1 Spatial control of the APC/C ensures the rapid degradation of Cyclin B1

Luca Cirillo*, Rose Young*, Sapthaswaran Veerapathiran, Annalisa Roberti, Molly Martin, Azzah Abubacar, Camilla Perosa, Catherine Coates, Reyhan Muhammad, Theodoros I. Roumeliotis, Jyoti S. Choudhary, Claudio Alfieri⁺, and Jonathon Pines⁺ **APPENDIX** TABLE OF CONTENT Appendix Figure S1......pg2 Appendix Figure S3......pg4 Appendix Figure S6......pg8 Appendix Table S1......pg10 Appendix Table S2......pg11 Appendix Table S3......pg12

26 27

Appendix Figure S1. Subcellular localization of Cyclin B1^{Δ2-9} and Cyclin B1^{3A5}

A) Graphs representing the pixel-by-pixel fluorescence intensity along a line going from centrosome to centrosome of RPE-1 Cyclin B1-mEmerald^{+/+} cells ectopically expressing the indicated variant of Cyclin B1-mScarlet. Cyan: endogenous Cyclin B1-mEmerald, Magenta: ectopically expressed Cyclin B1-mScarlet, Grey: siR-DNA: $n \ge 21$ cells per condition, N = 3 independent experiments. Mean ± Standard Deviation .

B, C, D) Top: Graphs representing the pixel-by-pixel fluorescence intensity along a line going from centrosome to centrosome of RPE-1 Cyclin B1-mEmerald^{+/+} cells ectopically expressing the indicated variant of Securin-mScarlet. Cyan: endogenous Cyclin B1mEmerald, Magenta: ectopically expressed Securin-mScarlet, Grey: siR-DNA. Bottom: Maximum projections of representative confocal images used for line profile quantification. Scale bar represents 10 µm. N ≥ 16 cells per condition, N = 3 independent experiments.

39 Mean ± Standard Deviation are plotted.

41

42 Appendix Figure S2. Degradation of Cyclin B1 mutants and APC8 interaction

43 A) Cyclin B1 degradation graphs representing the fluorescence intensity of Cyclin B1 over 44 time for cells ectopically expressing the indicated Cyclin B1 variants: $n \ge 16$ cells per 45 condition, $N \ge 3$ independent experiments. Mean ± Standard Deviation are plotted.

B) Dot plot representing the KD values measured for Cyclin B1^{WT}-mEmerald and APC8-

47 mScarlet by FCCS at different subcellular locations: n = 23 cells, N = 3 independent 48 experiments.

49 C) Representative graph of the autocorrelation function of mEmerald and mScarlet and the

- 50 cross-correlation function between the two in RPE-1 APC8-mScarlet^{+/+} ectopically
- 51 expressing Cyclin B1^{4E7E}-mEmerald.
- 52 D) Dot plot representing the KD values measured for Cyclin B1 ^{4E7E}-mEmerald and APC8-
- 53 mScarlet by FCCS before and after a treatment with APCin and proTAME: $n \ge 15$ cells, N =
- 54 3 independent experiments.
- 55 56

Time (min) Lag time (ms) Appendix Figure S3. Degradation of Cyclin B1^{Δ9}-LANA and FCCS of LANA-Cyclin B1^{Δ9} -mEmerald and APC8-mScarlet interaction.

