 95% Cl
mes nuous) nt mes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogenetity: Tau ^s = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancherii-2021 Park-2021	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Exp Exp	SD 4.2 7 20.74 5.25, df = = = 0.37) applicable periment To 22.22 2	Total 10 37 632 679 2 (P = 0.) e 10 tal Ev tal Ev 268 27	Mean 15.2 15.2 68.8 .07); I ^a = 6 Contro vents 209	SD 6.1 6.1 23.14 52% ol Total 210	16 17 632 665 Weight 3.2% 4.0%	Veight IV 19.1% 28.8% 52.2% 100.0% Odd IV, Rand 0.04 0.04	V, Random, 95% -0.89 [-1.72, -(-0.20 [-0.78, (0.04 [-0.07, (-0.21 [-0.66, (Favour ds ratio dom, 95% Cl 4 [0.01, 0.33] 0 [0.07, 2.26]	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
mes nuous) nt mes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogeneity: Tau ^a = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Exp Exp	SD 4.2 7 20.74 5.25, df = = = 0.37) applicable periment To 22.22 2 1 1	Total 10 37 632 679 2 (P = 0.) le 10 tal Ev tal Ev 268 268	Mean 15.2 15.2 68.8 .07); I ^a = 6 Contro 209 5	SD 6.1 6.1 23.14 52% ol Total 210 30	16 17 632 665 Weight	Veight IV 19.1% 28.8% 52.2% 100.0% Odd IV, Rand 0.04 0.04 0.55	V, Random, 95% -0.89 [-1.72, -(-0.20 [-0.78, (-0.20 [-0.78, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.21 [-0.66, (-0.21 [-	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (65% CI) Heterogeneity: Tau* = 0 Test for overall effect: Z Test for subgroup differ Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Exp Exp	SD 4.2 7 20.74 5.25, df = = = 0.37) applicable periment To 22.22 2 1 1	Total 1 10 37 632 679 = 2 (P = 0. le tal 268 27 1000	Mean 15.2 15.2 68.8 .07); I ² = 6 Contro vents 209 5 2	SD 6.1 6.1 23.14 52% ol Total 210 30 1000	16 17 632 665 Weight 3.2% 4.0% 2.4%	Veight IV 19.1% 28.8% 52.2% 100.0% IV, Ranc 0.04 0.4(0.56 0.90	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, 0] -0.21 [-0.66, 0] Favour ds ratio dsom, 95% CI 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.05, 5.52] 	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (85% CI) Heterogeneity: Tau ^s = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Ext	SD 4.2 7 20.74 5.25, df = 0.37) applicable perimentits 242 2 1 29	Total 10 37 632 679 = 2 (P = 0.) le	Mean 15.2 15.2 68.8 .07); I ² = 6 Controvents 209 5 2 32	SD 6.1 6.1 6.1 23.14 32% 52%	16 17 632 665 Weight 3.2% 4.0% 2.4% 12.7%	Veight IV 19.1% 28.8% 52.2% 100.0% Odd IV, Rand 0.04 0.04 0.56 0.99 0.99	 V, Random, 95% 0.89 [-1.72, -(-0.20 [-0.78, (-0.20 [-0.78, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [-0.66, (-0.21 [0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogeneity: Tau ^s = 0 Test for overgeneity: Tau ^s = 0 Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006e	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Ext	SD 4.2 7 20.74 5.25, df = 0.37) applicable beriment tot 70 242 2 1 29 17 269 18 18	Total 10 37 632 679 = 2 (P = 0. le tal Ev 268 27 1000 1000 95 726 83	Mean 15.2 15.2 68.8 .07); I ² = 6 Contro vents 209 5 2 32 15	SD 6.1 6.1 23.14 52% ol Total 210 30 1000 1000 83	16 17 632 665 Weight 3.2% 4.0% 2.4% 