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1 List of Studied Systems

Table S1: Description of the coarse grained MARTINI systems simulated in this study.
All membranes consisted of varying number of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine). The name “S” and “L” of the planar reference simulations indicate their
sizes. The “Fixing method” refers to the approach used to keep the geometry of the membrane
fixed, as discussed below.

System Geometry Fixing method # Lipids ZENODO DOI

L flat wall particles 6108 10.5281/zenodo.4643616
flat position restraints 6108 10.5281/zenodo.4643554

S flat wall particles 3642 10.5281/zenodo.4643634
flat position restraints 3642 10.5281/zenodo.4643632

Budded curved wall particles 4997 10.5281/zenodo.4196842
Wave curved wall particles 6108 10.5281/zenodo.4196842

S-2



2 Details on Simulation Methods

General Considerations A complete list of the simulated systems run in the Martini

2.2 coarse-grained force fieldS1,S2 is provided in Table S1. All system were composed of

neat, hydrated POPC bilayers, without any additional ions. Planar bilayers were generated

using the insane (INSert membrANE) CG building tool.S3 Curved systems were made using

BUMPy.S4 Notably, the Budded system contained 2546 lipids in the outer and 2451 lipids

in the inner leaflet. To check for tension due to leaflet asymmetry, we computed the number

of lipids in the flat rectangle spanned by the coordinates 0 to 6 nm in the x and y directions.

The number of lower- and upper-leaflet lipids were 53.0±2.4 and 53.6±2.4, respectively,

hinting at similar states of tension in the two leaflets. The target temperature of all the

simulations was 310 K. Simulation parameters were chosen according to the recent suggested

simulation settings (“New-RF”).S5 In addition, to keep the topological features from changing,

the option refcoord-scaling = no was used. Therefore, while the lipid molecules belong

to the NPT ensemble, the topological feature itself is treated as “NVT”. For every system,

20 µs long trajectories were simulated using the Gromacs 2020.4 package.S6,S7 All simulations

are readily accessible under the DOIs provided in Table S1.

Fixing the Geometry Keeping large patches of lipid bilayers planar is commonly done

by using a weak harmonic position restraints along the z axis of the simulation box.S8

The restraining is applied only to ≈25% of the lipids of a single leaflet, thus enabling the

equilibration of membrane thickness. In case of curved membranes, “wall” particles are

added to the system.S4,S9 These beads are weakly restrained in all three dimensions, and

only interact with the acyl chains of the lipids. This approach was shown to only moderately

perturb the structural properties of the membrane,S9 while its effects of dynamics were not

reported. In order to assess the effect on curvature on the surface diffusion of membrane

lipids, we performed a set of planar simulations with the same composition as that of the

curved systems. For the sake of consistency, we used “wall” particles to keep planar bilayers
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from undulating.

Choosing a Reference Bead Another important issue is the box-size of the planar ref-

erence simulations: when comparing flat and curved system, is it the surface area or the

projected area of the membrane that matters? As we are not aware of any general theory

regarding this question, we simulated systems with the same number of lipids (that is, same

surface area) and the same projected area to check its influence. The former are denoted by

“S”, while the latter with “L” indicating their sizes.

We acknowledge other possible sources of differences between the curved and flat mem-

branes, such as finite-size effectsS10,S11 or assuming that the same form of the Oseen tensor

holds for flat and curved bilayers.S12 These effects were neglected in our comparisons.

3 Details on Simulation Analyses

3.1 Surface Meshing

Reference Surface Any kind of application of a continuum theory to bilayers requires a

2D surface. There are many possible choices such as the pivotal plane S13,S14 or the neutral

plane,S15 but there is no theory that would unambiguously determine a single unique surface

inside the membrane. Moreover, the pivotal plane is the location where no stretching or

compression of the membrane happens, so the area per lipid matches the value of the flat

bilayer.S16 As such, it is not suited for surface density calculations. Here, we chose the surface

formed by the center of mass of the individual leaflets. Similarly to the pivotal and neutral

planes, the center of mass surface of the simulated POPC lipids also falls reasonably close to

the glycerol backbones. However, its definition does not depend on the degree of curvature of

the bilayer, so it can be used as a reference surface for MSD and also in principle for lateral

density calculations. However, as discussed in the next paragraph, the results concerning the

lateral density obtained using the center of mass reference surface are still not satisfactory.
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3.2 Lateral Density