61 A) Cyclin B1 degradation graphs representing the fluorescence intensity of Cyclin B1 over

- time for cells ectopically expressing the indicated Cyclin B1 variant: n = 19 cells, N = 2independent experiments. Mean ± Standard Deviation are plotted.
- B) Representative graph of the autocorrelation function of mEmerald and mScarlet and the
- 65 cross-correlation function between the two in RPE-1 APC8-mScarlet^{+/+} ectopically
- 66 expressing LANA-Cyclin B1^{Δ 9}-mEmerald.
- 67 C) Dot plot representing the KD values measured for LANA-Cyclin B1^{Δ9}-mEmerald and
- 68 APC8-mScarlet by FCCS in metaphase cells. N = 3 independent experiments.
- 69

71 72 Appendix Figure S4. Localising Securin at the chromatin enhances its degradation

- 73 A) Securin degradation graphs representing the fluorescence intensity of Cyclin B1 over 74 time for cells ectopically expressing the indicated Securin variants. Cyan: endogenous 75 Cyclin B1-mEmerald, magenta: ectopic Securin: $n \ge 8$ cells per condition, N = 3 independent 76 experiments. Mean ± Standard Deviation are plotted.
- 77 B) Securin degradation graph directly comparing the data for Securin degradation shown in
- A. Mean ± Standard Deviation are plotted. 78
- 79 C) Quantification of normalised Cyclin B1 and Securin fluorescence levels over time
- 80 measured in RPE-1 CCNB1-mEmerald^{+/+} cells ectopically expressing Securin-mScarlet: n
- 81 = 12 cells, N = 3 independent experiments. Mean ± Standard Deviation are plotted.
- 82

Clone	TP53 gene		p53 protein	
7 \ 1 1	1 st allele	G613_614insTGGAGT	E204_Y205insLE	
(4))	2 nd allele	A578G; G609_610insAAGTTG	H193R; V203_E204insKL	
7410	1 st allele	G605_606insATTTGCG	V203FfsX8	
	2 nd allele	T613_614insGGAAATTTGCGTGTGGAGT	Y205WfsX10	
	1 st allele	G596_597insTGGAAGG	N200GfsX11	
<u> Б і П З</u>	2 nd allele	G587_593del; G587_588insGAAATTTGCGTGTGGAGT	V197KfsX17	

B)

A)

	Clone	TP53 gene		p53 protein
	902	1 st allele	G595_598del	G199IfsX47
	3D2	2 nd allele	A611_612insAATTTGCGTGTGGA	Y205IfsX46
	902	1 st allele	T608_609insAAGGAAATTTGCGTGT	E204RfsX9
	303	2 nd allele	G589_595del	R196_E198del

D)

Appendix Figure S5. Characterization of RPE-1 CCNB1^{4E7E}-mEmerald^{+/+}; TP53^{-/-} cells 88

A) Table recapitulating the sequencing of TP53 gene in RPE-1 CCNB1^{4E7E}-mEmerald^{+/+} 89 90 clones.

B) Table recapitulating the sequencing of TP53 gene in RPE-1 CCNB1-mEmerald^{+/+} clones. 91

92 C) Right: representative immunoblot of cell lysates from parental RPE-1 CCNB1-

- mEmerald^{+/+}, RPE-1 TP53^{-/-} or RPE-1 CCNB1^{4E7E}-mEmerald^{+/+} clones, either treated for 24 93
- 94 hr with Nutlin3a, or left untreated. Left: Bar graph representing the quantification of the immunoblot of Cyclin B1. N = 2 independent experiments. Mean ± Standard Deviation. 95
- 96 D) Representative immunoblot of cell lysates from parental RPE-1 CCNB1-mEmerald^{+/+} or RPE-1 CCNB1-mEmerald^{+/+}; TP53^{-/-} clones, either treated for 24h with Nutlin3a, or left 97 98 untreated.
- E) Bar graph representing the quantification of the cell cycle profiles of parental RPE-1 99 CCNB1-mEmerald^{+/+}, RPE-1 TP53^{-/-} or RPE-1 CCNB1^{4E7E}-mEmerald^{+/+} clones, either 100
- treated for 24h with Nutlin3a, or untreated. N = 2 independent experiments. Mean \pm Range. 101
- 102 F) Bar graph representing the quantification of the cell cycle profiles of parental RPE-1
- CCNB1-mEmerald^{+/+} or RPE-1 CCNB1-mEmerald^{+/+}; TP53^{-/-} clones, either treated for 24h 103
- with Nutlin3a, or left untreated. N = 2 independent experiments. Mean \pm Range. 104
- 105