12.7% 10.1%	Veight IV 19.1% 28.8% 52.2% 100.0% IV, Rand 0.04 0.04 0.56 0.99 0.99 1.00	V, Random, 95% -0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, (-0.21 [-0.66, (Favour ds ratio dom, 95% Cl 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.54, 1.51] 0 [0.46, 2.13]	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogenetty: Tau ^a = 0 Test for overall effect 2 Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknail-2022 Cheater-2006e Blanco-Mavillard-202 Cheater-2006b	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Ext	SD 4.2 7 20.74 5.25, df = 0.37) applicable beriment tot To 242 2 1 29 17 269 18 17	Total 10 37 632 679 = 2 (P = 0. e 10 tal Ev tal Ev 1000 95 726 83 94	Mean 15.2 15.2 68.8 .07); I ^a = 6 Contro vents 209 5 2 32 15 280 15 280 15 280 13	SD 6.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 <th7.1< th=""> 7.1 <th7.1< th=""> <th7.1< th=""> <th7.1< th=""></th7.1<></th7.1<></th7.1<></th7.1<>	16 17 632 665 Weight 3.2% 4.0% 2.4% 12.7% 10.1% 10.1% 9.9%	Veight IV 19.1% 28.8% 52.2% 100.0% IV, Rand 0.04 0.55 0.99 0.99 0.99 1.00 1.22 1.25	 V, Random, 95% -0.89 [-1.72, -4 -0.20 [-0.78, (-0.20 [-0.78, (-0.21 [-0.66, (-0.21 [-0.66, (Favour ds ratio diom, 95% CI 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.54, 1.51] 9 [0.46, 2.13] 0 [0.54, 2.73] 0 [0.59, 2.84] 	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (65% CI) Heterogeneity: Tau* = 0 Test for overall effect: Z Test for subgroup differ Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006b Cheater-2005 Cheater-2005	Mean 10.2 13.8 69.67 0.10; Chi ² = 0.90 (P ences: Not Ext	SD 4.2 7 20.74 5.25, df = 0.37) applicable 0.37) corriment 0.37) 2242 2 1 29 17 269 18 17 32 32	Total 10 37 632 679 = 2 (P = 0. ile ile ttal Ev 268 27 1000 95 726 83 94 44	Mean 15.2 15.2 68.8 .07); I ² = 6 Controvents 209 5 209 5 209 5 209 5 209 5 209 5 209 5 232 15 280 15 280 15 34	SD 6.1 6.1 23.14 52%	16 17 632 665 Weight 3.2% 4.0% 2.4% 12.7% 10.1% 15.4% 10.1% 9.9%	Veight N 19.1% 28.8% 52.2% 100.0% V, Rand 0.04 0.04 0.99 1.00 1.26 1.22 1.33	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, 0] -0.21 [-0.66, 0] Favour ds ratio dom, 95% CI 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.05, 5.52] 0 [0.05, 2.55] 0 [0.44, 1.51] 9 [0.46, 2.13] 0 [0.58, 2.70] 9 [0.59, 2.84] 3 [0.55, 3.22] 	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	ndom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogeneity: Tau ^s = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006a	Mean 10.2 13.8 69.67 0.10; Chi ^a = = 0.90 (P ences: Not Exe Ever	sp 4.2 7 7 20.74 5.25. df = 0.37) applicable periment tr ts To 2242 2 1 29 17 269 18 32 17 32	Total 10 37 632 679 2 (P = 0.) e 10 tal EV 268 27 1000 95 726 83 94 44	Mean 15.2 15.2 68.8 .07); I ² = 6 Controvents 209 5 2 32 32 32 15 33 34 13	SD 6.1 6.1 6.1 23.14 123.14 32% </td <td>16 17 632 665 Weight 3.2% 4.0% 2.4% 10.1% 15.4% 10.1% 9.9% 9.8%</td> <td>Veight N 19.1% 28.8% 52.2% 100.0% Odd IV, Rand 0.04 0.44 0.50 0.99 1.00 1.22 1.22 1.33 1.55</td> <td> V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (-0.21 [-0.66, (-0.26 [-0.66,</td> <td>0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8</td> <td>V, Random, 95% Cl</td> <td>(continuous) Perceived control</td> <td>Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau² = 0.6 Test for overall effect: Z =</td> <td>Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil² = 23.6 = 0.41 (P = 0.6</td> <td>Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)</td> <td>Mean 10 15.79 11 6.9 11 9.8 13 4.13 75</td> <td>0.63 67 1.8 1.82</td> <td>28 136 9 12 185</td> <td>Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]</td> <td>-0.82]</td> <td>indom, 95% Cl</td>	16 17 632 665 Weight 3.2% 4.0% 2.4% 10.1% 15.4% 10.1% 9.9% 9.8%	Veight N 19.1% 28.8% 52.2% 100.0% Odd IV, Rand 0.04 0.44 0.50 0.99 1.00 1.22 1.22 1.33 1.55	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (-0.21 [-0.66, (-0.26 [-0.66,	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	indom, 95% Cl
mes nuous) nt mes	Rantz-2001b Rantz-2001a Curlis-2011 Total (65% CI) Heterogeneity: Tau* = 0 Test for overall effect: Z Test for subgroup differ Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006b Cheater-2005 Cheater-2005	Mean 10.2 13.8 69.67 0.10; Chi ^a = = 0.90 (P ences: Not Exe Ever	SD 4.2 7 20.74 5.25, df = 0.37) applicable 0.37) corriment 0.37) 242 2 1 29 17 269 18 17 32 32	Total 10 37 632 679 = 2 (P = 0. ile ile ttal Ev 268 27 1000 95 726 83 94 44	Mean 15.2 15.2 68.8 .07); I ² = 6 Controvents 209 5 209 5 209 5 209 5 209 5 209 5 209 5 232 15 280 15 280 15 34	SD 6.1 6.1 23.14 52%	16 17 632 665 Weight 3.2% 4.0% 2.4% 12.7% 10.1% 15.4% 10.1% 9.9%	Veight N 19.1% 28.8% 52.2% 100.0% Odd IV, Rand 0.04 0.44 0.50 0.99 1.00 1.22 1.22 1.33 1.55	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, 0] -0.21 [-0.66, 0] Favour ds ratio dom, 95% CI 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.05, 5.52] 0 [0.05, 2.55] 0 [0.44, 1.51] 9 [0.46, 2.13] 0 [0.58, 2.70] 9 [0.59, 2.84] 3 [0.55, 3.22] 	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogeneity: Tau ^s = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006a Collins-2021 Total (95% CI)	Mean 10.2 13.8 69.67 .10; Chi [≠] = = 0.90; P ences: Not Exp Ever 21	SD 4.2 7 20.74 7 20.74 5.25, df = 0.37) applicable periment To 20.22 1 29 17 269 18 32 17 118 32	Total 10 37 632 679 2 (P = 0.) e 10 tal EV 268 27 1000 95 726 83 94 44	Mean 15.2 15.2 68.8 07): I² = 6 07): I² = 6 070 12 08.8 070 12 08.8 070 12 08.8 070 12 08.8 070 12 08.8 070 12 08.8 070 12 08.8 070 12 08.8 070	SD 6.1 6.1 23.14 123.14 52% 52% 52% 01 Total 700 30 1000 1000 83 754 83 83 83 51 90 234 51 90 234 51	16 17 632 665 Weight 3.2% 4.0% 2.4% 10.1% 15.4% 10.1% 9.9% 9.8%	Veight N 19.1% 19.1% 28.8% 52.2% 100.0% 0.00 0.44 0.54 0.99 0.99 1.00 0.92 1.02 1.22 1.33 3.12	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (-0.21 [-0.66, (-0.26 [-0.66,	0.05] 0.37] 0.15] 0.25] 4 -4 is no int./not A8	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	ndom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (65% CI) Heterogenetity: Tau® = 0 Test for overall effect: Z Test for subgroup differ Study or Subgroup Mancheni-2021 