Lipid Center of Mass and Headgroup Density The lateral densities of the lipid

centers of mass were evaluated in the simulated systems by assigning them to the closest

mesh face, and dividing the resulting number of lipids by the area of the face. According

to Yesylevskyy et al., the headgroup density decreases in regions of convex curvature and

increases with concave curvature. The tendencies observed here in the “Wave” system (only

mean curvature, Figure S1, solid curves) are completely in line with this notion. However,

the picture emerging for the “Budded” system (non-zero Gaussian curvature, Figure S2, solid

curves) cannot be rationalized in such a direct manner. For comparison, we repeated the

analysis by constructing the mesh and calculating the density using the headgroup of the

lipids. The results were completely in line with those originally found by Yesylevskyy et al.

in both simulated systems, as demonstrated by the dashed curves in Figures S1 and S2.

The smaller change in the center of mass densities compared to the headgroup densities is

indicative of the fact that the former are closer to the pivotal plane, consequently are less

sensitive to membrane deformations.
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Figure S1: Lateral density of lipid centers of mass (solid) and lipid headgroups (dashed) as
a function of the position along the y axis in the “Wave” system. Blue: upper leaflet, red:
lower leaflet. Diverging values of density at the minimal and maximal positions are artefacts
from the edges of the mesh.
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Figure S2: Lateral density of lipid centers of mass (solid) and lipid headgroups (dashed) as
a function of the radial distance in the “Bud” system. Blue: upper leaflet, red: lower leaflet.

3.3 Conventional Mean Square Displacement

Center of Mass Removal The most common way to obtain reliable diffusion coefficients

in simulations of planar membranes entails separating the upper and lower leaflets and

calculating the Mean Squared Displacement (MSD) of lipids with respect to the center of

mass of their host leaflets, thus eliminating any effects of the drift of the leaflet as a whole.

This procedure was followed for the planar reference simulations. However, as the topological

feature is kept constant during our simulations, removing the center of mass motion would

result in nonzero translational motion of the topology. Any such motion would prevent

meaningful calculation of diffusion on the surface. Fortunately, omitting the removal of

the center of mass motion of the whole system did not result in substantial errors, and

has no influence on the obtained results. The conventional MSD curves obtained from the

simulations are presented in Figure S3.

Diffusion Coefficients The effect of curvature on lipid diffusion can be characterized as

geometric and intrinsic, depending on its origin. The intrinsic effect is related to packing

effects, and reflects changes in the local free energy of the lipid molecules. The geometric

effect is simply the increased surface area of the surface on which the particle moves instead

of the projected area that is computed from the lateral dimensions of the simulation box, or
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Figure S3: Mean Square Displacement (MSD) of POPC lipids in the simulated systems. “S”
and “L” refer to the planar reference systems, “PosRes” and “Wall” are the methods to keep
bilayer shape fixed. “Wave” and “Budded” are the two curved systems, for which the MSD
curves were evaluated with and without removing the center of mass motion of the leaflet
(∅ CoM, and CoM). Dashed curves are the MSDs of individual leaflets, while solid curves
are the averages across both leaflets. Note that the large differences observed between the
leaflets of the “Budded” system are due to the asymmetry and slightly different number of
lipids between the upper and lower leaflet.

in our case, the topological feature. In the long lagtime limit, the geometric effect can be

accounted for by a simple area scaling law, demonstrated by Naji and Brown,S17 as

