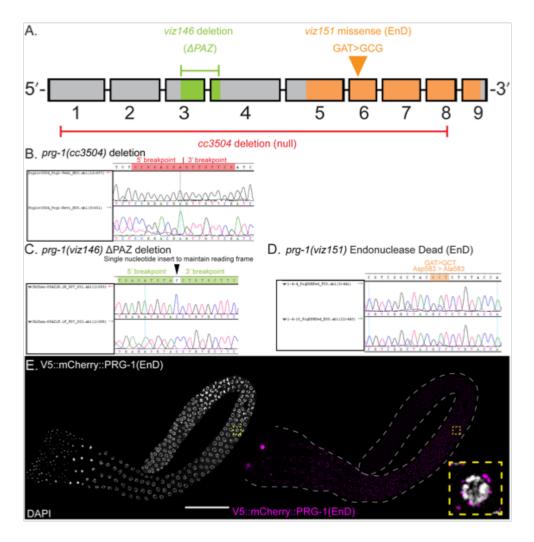
Science Advances

Supplementary Materials for

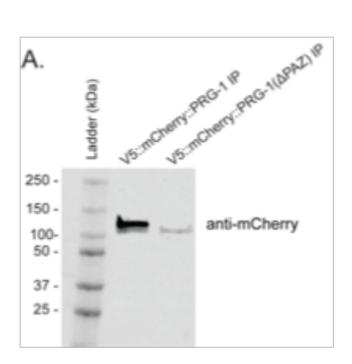
Pachytene piRNAs control discrete meiotic events during spermatogenesis and restrict gene expression in space and time

Jacob Ortega et al.

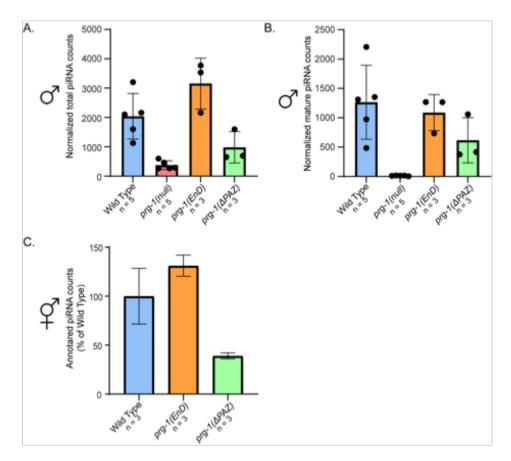
Corresponding author: Swathi Arur, sarur@mdanderson.org

