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Supplementary Note 1

In this Supplementary Note we discuss the robustness of the observations made in the main text
to variations in the model parameters and show additional experimental observations. We start
by noting one consequence of the nature of the multi-channel QPT: since the excitations involve
transitions between different states before and after the QPT (and not a simple crossing as in
the classical YSR model), the lowest-lying excitation does not need to cross zero-bias energy at
the transition. Hence, the crossing in the theoretical model is not protected but depends on the
parameters. For main text Fig. 3 we choose to present a situation where the energy of the first
excitation satisfies that E|1/2,−,+⟩−EGS ≃ 0 at the MCQPT, and there is a zero-bias crossing in the
sub-gap LDOS. We stress, however, that there exists a wide region in the parameter space, within
the already introduced model assumptions of main text Eqs. (2),(3), for which the gap in the lowest-
lying-excitation energy is below the experimental resolution, see Fig. S1. As the figure shows, the
requirement of observing the crossing within resolution imposes a quite natural condition that the
tunneling rates for the two orbitals are of the same order of magnitude, and the coupling of orbital
to substrate is larger than the superconducting gap.

Experimentally, the several examples of transitions we identify all show the crossing, at
least within the experimental energy resolution. Given that all analyzed impurities have the same
nature (surface excess iron atoms), it is expected that they are described by sets of parameters that
are close to each other in parameter space, and therefore it is not surprising that all impurities
exhibiting a transition show an analogous behavior (as it happens, an apparent crossing).

In Fig. S2 (a-c) we give an example of the opposite scenario, where the MCQPT clearly lacks
a zero-energy crossing. We emphasize that our MCQPT in absence of crossing still has the other
essential features: the large change of the average orbital occupation at the transition, which yields
a simultaneous change in the polarity of all in-gap states (from hole-like to electron-like), as well
as the possibility of NDC that is discussed in Supplementary Note 2.
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Figure S1 Magnitude of the gap in the lowest-lying excitation (i.e., deviation from a
zero-bias crossing) at the MCQPT for a: δε/∆ = −6, and b: δε/∆ = −3. The rest of
the parameters are the same in both plots (U = 60, J = 30, in units of ∆), but note that
the axes span a slightly different range. The red contours correspond to δE/∆ = 0.08,
i.e. the experimental resolution δE ≡ 3.5kBT for ∆ = 1.5 meV and electron temperature
T = 0.4 K. A relatively large parameter range is chosen since assessing precisely its size
(e.g. from the experiment or ab initio simulations) is impossible given the minimal nature
of the model. The markers in (a) correspond to various choices of the tunneling rates
presented in the text: Fig. 3 in the main text (circle) and Fig. S2 (diamond and cross).

We also note that there exists an additional variation of the MCQPT which in principle yields a
discontinuous in-gap LDOS. Namely, the system can undergo two consecutive QPTs of the ground
state, from |0,+,+⟩ into |1/2,−,+⟩, and subsequently, from |1/2,−,+⟩ into |1,−,−⟩. Far away
from the transition, the level ordering is analogous to that of the scenario discussed so far, and
crucially, the impurity also experiences a large change of the occupation (see Fig. S2 (d-f)). There
exists again a wide region in the parameter space in which these two QPTs are sufficiently close in
ε, so that they result in an in-gap LDOS indistinguishable from the scenario discussed above, i.e.,
with a crossing observed within the energy resolution.
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Figure S2 Robustness of the MCQPT. Top row: a Simulated in-gap LDOS at the impu-
rity site as a function of ε/∆. b Evolution of the energy of the four lowest-lying many-body
states. c Evolution of the average total electron occupation on the impurity for all four
many-body state. The color-coding and the arrows are the same as in main text Fig. 3.
The parameters correspond to the diamond marker in Fig. S1. Bottom row: Same as top
row but with tunneling rates corresponding to the cross marker in Fig. S1. In this case,
the deviation from zero-bias crossing δE/∆ is defined as the separation of the two QPT
(black dashed lines), which yields a discontinuity in the in-gap excitations.

Finally, we reiterate that since the single-particle excitations in the in-gap LDOS result from dif-
ferent eigenstates before and after the MCQPT, in general there is a discontinuity of slope and the
amplitude of the in-gap state energy at the point it crosses zero-bias. As Fig. S3 shows for two
different Fe impurities, this is indeed the case in our experimentally observed MCQPT.
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Figure S3 Slope and amplitude change upon crossing E = 0. a Normalized differ-
ential conductance spectra taken at different junction resistances on the same excess Fe
atom as in main text Fig. 2. Crosses are fitted locations of the most prominent peaks. The
junction resistances run from 5-100 MΩ on a logarithmic scale. b Fitted peak voltages for
the in-gap state that crosses E = 0. The line indicates the slope of the in-gap energy
versus junction resistance after crossing E = 0. c Amplitude of the peak that crosses.
Upon crossing, both the slope and the amplitude change. d - f Same as a - c for another
excess Fe impurity. Again, upon crossing E = 0, the slope and amplitude change.