DA

D0

∣∣∣∣
area scaling

=
A⊥

Asurf

(1)

in 2 dimensions, or similarly

DL

D0

∣∣∣∣
area scaling

=

(
L⊥

Lc

)2

(2)

in 1 dimension. A⊥ and L⊥ are the projected surface area of edge length, and Asurf and Lc are

the real surface area and line contour. DA or DL is the usual diffusion coefficient measured

in the projected plane of the surface, while D0 is the value after correcting for the increased

area. The 1D expression is always exact, but the 2D is approximate for non-developable

surfaces. Table S2 contains the diffusion coefficients obtained from the simulations. Note,
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that even though the DA of the “Wave” is smaller than that of the “Budded”, the case is

quite the opposite when the diffusion coefficients are corrected by the surface area. Finally,

while Naji and Brown found strong evidence in favor of the area scaling law in Equation 1, it

seems to have a somewhat limited applicability to our simulations. Possible reasons for this

are 1) not computing DA at large enough lagtimes, 2) deviations due to non-flat free-energy

landscape, for example due to lipid packing, 3) finite size effects.

Table S2: Diffusion coefficients in the simulated membranes. “S” and “L” refer to the planar
reference systems, “PosRes” and “Wall” denote the methods to keep bilayer shape fixed.
“Wave” and “Budded” refer to the two curved systems. All values are reported in units of
[10−7 cm2/s]. DA refers to values obtained by performing linear fits to the conventional
lateral MSD curves on the 1 µs to 10 µs range, while D0 is the area corrected diffusion
coefficient (see the text).

L S Budded WavePosRes Wall PosRes Wall Upper Lower
DA 7.18±0.01 6.70±0.02 7.09±0.05 6.52±0.03 5.25±0.01 5.54±0.01 4.49±0.03
D0 - - - - 6.21±0.01 6.35±0.01 6.91±0.03

3.4 Geodesic Mean Square Displacement

Periodic Boundary Conditions While the effect of PBC in conventional 2D or 3D

MSD calculations can be trivially accounted for by simple vector addition, this relation

no longer holds true on surfaces. To be able to calculate distances at lagtimes when the

average displacement of the molecules is larger than the characteristic dimension of the

simulation box, we create a surface mesh that covers (nx, ny) periodic images of the basic

box. It can easily be seen that the use of a single periodic image with nx = ny = 1 is

completely inadequate: the required minimum image positions of molecules passing through

the boundaries of the basic box are not part of the mesh. Therefore, as a compromise

between mesh size, discretization error and computational time, we use nx = ny = 2. In

practice, this is not a major obstruction as long as one is only interested in the behavior

of the MSD curves up to values corresponding to the dimensions of the topological feature,

which completely contained in the basic simulation box.
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Discretization Error Discretizing a molecular dynamics trajectory inherently comes with

a certain loss of precision. The VTP (Vertex-oriented Triangle Propagation) algorithmS18

provides a compromise between the continuous and the fully mesh-based distance compu-

tations: while similarly to Dijkstra’s algorithm,S19 the starting- and end-points of displace-

ments are points the mesh, the path taken between these two vertices is not constrained to

pass along the edges of the mesh. This difference is illustrated in Figure S4. To demonstrate

Figure S4: Possible discretization error in the geodesic MSD calculation scheme. Two distinct
sources are (A) the discretization of the intial positions (B) the constraint to move along the
edges. In the VTP algorithm, the geodesic curve is not restricted to pass along the edges
of the mesh, therefore only affected by the first kind of error. (This figure was made using
ParaviewS20)

the magnitude of errors incurred by using a discretized surface, we projected the “Wave” and

“Budded” systems onto the xy plane, and evaluated the conventional 2D MSD curves on the

resulting flat bilayers using the proposed method (based on the VTP algorithmS18) and gmx

msd bundled with the GROMACS simulation package. As seen in Figure S5, besides the

discretization error at short lagtimes, the two approaches are identical.
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Figure S5: Comparison of the lateral MSD curves as computed by gmx msd and using the
proposed method (denoted “VTP”) on the 2D-projected version of the “Wave” and “Budded
systems. The inset shows a magnification of the first few lagtimes. While the use of a
discretized mesh results in differences at small lagtimes, at higher values two curves are
essentially identical.