Park-2021 Oneil-2016 Bucknail-2022 Cheater-2006e Blanco-Mavillard-201 Cheater-2006b Cheater-2006d Wagner-2005 Cheater-2006a Collins-2021	Mean 10.2 13.8 69.67 1.0.0, Chi ^a = 0.90, (P) 10.0 10.0 10.0 V.10, Chi ^a = 0.90, (P) Expanding Expanding<	sp 4.2 7 20.74 5.25.df = 0.37) applicable Derimentitis To 242 2 1 269 18 17 32 17 118 762	Total 10 37 632 679 679 92 (P = 0. ile ile tal EV 268 27 1000 95 726 83 83 94 44 8363 3783 3783	Mean 15.2 15.2 15.2 68.8 .07): I* = 6 68.8 .07): I* = 6 209 5 2 32 15 280 15 13 34 13 31 649 649	SD 6.1 6.1 23.14 23.14 23.14 32% 30 31 32% ol Total 210 30 30 30 30 3624	16 17 632 665 32% 4.0% 12.7% 10.1% 9.9% 9.0% 13.5% 100.0%	Veight N 19.1% 19.1% 28.8% 52.2% 100.0% 0.00 0.44 0.54 0.99 0.99 1.00 0.92 1.02 1.22 1.33 3.12	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (-0.21 [-0.66, (-0.21 [-0.66, (Favour ds ratio dom, 95% CI 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.54, 1.51] 9 [0.46, 2.13] 0 [0.51, 2.70] 9 [0.59, 2.84] 3 [0.59, 2.84] 3 [0.69, 3.37] 5 [2.04, 4.88] 1 [0.74, 1.65] 	0.05] 0.37] 0.15] 0.25] 	V, Random, 95% Cl	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	andom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (95% CI) Heterogenetty: Tau ^a = 0 Test for overall effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006b Cheater-2006b Cheater-2006d Wagner-2005 Cheater-2006d Collins-2021 Total (95% CI) Total events:	Mean 10.2 13.8 69.67 13.8 69.67 10.0 Chi 2 - 0.5 (c) Ex	sp 4.2 7 20.74 5.25, df = = 0.37) applicable Deriment To 22 1 29 17 269 18 17 32 17 18 77 32 17 118 762 32 712 35.25 (P = 0.6	Total 10 37 632 679 = 2 (P = 0. erg (P = 0. tal Ev tal Ev 268 27 1000 95 726 83 363 363 363 363 394 44 83 363 393, df = 1 61)	Mean 15.2 15.2 15.2 68.8 .07): I* = 6 68.8 .07): I* = 6 209 5 2 32 15 280 15 13 31 31 31 649 649	SD 6.1 6.1 23.14 23.14 23.14 32% 30 31 32% OI Total 210 30 30 30 30 3624	16 17 632 665 32% 4.0% 12.7% 10.1% 9.9% 9.0% 13.5% 100.0%	Veight N 19.1% 19.1% 28.8% 52.2% 100.0% 0.00 0.44 0.54 0.99 0.99 1.00 0.92 1.02 1.22 1.33 3.12	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (-0.21 [-0.66, (-0.21 [-0.66, (Favour ds ratio dom, 95% CI 4 [0.01, 0.33] 0 [0.07, 2.26] 0 [0.54, 1.51] 9 [0.46, 2.13] 0 [0.51, 2.70] 9 [0.59, 2.84] 3 [0.59, 2.84] 3 [0.69, 3.37] 5 [2.04, 4.88] 1 [0.74, 1.65] 	0.05] 0.05] 0.07] 0.15] 0.25] 	V, Random, 95% CI	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes otomous)	Rantz-2001b Rantz-2001a Curlis-2011 Total (85% CI) Heterogeneity: Tau ^s = 0 Test for overail effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006a Coleitaer-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2005b	Mean 10.2 13.8 69.67 13.8 69.67 10.0 Chi 2 - 0.5 (c) Ex	sp 4.2 7 20.74 5.25, df = = 0.37) applicable Deriment To 22 1 29 17 269 18 17 32 17 18 77 32 17 118 762 32 712 35.25 (P = 0.6	Total 10 37 632 679 = 2 (P = 0. erg (P = 0. tal Ev tal Ev 268 27 1000 95 726 83 363 363 363 363 394 44 83 363 393, df = 1 61)	Mean 15.2 15.2 15.2 68.8 .07): I* = 6 68.8 .07): I* = 6 209 5 2 32 15 280 15 13 31 31 31 649 649	SD 6.1 6.1 23.14 23.14 23.14 32% 30 31 32% OI Total 