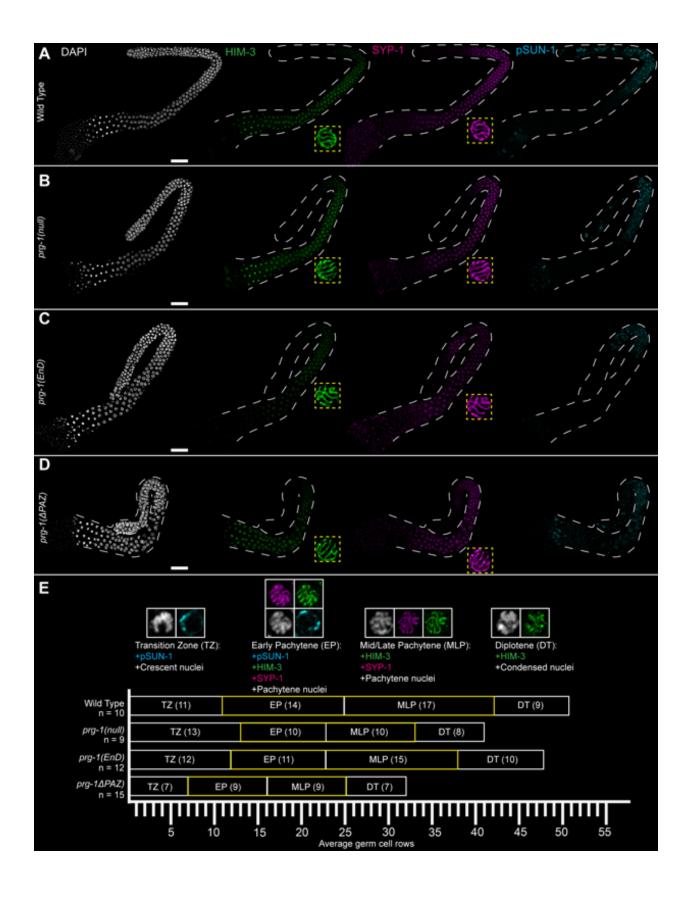

Sci. Adv. **10**, eadp0466 (2024) DOI: 10.1126/sciadv.adp0466

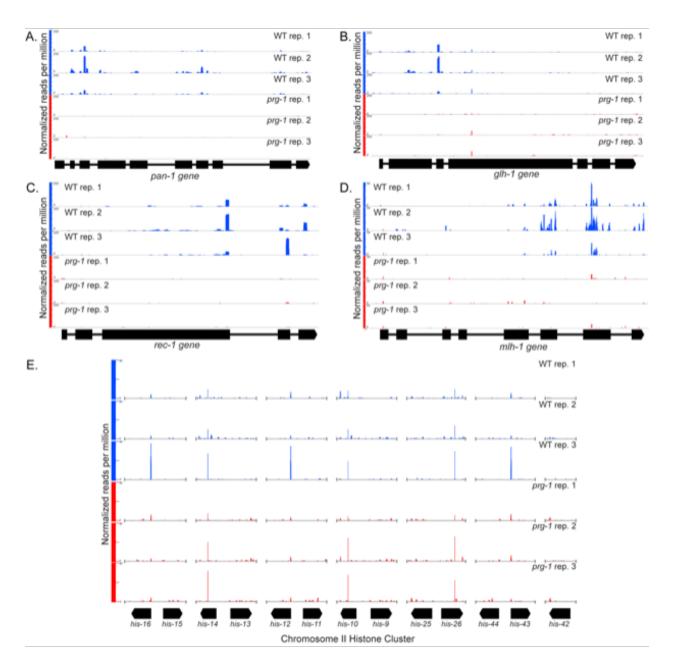
The PDF file includes:


Figs. S1 to S9 Tables S5 and S6 Legends for tables S1 to S4, and S7 Legends for data S1 to S4

Other Supplementary Material for this manuscript includes the following:

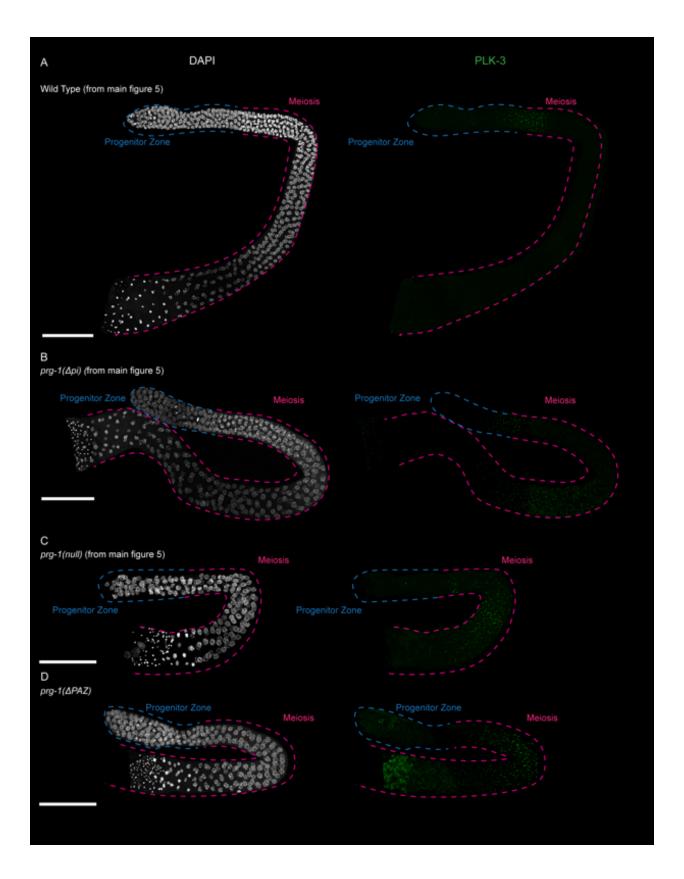

Tables S1 to S4, and S7 Data S1 to S4


Supp. Fig. 1: Sequencing data for *prg-1* **domain mutants.** (**A**) Schematic of *prg-1* gene exon structure with protein-domain coding regions highlighted (PAZ-domain, green) (PIWI-domain, orange). Null and domain-specific mutations are noted (Null in red, Δ PAZ in green, EnD in orange). (**B**) Sequencing trace noting the 5' and 3' breakpoints for the *prg-1(cc3504)* deletion. (**C**) Sequencing trace noting the 5' and 3' breakpoints for the *prg-1(\DeltaPAZ*) PAZ-domain deletion. Black arrowhead highlights single nucleotide insertion to maintain reading frame. (**D**) Sequencing trace for endonuclease-dead allele noting single amino acid substitution at Asp583. (**E**) Representative image from DAPI-stained (white) dissected male germline expressing V::mCherry::PRG-1(EnD) (magenta). Inset (dashed line box, yellow) highlights a single pachytene germ cell nuclei. Scale bar: 50 µm.