Supplementary Note 2

A comprehensive numerical transport calculation starting from our initial 2-orbital Anderson im-
purity model that would include both the STM tip and the superconducting substrate is beyond the
scope of this paper. Instead, in this Supplementary Note we present a minimal phenomenological
transport calculation that may account for the negative differential conductance (NDC) observed
in the STM measurements.
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It is important to note that our STS experiment is probing bound states with some finite spatial
extent, centred at the magnetic impurity. These bound states are furthermore well inside the su-
perconducting gap and as such isolated from other states. Additionally, the experiment is carried
out in the tunneling regime such that elastic Andreev processes are negligible. To account for the
physics of transport we hence switch from the detailed description of impurity orbitals to a phe-
nomenological modelling of the isolated in-gap bound states as states located in a quantum dot-like
box.

As it was noted in Ref. [1], NDC in multi-channel quantum-dot like systems originates from a com-
bination of the Coulomb interaction and an asymmetrically-suppressed coupling to the reservoir.
Inspired by these results, we postulate that some of the in-gap bound states are asymmetrically
and weakly coupled to the STM tip, therefore, their spectral footprint becomes a NDC peak in the
transport calculation.

To explain the experimental observations, we approximate tunneling into the in-gap bound states
emerging from a complex impurity-superconductor system as tunneling into simple energy levels.
Specifically, we phenomenologically introduce a spinless two-level interacting model,

Heff =
∑
l=1,2

Eln̂l +Kn̂1n̂2, (1)

with n̂l the particle-number operator. The energy levels in this effective toy model should be inter-
preted as the in-gap bound states stemming from the magnetic impurity, but existing in the super-
conducting substrate; they should not be confused with the orbital energy levels in the MCAIM of
the impurity employed to explain the very emergence and behaviour of these in-gap bound states.

The phenomenological correspondence between the impurity and the bound states implies that
the re-ordering of the many-body states as we tune the system through the multi-channel QPT is
reflected into a re-ordering of the energy levels in the effective model (see Fig. S4). In addition,
K should be interpreted as an effective repulsive interaction which penalizes double occupation of
the bound states.
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Figure S4 Effective two-level model to account for the NDC. a Schematic phe-
nomenological correspondence between the energy levels in the effective model and the
lowest-lying many-body eigenstates in the multi-channel Anderson impurity model. The
arrow crossing indicates the MCQPT. b Schematic of the transport model. The coupling
between the left reservoir and level 2 is strongly suppressed.

Further, we couple the two-level system to two reservoirs which describe the substrate and the
STM tip respectively. Crucially, we assume that one of the couplings between the tip and one of
the bound state wavefunctions is strongly suppressed; this could be for example due to symmetry
reasons. It has been shown experimentally that the bound state wavefunction shares the same
symmetry as the orbital it originates from 2, 3. Although our data on Fe(Se,Te) show no clear
orbital character, which is possibly masked/lifted by gap and/or Se/Te inhomogeneity, position
dependent tip gating, inter-level interactions, or the strong JH itself, they are strongly varying as
function of energy and position, and spatially asymmetric. Therefore, we can easily imagine a
small matrix element between the tip wavefunction and one bound state wavefunction originating
from an orbital with an orthogonal symmetry. In the following, we therefore assume (T1,S = T2,S

and T1,tip ≫ T2,tip). For the sake of simplicity we also assume that T1,S = T1,tip but our results do
not depend on the latter condition.

Finally we assume that all the coupling strengths are much smaller than the temperature, Tl,r ≪
kBT , with l = 1, 2 and r = S, tip, as the bound state broadening in the experiment is related to
the experimental temperature. We emphasize again that the couplings Tl,r are not directly related
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to the couplings between the impurity and the superconducting site in the MCAIM Γi,α, which
are typically larger than ∆, but instead to the intrinsic broadening of the bound states which is
typically much smaller than the temperature. Indeed, STS experiments on magnetic impurities
in superconductors have confirmed that the intrinsic intra-gap bound state energy broadening is
typically much smaller than the temperature (see Refs. [4–7], supporting this assumption).