210 30 30 30 30 3624	16 17 632 665 32% 4.0% 12.7% 10.1% 9.9% 9.0% 9.8% 13.5% 100.0%	Veight N 19.1% 28.8% 28.8% 52.2% 100.0% 100.0% 0.0 0.4 0.0 0.4 0.4 0.5 0.5 0.9 0.9 9.9 0.9 1.4 1.22 1.33 1.55 3.11 1.111 1.11	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, 0] -0.21 [-0.66, 0] Favouri ds ratio dom, 95% Cl d(0.01, 0.33] 0[0.07, 2.26] 0[0.05, 5.52] 0[0.05, 1.13] 0[0.81, 1.23] 0[0.81, 2.70] 0[0.58, 2.70] 0[0.59, 2.84] 0[0.55, 3.22] 0[0.59, 3.37] 5[2.04, 4.88] 1[0.74, 1.65] 	0.05] 0.05] 0.07] 0.15] 0.25] 	V, Random, 95% CI	(continuous) Perceived control (continuous)	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185 N/A	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl
omes inuous) nt omes	Rantz-2001b Rantz-2001a Curlis-2011 Total (85% CI) Heterogeneity: Tau ^s = 0 Test for overail effect Z Test for subgroup diffen Study or Subgroup Mancheril-2021 Park-2021 Oneil-2016 Bucknall-2022 Cheater-2006a Coleitaer-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2006b Cheater-2005b	Mean 10.2 13.8 69.67 13.8 69.67 10.0 Chi 2 - 0.5 (c) Ex Ex Ex Ex 10.2 10.2 10.2 Chi 2 - 0.5 (c) Chi 2 - 0.5 (c) <thchi 2<="" td=""><td>sp 4.2 7 20.74 5.25, df = = 0.37) applicable Deriment To 22 1 29 17 269 18 17 32 17 18 77 32 17 118 762 32 712 35.25 (P = 0.6</td><td>Total 10 37 632 679 = 2 (P = 0. erg (P = 0. tal Ev tal Ev 268 27 1000 95 726 83 363 363 363 363 394 44 83 363 393, df = 1 61)</td><td>Mean 15.2 15.2 15.2 68.8 .07): I* = 6 68.8 .07): I* = 6 209 5 2 32 15 280 15 13 31 31 31 649 649</td><td>SD 6.1 6.1 23.14 23.14 23.14 32% 30 31 32% OI Total 210 30 30 30 30 3624</td><td>16 17 632 665 32% 4.0% 12.7% 10.1% 9.9% 9.0% 13.5% 100.0%</td><td>Veight N 19.1% 28.8% 28.8% 52.2% 100.0% 100.0% 0.0 0.4 0.0 0.4 0.4 0.5 0.5 0.9 0.9 9.9 0.9 1.4 1.22 1.33 1.55 3.11 1.111 1.11</td><td> V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, 0] -0.21 [-0.66, 0] Favouri ds ratio dom, 95% Cl d(0.01, 0.33] 0[0.07, 2.26] 0[0.05, 5.52] 0[0.05, 1.13] 0[0.81, 1.23] 0[0.81, 2.70] 0[0.58, 2.70] 0[0.59, 2.84] 0[0.55, 3.22] 0[0.59, 3.37] 5[2.04, 4.88] 1[0.74, 1.65] </td><td>0.05] 0.05] 0.07] 0.15] 0.25] </td><td>V, Random, 95% CI</td><td>(continuous) Perceived control</td><td>Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau² = 0.6 Test for overall effect: Z =</td><td>Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil² = 23.6 = 0.41 (P = 0.6</td><td>Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)</td><td>Mean 10 15.79 11 6.9 11 9.8 13 4.13 75</td><td>0.63 67 1.8 1.82</td><td>28 136 9 12 185</td><td>Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]</td><td>-0.82]</td><td>Indom, 95% Cl</td></thchi>	sp 4.2 7 20.74 5.25, df = = 0.37) applicable Deriment To 22 1 29 17 269 18 17 32 17 18 77 32 17 118 762 32 712 35.25 (P = 0.6	Total 10 37 632 679 = 2 (P = 0. erg (P = 0. tal Ev tal Ev 268 27 1000 95 726 83 363 363 363 363 394 44 83 363 393, df = 1 61)	Mean 15.2 15.2 15.2 68.8 .07): I* = 6 68.8 .07): I* = 6 209 5 2 32 15 280 15 13 31 31 31 649 649	SD 6.1 6.1 23.14 23.14 23.14 32% 30 31 32% OI Total 210 30 30 30 30 3624	16 17 632 665 32% 4.0% 12.7% 