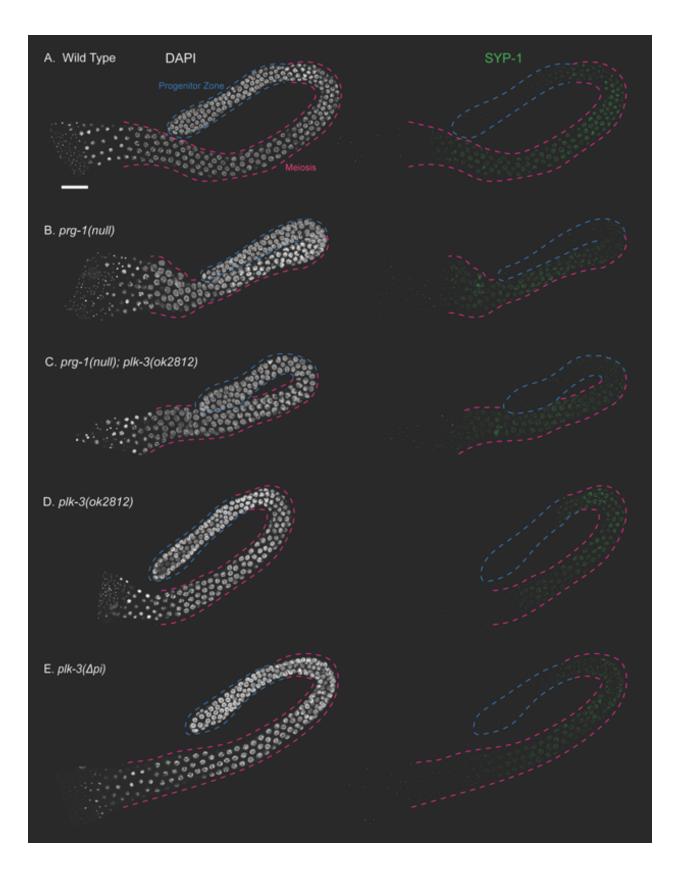

Supp. Fig. 2: Western blot for IP of V5::mCherry PRG-1 strains for RNA IP. (A) Western blot for IP of V5::mCherry-tagged PRG-1 strains after IP using V5-Trap beads and 1 mg of worm lysate. Because the total amount of PRG-1 protein in Δ PAZ deletion mutant is 60% reduced relative to Wild Type, to sequence small interacting RNAs from equal amount of WT and Δ PAZ PRG-1, we performed IP from seven fold as much worm lysate as WT and used 5mg of total protein for each, to perform the IP sequencing.


Supp. Fig. 3: Graphs for piRNA read mapping data. (**A**) Graph of total read counts mapping to annotated piRNAs after normalization to total genome mapped reads. (**B**) Graph of mature (21 nt) piRNA counts mapping to annotated piRNAs after normalization to total genome mapped reads. (**C**) Graph of total piRNA read counts mapping to annotated piRNAs after normalization, expressed as percentage relative to wild type.