106 Appendix Figure S5 – Supplementary text

- 107 Nutlin-3A increased p21 levels in the parental cells, and Cyclin B1 levels decreased as a
- 108 consequence of cell cycle arrest. We did not detect significant changes in p21 or Cyclin B1
- levels in any of the 4E7E p53^{-/-} mutant clones, nor in control RPE-1 TP53^{-/-} cells (Chiang et 109
- 110 al., 2019) (Appendix Fig. S5C, D). Flow cytometry analysis of PI-stained cells indicated a
- robust accumulation of 2n and 4n parental cells following Nutlin-3A treatment, indicative of 111
- a p53-dependent cell cycle arrest, whereas RPE-1 TP53^{-/-}, Cyclin B1^{4E7E} clones and TP53⁻ 112
- 113 ^{*/-*} clones displayed no signs of cell cycle arrest (Appendix Fig. S5E, F). In unperturbed
- conditions, Cyclin B1^{4E7E} clones and TP53^{-/-} clones did not show any significant variation in 114
- 115 cell cycle progression (Appendix Fig. S5E, F).

120 Appendix Figure S6. Degradation analysis of Cyclin B1^{4E7E}

- A, B) Cyclin B1 degradation graphs representing the fluorescence intensity of Cyclin B1 over 121
- time of RPE-1 Cyclin B1-mEmerald^{+/+} compared to Cyclin B1^{4E7E} clones or p53^{-/-} clones. 122 123 Mean ± Standard Deviation are plotted.
- C) Quantification of normalised Cyclin B1 fluorescence levels over time measured by 124
- 125 spinning disk fluorescence microscopy in RPE-1CCNB1-mEmerald^{+/+} cells ectopically expressing the indicated Cyclin-mScarlet B1 variant: $n \ge 18$ cells per condition, N = 3
- 126 independent experiments. Mean ± Standard Deviation are plotted.
- 127
- D) Cyclin B1 degradation graph representing the fluorescence intensity of Cyclin B1 over 128
- time of RPE-1 Cyclin B1-mEmerald^{+/+} compared to Cyclin B1^{4E7E} clones or p53^{-/-} clones, 129 following exposure to Reversine. Green dotted line indicates nuclear envelope breakdown.
- 130 131 Mean ± Standard Deviation are plotted.
- E) Dot plots representing the mRNA levels in RPE-1 Cyclin B1-mEmerald^{+/+} compared to 132 133 Cyclin B1^{4E7E} clones. Ct = Cycle threshold.
- 134 F, G) Dot plots representing the initial degradation speed (D) or the maximal degradation
- time (E) of RPE-1 Cyclin B1-mEmerald^{+/+} compared to Cyclin B1^{4E7E} clones. 135

Appendix Table S1

Subcellular Location	Concentration (apparent) of CyclinB1-mEmerald	Concentration (apparent) of APC8- mScarlet	Dissociation Constant (apparent)
Chromosomes	120 ± 13 nM	103 ± 10 nM	83 ± 40 nM
Cytoplasm	59 ± 8.5 nM	99 ± 12 nM	176 ± 62 nM
Spindle Fibres	92 ± 7.5 nM	103 ± 11 nM	71 ± 31 nM
Spindle Poles	141 ± 17 nM	98 ± 11 nM	81 ± 19 nM

Appendix Table S1. Concentrations of Cyclin B1-mEmerald and APC8-mScarlet at different subcellular locations. Mean ± Standard Deviation.