In Fig. S5 we present the differential conductance calculated numerically for this effective phe-
nomenological toy model with a numerical method based on the Lindblad equation (resulting from
an approximate master equation approach) implemented in the python package QmeQ 1.0 8. It is
worth pointing out that the use of the Lindblad method crucially relies on the fact that the temper-
ature is larger that the intrinsic level broadening as discussed above.

Before the MCQPT After the MCQPT

Bias voltage [mV]Bias voltage [mV]

a b

Figure S5 Simulated differential conductance in the effective two-level model. a
Level ordering analogous to left-hand side of Fig. S4. b Level ordering analogous to right-
hand side of Fig. S4. Solid (dashed) lines represent assymetric (equivalent) coupling
strengths. Only in the former case there can be NDC. Parameters (in meV): (a) E1 = 0.5,
E2 = 1.0, K = 3, T1,tip = 0.005 (dimensionless), kBT = 0.05. (b) E1 = −4.0, E2 = −3.5,
the rest same as (a).

Before the transition (Fig. S5a), the two lowest-lying peaks in the calculated dI/dV for the effec-
tive phenomenological toy model correspond to single-particle transitions from an empty state to
single-occupied levels 1 and 2 respectively. If the tunneling rate from the left reservoir (STM tip)
to level 2 (an in-gap bound-state) is much smaller than the rest, electrons cannot flow from level 2.
Since the large K penalizes the double occupation of level 1, electrons get stuck in level 2. There-
fore, the current collapses and the corresponding excitation appears as a NDC peak at negative
bias. After the transition (Fig. S5b), the two lowest-lying excitations for the effective toy model
correspond to single-particle transitions from a doubly-occupied level to single-occupied levels
1 and 2 respectively. The differential conductance is not negative now, because these transitions
involve both levels, therefore, electrons can always escape through level 1.
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An important feature of the model above is that the asymmetry in tunneling which causes the
NDC does not modify the energies at which the (positive or negative) peaks of the differential
conductance occur (see Fig. S5). Consequently, the energy ENDC at which the NDC peak occurs
is an excitation energy so that a peak (in principle, either positive or negative) should occur also
at −ENDC. Fig. S6 demonstrates on two examples of experimental data where indeed such a
matching is observed.

Our effective low-energy phenomenological toy model captures three key features of the MCAIM.
First, excitation transitions before and after the MCQPT are from different ground states into the
same excited states in both the effective toy model and the MCAIM. Second, the parity of the
effective ground states is the same before and after the transition in both models as well. Third,
upon assigning +1/2 spin to the particles in the toy model, we also relate the change in the spin
quantum number in both models.

Figure S6 Negative differential conductance spectra. a, b Differential conductance
spectra taken on different excess Fe impurities. For each spectrum, the differential con-
ductance is plotted as function of the bias voltage (red) and its inverse (blue). The arrows
indicate several instances where a NDC dip matches a peak at opposite polarity, in agree-
ment with the two-level model in Fig. 5a. We note that not all NDC dips perfectly match a
peak at opposite bias, which likely results from (multiple) partially overlapping states with
non-zero width.

Supplementary Note 3

For completeness, we note that the QPT in the JH = 0 case is a transition in a single-orbital AIM
model for orbital a, from a stot,a = 0 ground state with an occupation above one to a stot,a = 1/2
ground state with a singly-occupied orbital. Hence, although the spin on the impurity behaves as
for two independent Kondo models, the occupation of the impurity changes through the MCQPT,
which is not captured in the Kondo model. The departure from the Kondo model is expected 9
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since near the MCQPT the impurity is in a mixed-valence regime [see Eq. (3) of main text] and the
strong charge fluctuations are driven either by changes in ε or in Γ. Naturally, deep in the large-spin
configuration, a description within the Kondo paradigm would become suitable, where the large
Hund’s coupling is expected to yield low Kondo temperature(s) 10 likely smaller than the supercon-
ducting gap. For completeness, we note that the parameter choice of the simulation presented in
the main text is consistent with a negligibly small Kondo temperature, TK ∼ e−1/ρ0|JK|: the density
of states at the Fermi level, ρ0 ∼ 2.5 eV−1 11, 12, yields ρ0|JK| ∼ 5 · 10−3, with JK estimated from
the standard single-orbital Anderson model 13. Consistent with these estimates of a low TK, our
data away from the MCQPT, hence possibly deep in the large-spin configuration, does not show
obvious signs of a Kondo resonance, and we are unable to provide an experimental analysis of the
TK/∆ ratio in such a regime. Nevertheless, we emphasize that the MCQPT discussed in this work
is strongly tied to a mixed-valence state of the impurity, where Kondo physics is not applicable.