10.1% 9.9% 9.0% 13.5% 100.0%	Veight N 19.1% 28.8% 28.8% 52.2% 100.0% 100.0% 0.0 0.4 0.0 0.4 0.4 0.5 0.5 0.9 0.9 9.9 0.9 1.4 1.22 1.33 1.55 3.11 1.111 1.11	 V, Random, 95% 0.89 [-1.72, -4 -0.20 [-0.78, (0.04 [-0.07, 0] -0.21 [-0.66, 0] Favouri ds ratio dom, 95% Cl d(0.01, 0.33] 0[0.07, 2.26] 0[0.05, 5.52] 0[0.05, 1.13] 0[0.81, 1.23] 0[0.81, 2.70] 0[0.58, 2.70] 0[0.59, 2.84] 0[0.55, 3.22] 0[0.59, 3.37] 5[2.04, 4.88] 1[0.74, 1.65] 	0.05] 0.05] 0.07] 0.15] 0.25] 	V, Random, 95% CI	(continuous) Perceived control	Study or Subgroup M Park-2021 Friese-2019 Koh-2009 Yang-2019 Total (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	Mean SD 14 1. 6.5 10.3 5.2 1. 36; Chil ² = 23.6 = 0.41 (P = 0.6	Total 64 3 1.6 12 1.8 7 58 1 7 2, df = 3 (F 8)	Mean 10 15.79 11 6.9 11 9.8 13 4.13 75	0.63 67 1.8 1.82	28 136 9 12 185	Veight IV, Random, 95% 25.9% -1.40 [-1.98., -0.01 [-0.25, -0.01 [-0.25, -0.02]] 21.9% 0.27 [-0.62, -0.01 [-0.20, -0.01]] 23.0% -0.01 [-0.20, -0.01] 100.0% -0.17 [-0.97, -0.01]	-0.82]	Indom, 95% Cl

Attitude (dichotomous)							N/	A			Skills (continuous)
Attitude (continuous)	Study or Subgroup	Exp Mean	sD SD	al Total	Mean	Control SD	Total	Weight	Std. mean difference IV, Random, 95% CI	Std. mean difference IV, Random, 95% Cl	
	Yang-2019	15.89	2.51	13	16.29	3.24	12	5.6%	-0.13 [-0.92 , 0.65]		
	Friese-2019	-1.8	0.5	121	-1.9	0.5	136	57.5%	0.20 [-0.05 , 0.44]		
	Hasnain-2019	3.36	0.34	85	3.27	0.39	80	36.9%	0.25 [-0.06 , 0.55]	-	
	Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	Z = 2.08 (F	= 0.04)		0.68); I² =	0%	228	100.0%	0.20 [0.01 , 0.38]		
	Test for subgroup diffe	rences: No	t applicat	le					Favours no in	t./not A&F Favours A&F	

N/A

COMPARISON 8: STRATEGIES INCLUDING TAILORED INTERVENTION (TI) AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE TI

Clinical practice (continuous)	Study or Subgroup	Exp Mean	SD	l Total	Mean	Control SD	Total		Std. mean difference IV, Random, 95% Cl	Std. mean IV, Rando		Clinical practice (dichotomous)	Study or Subgroup	Experin Events	nental Total	Con Events	trol Total	Weight	Odds ratio IV, Random, 95% Cl	Odds IV, Randon	
(continuous)	Rantz-2001c	35	15.1	18	37	13.3	37	10.5%	-0.14 [-0.71 , 0.42]	_	_	(dichotonious)									
	Rantz-2001b	35	15.1	17	35.4	13.4			-0.03 [-0.61 , 0.56]	_	-		VanGaal-2011a	573	1081	673	1020			+	
	Friese-2019	2.3	0.9	121	2.3	0.9	136		0.00 [-0.24 , 0.24]		-		VanGaal-2011b	74	196	76	196	6.6%	0.96 [0.64 , 1.44]	-	-
	Quintard-2010	959	106	38	957	108	36		0.02 [-0.44 , 0.47]	-	-		Bucknall-2022	1609	1747	1597	1731	6.9%	0.98 [0.76 , 1.25]	+	
	Seo-2020	6.73	1.57	30	6.47	2	30		0.14 [-0.36 , 0.65]	-	-		vanLieshout-2015	113	995	81	787	6.8%	1.12 [0.83 , 1.51]	-	-
	deRuijter-2018	7.707 4.78	1.271	121	7.371	1.597	103	11.0%	0.23 [-0.03 , 0.50]		•		Fairall-2005	226	1000	193	999	6.9%	1.22 [0.98 , 1.51]	L	•
	Gao-2022 Maki-Turia-Rostedt-2020	4.78	0.97 0.56	156 17	4.15 2.51	1.36 0.64	156 12	11.0% 9.9%	0.53 [0.31 , 0.76] 1.03 [0.24 , 1.82]		• •		Huis-2013	878	1657	950	2065	7.0%			
	Park-2021	4.69	0.35	28	3.76	0.04	30	10.4%	1.62 [1.02 , 2.22]				Välimäki-2022	764	4092		4089	7.0%			