161 Appendix Table S2

Figure	Mean difference	nce Multiple comparison (p value)		Staatiaal Taat
Figure	(p value)			Stastical lest
		Cytoplasm vs. Chromatin	<0.0001	
Fig 1H	<0.0001	Cytoplasm vs. Spindle	<0.0001	Kruskal-vvaliis; Dunn's
		Cytoplasm vs. Centrosomes	<0.0001	
Fig 1I	0.3435			one-way ANOVA
Fig 1J	0.2348			unpaired t-test
		Parental vs 7A11	<0.0001	Welch's ANOVA;
Fig 7E	<0.0001	Parental vs 7H10	<0.0001	Dunn's Multiple
		Parental vs B1H3	<0.0001	Comparison
Fig 7F	0.075			Kruskal-Wallis
		Parental vs 7A11	0.016	Kruckel Wellie: Dupple
Fig 7G	<0.0001	Parental vs 7H10	<0.0001	Multiple Comparison
		Parental vs B1H3	<0.0001	
	top left 0.936			one-way ANOVA
Eig S1C	top right 0.629			one-way ANOVA
Fig STC	bottom left 0.304			one-way ANOVA
	bottom right 0.464			one-way ANOVA
	top 0.797			two-way ANOVA
FIGSTD	bottom 0.9201			Kruskal-Wallis
	left 0.379			one-way ANOVA
Fig S1F	middle <0.001			one-way ANOVA
	right 0.2			Kruskal-Wallis
		Cytoplasm vs. Chromatin	<0.0001	Kruskal-Wallis: Dunn's
Fig S2D	<0.0001	Cytoplasm vs. Spindle	<0.0001	Multiple Comparison
		Cytoplasm vs. Centrosomes	<0.0001	
Fig S6B	<0.0001			unpaired t-test
Fig S6D	0.1952			unpaired t-test
		Parental vs. 7A11	0.0016	one-way ANOVA;
Fig S9C	0.001	Parental vs. 7H10	0.0016	Tukey's Multiple
		Parental vs. B1H3	0.0016	Comparison
		Parental vs 7A11	0.0356	one-way ANOVA;
Fig S10E	0.0009	Parental vs 7H10	0.0469	Tukey's Multiple
		Parental vs B1H3	0.0004	Comparison
Fig S10F	0.234			Kruskal-Wallis
		Parental vs 7A11	0.01	Kruskal-Wallis: Dunn's
Fig S10G	<0.0001	Parental vs 7H10	<0.0001	Multiple Comparison
		Parental vs B1H3	< 0.0001	

63 Appendix Table S2. Statistical analysis used through the study.

165 Appendix Table S3

	NCP-CbNT	NCP-APC3 loop
Data collection and processing		
Magnification	150,000	165,000
Voltage (kV)	200	300
Electron exposure (e-/Å2)	60	62
Defocus range (µm)	-0.6 to -1.6	-0.6 to -1.6
Pixel size (Å)	0.94	0.52
Symmetry imposed	C1	C1
Initial particle images (no.)	1,201,152	2,698,450
Final particle images (no.)	38,352	414,277
Map resolution (Å)	2.5	2.5
FSC threshold	0.143	0.143
Refinement		
Initial model used (PDB code)	3LZ0	9FH9
Model resolution (Å)	2.5	2.5
Map sharpening B factor (Å2)	-22	-50
Model composition		
Nonhydrogen atoms	11862	11519
Protein residues	747	762
Nucleotides	290	290
<u>B factors (Å2)</u>		
Protein (min/max/mean)	9.44/86.92/36.71	10.06/85.06/34.16
Nucleotide (min/max/mean)	13.40/206.15/84.84	29.26/133.94/69.73
R.m.s. deviations		
Bond lengths (Å)	0.004	0.003
Bond angles (°)	0.627	0.564
Validation		
MolProbity score	2	1.19
Clashscore	8.76	3.99
Poor rotamers (%)	3.23	0.94
Ramachandran plot		
Favored (%)	97.25	98.52
Allowed (%)	2.75	1.48
Disallowed (%)	0	0

166

167 Appendix Table S3. Cryo-EM data collection, refinement and validation statistics