Supplementary Note 4

In this Supplementary Note we show additional spectroscopy data and examples of zero energy
crossings, and discuss in more detail negative dI/dV, and gating as proposed mechanism of peak
shifting.

Negative differential conductance. As the main text experimental figures and additional spectra
in Fig. S7 show, negative differential conductance (NDC) is observed on a large subset of excess Fe
atoms (well over 50% of the Fe atoms we studied). If the NDC is not found on the centre of the Fe
atom, it often appears slightly off-centre (see Fig. S7) and can furthermore be junction resistance
dependent (see e.g. main text Fig. 2). We stress that NDC with a normal metal tip is not a common
occurrence and typically requires interacting channels.

This is unlike for superconducting tips, where NDC is readily observed because instead of a flat
tip DOS, the superconducting coherence peaks of the tip act as filter leading to a strong increase
in the current upon aligning one of the coherence peaks with a sub-gap state, and subsequent drop
in current upon passing the sub-gap state. Interestingly, as Ref. [4] shows, a superconducting tip
can in some cases also lead to a switch in particle-hole asymmetry of sub-gap states as function of
junction resistance. We stress, however, that this is not the case for a normal metal tip 4.

Despite characterizing our W tip on a Pt crystal before the measurements, there is nonzero prob-
ability of picking up a small piece of Fe(Se,Te), thereby making the tip superconducting as well.
The energy of our coherence peaks, however, is similar to that observed by others using normal
metal tips. As e.g. detailed in Ref. [14], multiple coherence peaks are typically observed, and the
peak-to-peak energy separation displays a considerable spatial variation. Our spectrum in main
text Fig. 1 falls on the larger end of this variation without the need to invoke an additional gapping
due to a superconducting tip.

9



100

150

50

0

20

40

0

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)
-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

dI
/d

V 
(n

S)

-1-2 0 1 2
Sample bias (mV)

20

30

10

0

40

60

20

0

20
25

15
10
5
0

20
25

15
10
5
0

40
50

30
20
10
0

40

60

20

0

100

150

50

0

60
80

40
20
0

80

120

40

0

30
40

20
10
0

40

80

0

80

120

40

0

40

60

20

0

80

120

40

0

80
100

60
40
20
0

40

60

20

0

a g

b h

c i

d j

e k

f l

m

n

o

p

q

r

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

z(r)
highlow

Figure S7 Spectra on various Fe. a-r Constant current image (left) and differential
conductance spectrum (right) of 18 different excess Fe atoms. For those Fe atoms where
the core (red spectrum and cross) does not show negative differential conductance, a
spectrum slightly off-centre usually does (grey spectrum and cross). We note that of all
our excess Fe atoms, none show a state at zero bias that does not move off-zero with
changing tip-sample distance. We therefore have no signatures in our data that requires
us to invoke topological superconductivity. Vset = 5 mV for all data, Iset = 50 pA (spectrum
of i) or 100 pA (everything else). c is the same Fe as main text Fig. 1d; h = Fig. 1b; b =
Fig. 2; d = Fig. 1c and Fig. S8a; j = Fig. S3c; g = Fig. S8b.

More generally, we can rule out that the tip is responsible for the NDC. Any tip showing NDC
will need to have a sharp feature, which for a superconducting tip are the coherence peaks, but can
also be due to e.g. a molecule on the end of a normal tip 15. Except if there is an unusual orbital
selectivity 15, NDC would then be seen on all (sufficiently isolated) sub-gap states, regardless of
the polarity, both of which is not the case for us. Additionally, a tip with such a singularity is likely
to lead to sharper features in spectroscopy. For example, our data are taken at 0.3 K, whereas
those of e.g. Ref. [16] were taken at 1.1 K with a superconducting tip and are much sharper. A
superconducting tip will moreover in most cases have a non-zero gap in which case one would
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never observe a zero crossing of a sub-gap state. To dispel all doubts, we finally note that we have
observed NDC on excess Fe atoms in Fe(Se,Te) with multiple tips on different samples during
different cool-downs, highlighting the robustness of our finding.