	Ghazali-2020	13.83	0.19	69	9.48	0.18					·		vonLengerke-2017	73	103		116	6.3%			-
											,		-							1	•
	Total (95% CI)			615			647	100.0%	1.41 [0.65 , 2.17]		•		Kopke-2012	525	1802		1868	7.0%			•
	Heterogeneity: Tau ² = 1.36	6; Chi ² = 304	4.42, df =	9 (P < 0.	00001); l² =	= 97%					•		Teesing-2020	47	128		111	6.2%			
	Test for overall effect: Z = 3	3.62 (P = 0.	0003)							-4 -2 0	2 4		Blanco-Mavillard-2021	101	740	31	739	6.6%	3.61 [2.38 , 5.47]		
	Test for subgroup difference	ces: Not app	olicable						Favours	s no int./not TI	Favours TI		Nowalk-2005	591	1534	7	53	5.7%	4.12 [1.85 , 9.18]		
													Gengiah-2021	33229	35164	26140	32839	7.0%	4.40 [4.17 , 4.64]		
													Collins-2021	338	374	166	244	6.6%	4.41 [2.85 , 6.83]		
													Middleton-2011	242	522	24	350	6.5%			-
													Total (95% CI)		51135		47207	100.0%	1.90 [1.23 , 2.93]		•
													Total events:	39383		31043					•
													Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subgroup differ	Z = 2.90 (P =	= 0.004)		< 0.0000	01); I² = 99	0	.01 0.1 1 rs no int./not TI	10 100 Favours TI

	Exp	erimenta	ai		Control			Mean differenc	e Mean differenc
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% (CI IV, Fixed, 95% C
Rantz-2001b	10.2	4.2	5	15.2	6.1	33	0.1%	-5.00 [-9.23 , -0.	77]
Rantz-2001c	10.2	4.2	5	13.8	7	37	0.1%	-3.60 [-7.92 , 0.	72]
vanLieshout-2015	4.9	1.52	865	4.8	1.53	631	77.3%	0.10 [-0.06 , 0.	26]
Gao-2022	-2.76	1.12	156	-3.47	1.47	156	22.5%	0.71 [0.42 , 1.	00]
Total (95% CI)			1031			857	100.0%	0.23 [0.09 , 0.	37]
Heterogeneity: Chi ² =	22.07, df =	3 (P < 0.0	0001); l² =	= 86%					-
Test for overall effect:	Z = 3.25 (P	= 0.001)							-10 -5 0
Test for subaroup diffe	rences: No	t applicat	ole					F	avours no int./not TI Favo

Knowledge		Exp	periment	al		Control			Std. mean difference	Std. mean difference
(continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
	Friese-2019	6.5	1.6	121	6.9	1.5	136	21.7%	-0.26 [-0.50 , -0.01]	
	deRuijter-2018	14.876	1.242	121	14.845	1.109	103	21.5%		1
	Seo-2020	10.63	2.33	30	9.2	2.27	30	19.0%	0.61 [0.09 , 1.13]	
	Lin-2008	11.59	3.69	42	7.87	3.37	39	19.6%	1.04 [0.58 , 1.51]	
	Park-2021	15.79	0.63	28	14	1.64	30	18.3%	1.40 [0.82 , 1.98]	
	Total (95% CI)			342			338	100.0%	0.53 [-0.04 , 1.09]	•
	Heterogeneity: Tau ² =	0.37; Chi ²	= 46.43, (df = 4 (P <	0.00001)	; I² = 91%				
	Test for overall effect:								-	-4 -2 0 2 4
	Test for subgroup diffe	erences: No	ot applical	ble					Favours	no int./not TI Favours TI
Perceived							N/	A		

N/A

atient		Experin	nental	Control		Odds ratio		Odds ratio	Perceived
outcomes (dichotomous)	Study or Subgroup	Events Total		Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	control (continuous)
	Bucknall-2022	29	1000	32	1000	16.5%	0.90 [0.54 , 1.51]	_	
	Blanco-Mavillard-2021	269	726	280	754	24.7%	1.00 [0.81 , 1.23]		
	Kopke-2012	565	2166	528	2283	26.3%	1.17 [1.02 , 1.34]		
	Middleton-2011	13	483	13	603	10.8%	1.26 [0.58 , 2.73]		
	Park-2021	5	30	2	27	3.2%	2.50 [0.44 , 14.12]		
	Collins-2021	118	363	31	234	18.5%	3.15 [2.04 , 4.88]	-	
	Total (95% CI)		4768		4901	100.0%	1.34 [0.96 , 1.86]	•	