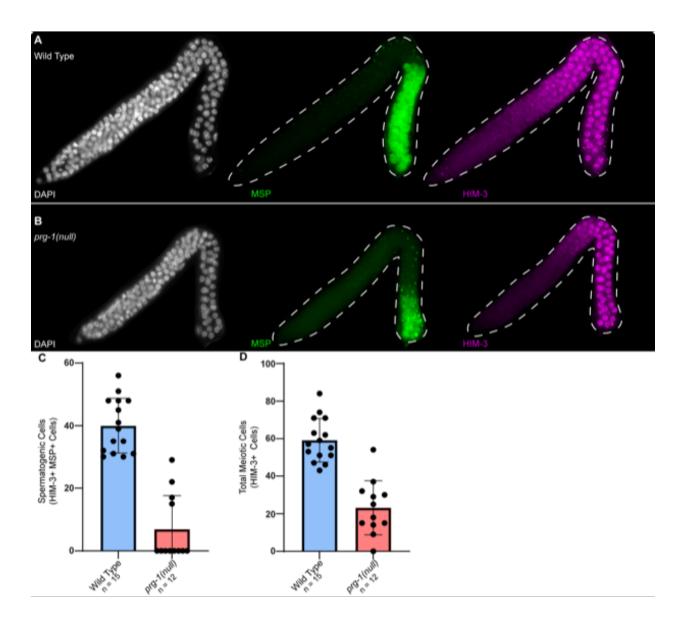
Supp. Fig. 4: Meiotic markers and quantification of meiotic progression defects in *prg-1* mutant germlines. (A-D) Representative images of dissected adult male germlines analyzed. Germlines were stained with DAPI (white), anti-HIM-3 (green), anti-SYP-1 (magenta), and pSun-1 (cyan). Insets (dashed-boxes, yellow) indicate single pachytene germ cell nuclei. (E) Graphical representation of the average proportion of total germ cell rows that are either transition zone stage, early pachytene stage, mid/late pachytene stage, or diplotene stage across germlines analyzed. Numbers graphed are averages across germlines analyzed. Scale bar: 50 µm. Each experiment was performed at least in triplicate and each time at least 25-30 germlines were analyzed.



Supp. Fig. 5: Additional graphs of individual genes for 22G siRNA analysis (A-D) Read histograms displaying mapped 22G small RNA reads for select genes where 22G siRNAs were changed significantly reduced in *prg-1(null)*. Replicates for wild type samples are labeled in blue and replicates for *prg-1(null)* samples are labeled in red. (**E**) Read histogram of mapped 22G small RNA reads for the histone cluster on *C. elegans* chromosome II, which displayed increased 22G siRNA reads in previous studies of *prg-1* mutant hermaphrodites. None of the thirteen genes displayed significant changes in mapped reads.



Supp. Fig. 6: HCR-FISH germlines (**A**) HCR-FISH experiment for Wild Type (from main figure) compared to parallel experiments in *prg-1(null)* and *prg-1(\Delta PAZ)*. The presence of *pgl-1* probe,


a known germline-expressed gene, was used as a positive control. (**B**) HCR-FISH experiment conducted for Wild Type and *plk-3(\Delta pi)* germlines using the same probes as (**A**). Scale bars are 50 µm to their respective germlines.

Supp. Fig. 7: PLK-3::GFP germlines (**A-D**) Representative DAPI-stained (white) germlines of PLK-3::GFP expression (green) from main figure 5 alongside data for *prg-1*(ΔPAZ). Scale bars are 50 µm to their respective germlines.

Supp. Fig. 8: Representative DAPI and SYP-1 staining for germlines analyzed in main figure 6 (A-E) Representative DAPI (white) and SYP-1 (green) staining for each genotype of germlines analyzed for meiotic progression defects. Scale bars: 25 µm.

Supp. Fig. 9: Delay of germline development in larval hermaphrodite germlines. (A-B) Representative germlines from mid-L4 stage germlines hermaphrodites stained for DAPI (white), Major Sperm Protein (MSP) (green), and HIM-3 (magenta). (C) Quantification of spermatogenic cells (HIM-3+ MSP+) from mid-L4 germlines. (D) Quantification of total meiotic cells (HIM-3+) from mid-L4 germlines. **Table S1.** Analysis of small RNAs mapping to annotated piRNAs from Wild Type and *prg-***1** mutant males (excel file). Table of analysis comparing total piRNA counts between Wild Type and *prg-1* mutant samples in males.

Table S2. Analysis of small RNAs mapping to annotated piRNAs from Wild Type and *prg-1(\Delta PAZ*) RNA IP samples (excel file). Table of analysis comparing total piRNA counts from RNA IP experiments between Wild Type and *prg-1(\Delta PAZ*) samples.

Table S3. Analysis of small RNAs mapping to annotated piRNAs from Wild Type and *prg-***1 mutant hermaphrodite samples (excel file).** Table of analysis comparing total piRNA counts between Wild Type and *prg-1* mutant samples in hermaphrodites.

Table S4. Analysis of candidate genes with reduced 22G siRNAs (excel file). Table of analysis of genes with significantly reduced 22G siRNAs in *prg-1(null)* relative to Wild Type.

Table S5. HCR probes: Molecular HCR FISH probes used to detect expression of *plk-3* and *pgl-1* mRNA.

