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Supplementary Methods

Datasets and preprocessing We used the same datasets as Chari and Pachter [1] (Table A) and followed the
same pre-processing steps. The Ex Utero data was already log-normalized. We filtered empty genes and cells, and
selected the 2 000 most highly variable genes (HVGs) with scanpy.pp.highly variable genes() with default settings
[2]. The MERFISH data was already normalized, and we only performed the log1p() transform. The Smart-seq data
was already log-normalized and had HVGs selected, so we used it as is. Chari and Pachter [1] additionally performed a
standardization step on all datasets, which we omitted for simplicity, as it did not change the result qualitatively (see our
Github repository for a direct comparison). Despite small differences in pre-processing choices, we obtained qualitatively
very similar results in Fig 2a–b to what the original authors reported in their Fig 7.

Name Cells Genes Classes Source Count matrix Metadata

Ex Utero 6 205 19 588 19 Aguilera-Castrejon et al. [3] normalized.assay85 MetaData.85

MERFISH 6 963 254 25 Zhang et al. [4] 10.22002/D1.2064 10.22002/D1.2063
Smart-seq 3 850 1 999 28 Kim et al. [5] 10.22002/D1.2071 10.22002/D1.2067

Table A: Datasets. Ex Utero: Files in GEO accession GSE149372. MERFISH and Smart-seq: DOIs.

Simulation We used negative binomial sampling to obtain a simulated version of the Ex Utero dataset with known
ground-truth classes. For each cluster and each gene g in the original dataset, we computed the proportion pg of UMI
counts of this gene among all UMI counts in the cluster. For each cell c belonging to this cluster in the original data, we
then sampled new counts Xcg ∼ NB(µ = ncpg, θ = 10), where nc is the cell’s original total UMI count. Overdispersion
parameter θ = 10 leads to some additional variance compared to the Poisson distribution. This procedure preserved
the number of genes, the number of cells, and all class abundances, and ensured realistic marginal distributions of
simulated counts per cell and per gene. The counts of each simulated gene in each class followed an independent negative
binomial distribution around the gene’s mean expression in the original Ex Utero cluster. Finally, we performed the
same pre-processing as above on the simulated counts (depth normalization, scaling normalized counts to 10 000 counts
per cell, log1p() transform, scanpy default HVG selection).

Embeddings We used the high-dimensional gene space after pre-processing and gene selection as input to all embedding
methods. For the elephant embeddings, we used the original Picasso code by Chari and Pachter [1] with minimal
adjustments needed to provide the random seed for reproducibility (https://github.com/berenslab/picasso). We
ran Picasso for 500 epochs with default settings. For PCA, we used scikit-learn 1.3.0 [6] with default parameters.
For t-SNE and UMAP, we followed Chari and Pachter [1] and first reduced the pre-processed count matrices to 50
dimensions with PCA and used that as input to openTSNE 1.0.1 [7] and umap-learn 0.5.5 with default parameters.
The 50-dimensional PCA was used in no other part of the analysis. In all plots, we used the class labels and colors from
Chari and Pachter [1], except for minor adjustments to the Ex Utero colors, where we introduced four additional colors
to make all classes discernible.

Embedding quality metrics Following Chari and Pachter [1], we computed their intra- and inter-class correlation
metrics using both L1 and L2 distances (see our Github repository for a direct comparison). As we did not observe
qualitative differences between the two variants, we only showed L2 results here, and also used L2 distances for all other
metrics.

For kNN accuracy, we used the k nearest neighbors in the 2D embedding to predict the class of each cell with
a majority vote (this is essentially a leave-one-out cross-validation procedure). We reported raw accuracy here, but
class-balanced accuracy gave qualitatively the same results (see our Github repository). For kNN recall, we computed
(for each cell) the fraction of the k nearest neighbors in the 2D embedding that are also among the k nearest neighbors in
the high-dimensional space. For both kNN metrics, we used k = 10, and averaged over all cells.

For the maximum AMI metric, we ran HDBSCAN [8] from scikit-learn on each embedding for nine hyperparameter
values min samples = min size clusters ∈ {5, 10, 15, 20, 30, 40, 50, 75, 100}. All points that HDBSCAN left unclustered
(noise points) we assigned to their nearest clusters. We then computed the adjusted mutual information (AMI) between
each HDBSCAN result and the given cell type class labels, and picked the largest AMI. This way, the best performing
hyperparameter was chosen for each embedding and each dataset.

The silhouette coefficient of each cell is defined as (b− w)/max(b, w) where w is the average distance to cells from
the same class and b is the average distance to cells in the nearest other class. The silhouette coefficient is then averaged
across all cells. We used scikit-learn to find kNNs, and to compute AMI and silhouette coefficients.
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For all metrics that required a high-dimensional reference space for comparison (inter-class and intra-class correlations,
kNN recall), we used the same high-dimensional gene space that we used as input to the embedding methods.

Code Our code in Python is available at https://github.com/berenslab/elephant-in-the-room.

Supplementary Figures
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Fig A: Simulated dataset with ground truth labels. Simulation was based on the Ex Utero dataset and generated 19
classes using negative binomial sampling (see Supplementary Methods for details). Top row: Embeddings as in Fig 1. Bottom row:
Embedding quality metrics as in Fig 2. The kNN recall values are very low because simulated classes do not have any internal
structure. Dotted horizontal lines show the kNN accuracy and silhouette score in the high-dimensional gene space (“HD space”)
and the 50-dimensional PCA space (“PCA 50D”).
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