	Total events:	999		886				•	
	Heterogeneity: Tau ² = 0	01 0.1 1 10 100							
	Test for overall effect: Z = 1.73 (P = 0.08) Favours no int/not TI Favours TI								
	Test for subgroup different	ences: Not	applicabl	e					
ention ntinuous)						N/A			Social norms (continuous)
tude hotomous)						N/A			Skills (continuous)

ocial norms ontinuous)	N/A

Skills (continuous)

Attitude		Exp	erimenta	ai		Control			Std. mean difference	Std. mean difference	
(continuous)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
	deRuijter-2018	4.231	0.586	121	4.195	0.614	103	30.3%	0.06 [-0.20 , 0.32]	•	
	Seo-2020	6.73	1.57	30	6.47	2	30	18.1%	0.14 [-0.36 , 0.65]	+	
	Friese-2019	-1.8	0.5	121	-1.9	0.5	136	31.3%	0.20 [-0.05 , 0.44]	_	
	Lin-2008	75.71	5.99	42	70.85	5.48	39	20.3%	0.84 [0.38 , 1.29]	+	
	Total (95% CI)			314			308	100.0%	0.28 [-0.01 , 0.57]	•	
	Heterogeneity: Tau ² =	erogeneity: Tau ² = 0.05; Chi ² = 8.59, df = 3 (P = 0.04); l ² = 65%									
	Test for overall effect:	ffect: Z = 1.86 (P = 0.06)							-	-4 -2 0 2 4	
	Test for subgroup diffe	erences: No	t applicat	ble					Favours	no int./not TI Favours TI	

COMPARISON 9: STRATEGIES INCLUDING OPINION LEADERS (OLS) AS COMPARED TO NO INTERVENTION OR STRATEGIES THAT DID NOT INVOLVE OLS

Clinical practice (continuous)		Clinical practice (dichotomous)	Experimental Study or Subgroup Experimental Events Control Total Odds ratio Weight Odds ratio IV, Random, 95% CI Odds ratio IV, Random, 95% CI Seto-1991b 27 77 27 70 7.4% 0.86 [0.44, 1.68] - Bucknall-2022 1609 1747 1597 1731 8.5% 0.98 [0.76, 1.25] - Abraham-2019a 291 1653 400 2550 8.6% 1.15 [0.97, 1.36] - Gurtis-2011 1840 2238 1766 2238 8.6% 1.25 [1.06, 1.47] - Huis-2013 878 1657 950 2065 8.6% 1.32 [1.16, 1.51] - Donati-2020 30 38 27 42 6.2% 2.08 [0.76, 5.68] - Title-2009 1 6 0 6 1.6% 3.55 [0.12, 105.8.2] - - Koh-2009 21 21 17 18 1.7% 3.69 [0.14, 96.2] - - Genglah-2021 33223 35164
Detiont		Knowledge	Heterogeneity: Tau ² = 0.67; Chl ² = 909.61, df = 14 (P < 0.00001); l ² = 98% 0.01 1 10 100 Test for overall effect: Z = 2.79 (P = 0.005) Favours no int./not OLs Favours OLs Favours OLs
Patient outcomes (continuous)	N/A	Knowledge (continuous)	Experimental Control Std. mean difference Std. mean difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl IV, Random, 95% Cl
(continuous)			Johnston-2007 31.2 4.2 17 31.3 5.17 25 14.8% -0.02[-0.64,0.60]
			Total (95% CI) 175 118 100.0% 0.03 [-0.20, 0.27] Heterogeneity: Tau ² = 0.00; Ch ² = 0.30; df = 2 (P = 0.86); l ² = 0% 118 100.0% 0.03 [-0.20, 0.27] Test for overall effect: Z = 0.29 (P = 0.78) 24 20 2 4 Test for subgroup differences: Not applicable Favours no int/not OLs Favours OLs Favours OLs
Patient outcomes (dichotomous)	Experimental Control Odds ratio Odds ratio Study or Subgroup Events Total Events Total Weight IV, Random, 95% Cl IV, Random, 95% Cl	Perceived control (continuous)	N/A
(,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(,	
Intention (continuous)	N/A	Social norms (continuous)	N/A
Attitude (dichotomous)	N/A	Skills (continuous)	N/A
Attitude (continuous)	N/A		