Scaling The scaling of the distance calculation algoritm (VTPS18) was investigated on

meshes containing various number of points. For this, the same surface was represented by

an increasing number of mesh points. The time required to evaluate all possible pairwise

distances on the mesh (tsingle call × npoints) is presented in Figure S6. These timings are

illustrative only of the VTP algorithm,S18 and neglect the further processing of the resulting

distances. Also, the values reflect the performance only on a single CPU (Intel(R) Core(TM)

i7-7800X CPU @ 3.50GHz), while our implementation is embarrassingly parallel, due the

independence of distance evaluations starting from different source vertices. For additional

comparison, PyVista’sS21 implementation of the widely known Dijkstra’s algorithmS19 was

found to be O(103) slower, and thus not included in Figure S6.

3.5 Classification Based on Curvature

In Figure 4 of the main text, we classify the diffusion coefficients calculated at the mesh

points based on the local curvatures at these points. To separate flat and curved regions,

we set a threshold values for K and H, as follows. We first histogrammed H or K, and
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Figure S6: Time required to evaluate all pairwise distances on the meshed surface. The
values are largely independent of the geometry of the mesh, and did not significantly change
between the flat systems, the “Wave” and the “Budded”. The standard deviations were less
than 1%, and are omitted from the plot.

fit it with a multi-Gaussian function. The 95% confidence interval of the Gaussian function

corresponding to zero curvature was extracted, and this interval was considered to correspond

to zero curvature. We validated that the number of Gaussians in the fit had little effect on

the outcome. The boundaries of the 95% confidence intervals for the Budded systems were

±0.0016 nm−1 (H) and±3.7×10−6 nm−2. For the Wave system, only H is present, and we

found the boundaries of 0.003 nm−1.

After the classification, the scatter column plot was generated by binning the D values

into a histogram. A slight rounding the number of samples in each bin provided a symmetric

figure, whereas every 20th point in each bin was shown.

3.6 Correlation of H, K, ρhg

To present a more detailed picture of the influence of the different types of curvature on the

lateral mobility of the particles, we checked the correlations between the mean curvature

(H), Gaussian curvature (K) and lipid headgroup densities (ρhg) in both the “Wave” and

“Budded” systems. Just as in the above section, we based the analysis on the individual

mesh points. The case of the “Wave” system is seen in Figure S7. Both the mean curvature

(H) and the lipid headgroup density (ρhg) is a reliable indicator of the lateral mobility. The
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former shows a clear correlation, while the latter exhibits anti-correlation with the mean

curvature (H).

Figure S7: Correlation of the mean curvature in the “Wave” system with the geodesic MSD
at ∆ =53ns (TOP) and the lipid headgroup density (BOTTOM).

The correlations for the “Budded” system are presented in Figure S8. Clearly, the presence

of Gaussian curvature along with the more complicated geometry of the bud makes both the

correlations and the necessary plots more complex. Still, similarly to the “Wave”, the mean

curvature correlates nicely with the lateral mobility of the lipids, and anti-correlates with the

headgroup density. However, the Gaussian curvature is not a reliable indicator, because it is

insensitive to the orientation of the lipids in the bilayer, that is, whether the bud bulges into

to extracellular or cytoplasmic space. The presence of a vertical “stalk” around zero mean

curvature comes from the flat region of the membrane, and is the result of the intermixing

of particles from differently curved regions with the flat domains.
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Figure S8: Correlation of the mean curvature in the “Wave” system with the geodesic MSD at
∆ =53ns (TOP), Gaussian curvature (MID), and the lipid headgroup density (BOTTOM).
The colors represent the radial distance as measured from the top of the bud. Because the
upper and lower are not equivalent, they are presented separately, as indicated by the labels.