HCR FISH Probes: pgl-	Molecular	Ordered Using Accession # ZK381.4a
1	Instruments	
HCR FISH Probes: plk-	Molecular	Ordered Using Accession # NM_068795
3	Instruments	

 Table S6. CRISPR-related oligonucleotides:
 Oligonucleotides used in the generation and detection of CRISPR-edited alleles.

Oligo type	Name	Purpose	Sequence		
crRNAs					
	Dpy-10	Cas9	GCTACCATAGGCACCACGAG		
	prg-1 mCherry knockin	Cas9	TGGCATCTGGAAGTGGTCGC		
	ΔPAZ 1	Cas9	AAAATGAATGAGATGTACGG		
	ΔPAZ 2	Cas9	CCAGTCGGGAAGCACAGTTC		
	Rnase 1	Cas9	TACCACGACTCGACATTGAA		
	Rnase 2	Cas9	TTCCTTTCAATGTCGAGTCG		
	COSA-1 GFP knockin	Cas9	aagtgtcaATGTCAAGTTCT		
	PLK-3	Cas9	CATTTATGCGAGATATCTGG		
	PLK-3 ΔpiRNA	Cas9	TACGACTGAGATACTTCTTT		
Primers					
	prg-1_WG_FWD	Genotyping	CGCACCGATCGATTCTGGAT		
	prg-1 WG RVS	Genotyping	TGCTGTAGTCGCTTTGAGTCA		
	ΔPAZgenoFP	Genotyping	GGAACTACGATCGTGCCAGA		
	ΔPAZgenoRP	Genotyping	CCCACTCTGCTTGCTTTCCT		
	DDHgenoFWD	Genotyping	CCATTCCCAACCAATGCGTG		
	DDHgenoRVS	Genotyping	GTAGAGGATCAAGCGGCTCG		
	cosa1_wrmS11_geno_FP	Genotyping	AAACTTAGGCTCTGGTCTCGTG		
	cosa1_wrmS11_geno_RP	Genotyping	GAACCTGATTCGCTGCTGA		
	plk-3_cterm_geno_fp	Genotyping	CAACCAGGAGCATGTCGTCT		
	GFP112R	Genotyping	CACCTTCACCCTCTCCACTG		
	plk-3_cterm_geno_rp	Genotyping	TGCGAAAAGGTTGCAAGGTT		
	JHS 59	Genotyping	TCTTgtgagttgaagtgtatccttt		
	JHS 60	Genotyping	TTGGGCATATTCGATACGACTG		
	JHS 61	Genotyping	AGTATCTGTCCCGTATCGAGTAC		
ssODN					
	ΔPAZ ssODN	Repair Template	CCACAACGCGTTCAAGAGAAAATGAATGAATGAGATGTACCTGTGCTTCCCGACTGGGCTAACGGATGAGATGCG		
	RNase ssODN	Repair Template	AAAACACAATGATCGTCGGCTACGCTCTGTACCACGAtTCaACaTTaAAAGGAAAAACTGTCGGTGCTTGCGT		
	∆piRNA ssODN	Repair Template	CGCAAACATATTGACAAACAGCTGTCCAAAGAAGTATCTGTCCCGTATCGAGTACGCACAGGCCAAAATTAAATTGCTTCGTCCTACAAAC		

Table S7. Strains used in this study (excel file): List of *C. elegans* strains generated and used in this study.

Data S1. Small RNA read mapping of Wild Type and *prg-1* **mutant male samples to annotated piRNAs (excel file).** Table of small RNA reads from wild type and *prg-1* mutant male samples mapped to the *C. elegans* genome and annotated piRNAs for downstream analysis.

Data S2. Small RNA read mapping from Wild Type and *prg-1(\Delta PAZ)* **RNA IP samples to annotated piRNAs (excel file).** Table of small RNA reads from wild type *prg-1(\Delta PAZ)* RNA IP samples mapped to the *C. elegans* genome and annotated piRNAs for downstream analysis.

Data S3. Small RNA read mapping of Wild Type and *prg-1* **mutant hermaphrodite samples to annotated piRNAs (excel file).** Table of small RNA reads from Wild Type and *prg-1* mutant samples mapped to the *C. elegans* genome and annotated piRNAs for downstream analysis.

Data S4. Small RNA read mapping of Wild Type and *prg-1(null)* **male samples to annotated cDNAs (excel file).** Table of small RNA reads from Wild Type and *prg-1* mutant male samples mapped to the *C. elegans* genome and cDNAs to identify 22G siRNA targets in downstream analysis.