4 Additional Figures

Separate figures showing MSD curves at additional lagtimes (∆) as a function of the posi-

tion can be seen in Figures S9-S13, while the MSD curves averaged over distinct region of

curvature are presented in Figures S14-S16.
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Figure S9: Two dimensional (discarded z coordinate) Mean Square Displacement values at
selected lagtimes (∆) as a function of the distance from the center of the bud in the “Budded”
system. The values are averaged across both leaflets. The images on the right illustrate the
distributions of MSD values at ∆ = 2, 53, 453 ns. At small lagtimes, the diffusion is fastest
on the top of the bud, slower in the planar region. It is slowest on the “neck” of the bud
as a result of projecting all displacements onto the xy plane. As the lagtime increases, a
crossover happens due to the molecules of slower apparent diffusion reaching the top of the
bud.
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Figure S10: Two dimensional (discarded z coordinate) Mean Square Displacement values at
selected lagtimes (∆) as a function of the position along the y axis in the “Wave” system.
The values are averaged across both leaflets. The images on the right illustrate the distri-
butions of MSD values at ∆ = 2, 53, 453 ns. At all lagtimes, the diffusion is largest at the
positions where the local membrane normal aligns with the axis of projection, z. The differ-
ences gradually disappear as ∆ increases, due to the molecules of slower apparent diffusion
penetrating into region where the apparent diffusion is faster.
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Figure S11: Geodesic Mean Square Displacement values at selected lagtimes (∆) as a function
of the distance from the center of the bud in the “Budded” system, upper leaflet. The images
on the right illustrate the distributions of MSD values at ∆ = 2, 53, 453 ns. The surface
diffusion at all lagtimes is the fastest on the the top of the bud. The differences gradually
disappear as ∆ increases, due to the molecules of faster diffusion initially at the top of the
bud reach the surrounding planar region.
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Figure S12: Geodesic Mean Square Displacement values at selected lagtimes (∆) as a function
of the distance from the center of the bud in the “Budded” system, lower leaflet. The images
on the right illustrate the distributions of MSD values at ∆ = 2, 53, 453 ns. The surface
diffusion at all lagtimes is the slowest on the the top of the bud. The differences gradually
disappear as ∆ increases, due to the molecules of faster diffusion initially in the planar region
reach the top of the bud.
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Figure S13: Geodesic Mean Square Displacement values at selected lagtimes (∆) as a function
of the position along the y axis in the “Wave” system, upper leaflet. The images on the right
illustrate the distributions of MSD values at ∆ = 2, 53, 453 ns. At all lagtimes, the diffusion
is largest at the positions where the leaflet has positive mean curvature, that is, it curves
away from the headgroups. The differences gradually disappear as ∆ increases, due to the
exchange of molecules in the positively and negatively curved regions. Choosing the leaflet
normal to point from the lipid tails towards the headgroups, the lower leaflet behaves the
same way (not shown).

S-18



0 0.1 0.2 0.3 0.4 0.50

50

100

∆ (µs)(g
eo

de
tic

)
M

SD
at

la
gt

im
e

∆
(n

m
2 )

2D K = 0
surface K > 0
K < 0

Figure S14: Mean Square Displacement in regions of different Gaussian curvature in the
“Budded” system, upper leaflet. 2D (blue): conventional lateral MSD as obtained for the
whole membrane, both leaflets, surface (black, dashed): overall geodesic MSD computed
with the present method, K > 0 (green): geodesic MSD averaged over the region of positive
Gaussian curvature, K < 0 (red): averaged over the region of negative Gaussian curvature,
K = 0 (orange): averaged over the region of zero curvature.
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Figure S15: Mean Square Displacement in regions of different Gaussian curvature in the
“Budded” system, lower leaflet. 2D (blue): conventional lateral MSD as obtained for the
whole membrane, both leaflets, surface (black, dashed): overall geodesic MSD computed
with the present method, K > 0 (green): geodesic MSD averaged over the region of positive
Gaussian curvature, K < 0 (red): averaged over the region of negative Gaussian curvature,
K = 0 (orange): averaged over the region of zero curvature.
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Figure S16: Mean Square Displacement in regions of different mean curvature in the “Wave”
system, upper leaflet. 2D (blue): conventional lateral MSD as obtained for the whole
membrane, both leaflets, surface (black, dashed): overall geodesic MSD computed with the
present method, H > 0 (green): geodesic MSD averaged over the region of positive mean
curvature, H < 0 (red): averaged over the region of negative mean curvature.
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