Gating as mechanism for peak shifts. Previously reported quantum phase transitions have been
mostly established by tuning the impurity-substrate coupling using the atomic force between tip
and impurity 16–18. Specifically, MnPc molecules were used, which are relatively large objects
that are deposited on top of the surface. In our case, however, such tuning is less likely to be
important. First of all, the excess Fe impurities we focus on are relatively strongly bound to the
substrate: unlike MnPc we cannot push them around or controllably pick them up. Secondly, for
subsurface impurities in Fe(Se,Te), where the force between the tip and impurity is even smaller,
sub-gap states in Fe(Se,Te) have also been seen to shift with tip-sample distance (see Ref. [19]).
Therefore, instead of a tip-impurity force, a tip gating effect is more likely causing the level shifts
as put forth in Ref. [19]. Importantly, the energy scale of such gating is very different to the energy
scale of the measurements. Similar to band-bending in semiconductors, the gating depends on the
relative work functions, which are in the eV range - orders of magnitude larger than the voltage
variations in our measurements. Changing the tip-sample distance in this case will thus to a good
approximation shift all levels equally as we have used for our theoretical modelling, and will be
independent of the mV voltages we use.

Figure S8 Additional RJ data. a, b RJ dependence measurements where a zero cross-
ing occurs on two additional Fe impurities.

In addition to the tens of excess Fe atoms on which we have recorded point spectra, a selection
of which is shown in Fig. S7, we have recorded detailed junction resistance dependence measure-
ments on 8 excess Fe atoms including four that display a zero crossing. Two of these four that cross
zero energy are shown in Fig. S3, and one of the four that does not cross is shown in main text Fig.
1d. Fig. S8 shows the RJ dependence of the two additional Fe impurities with a zero crossing,
which show the same characteristics as the other data where a zero crossing occurs, highlighting
the robustness of our observations.
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Finally, Fig. S9 shows two examples of junction dependent measurements in cases where none
of the sub-gap states crosses zero energy. As these data show, there are nonzero changes in the
amplitude of the peaks, which suggests the tunnelling rates into the various sub-gap states have a
different tip-impurity distance dependence. These changes, however, are gradual and never lead
to a switch in intensity between polarities. Interestingly, particularly the NDC appears sensitive to
the tip-impurity distance, in both cases being more pronounced in the normalised curves at high
junction resistance, i.e. for low tunnelling rates. This further suggests that NDC occurs due to
blocking by a weakly coupled level: for lower junction resistances the blocking level will become
more strongly coupled, lifting the NDC.

Figure S9 RJ dependencies without crossing. a RJ dependence of tunnelling spectra
and b corresponding 2D visualization on an excess Fe atom where none of the in-gap
states cross zero energy. c-d The same as a-b for the Fe atom shown in main text
Fig. 1d, here measured at a slightly different location on the defect. In both cases the
in-gap peak amplitudes are relatively constant, ruling out a strongly selective tip-impurity
distance orbital dependence, and highlighting that the change in amplitude observed upon
a MCQPT is not simply an effect of the change in RJ .
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Supplementary Note 5

In this Supplementary Note, we show that the MCQPT characterizing our model can also be trig-
gered by continuously varying the average tunneling rate, Γ = (ΓA,a+ΓB,b)/2, between the impu-
rity and the substrate. Akin to the scenario discussed in the main text, the strong Hund’s coupling
here also induces a large change in impurity occupation between a low-spin state and a high-spin
state, which manifests as a simultaneous change in the polarity of the in-gap excitations (from neg-
ative bias to positive bias). We recall that in the AIM the impurity-substrate hybridization competes
with the local Coulomb interaction, so that increasing the former hinders the local-moment forma-
tion 20. Therefore, decreasing Γ should have an analogous effect to making ε less negative. Indeed,
as shown in Fig. S10, this correspondence is confirmed, and we observe the entire phenomenology
of the MCQPT.
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Figure S10 MCQPT driven by varying the tunneling rate Γ. a Simulated in-gap LDOS
at the impurity site as a function of Γ/∆2. b Evolution of the energy of the four lowest-lying
many-body states. c Evolution of the average total electron occupation on the impurity
for all four many-body state. The color-coding and the arrows are the same as in main
text Fig. 3 (MTF3). Calculation parameters: JH, U , δε, η same as in MTF3. We set
ε/∆ = −63.3 < εMCQPT in MTF3, so that the MCQPT occurs at a higher value of Γ/∆2

than that of MTF3 (indicated by the small black arrow on the horizontal axis). Note that
here it is not necessary to shift the energy curves in panel (b) for readability.

Supplementary Note 6

In the main text we show that crossing our MCQPT preserves the total electron parity. Here we
elaborate on the fact that this is not a universal feature of the MCQPT, as with more than two
impurity orbitals the same phenomenology of the MCQPT may occur while parity does change
sign. As a minimal concrete example, let us consider adding to our model a third orbital c coupled
to a scattering channel C in the superconductor. For a similar set of parameters as in the two-orbital
problem, upon varying the mean impurity energy level, the ground state of the system changes
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from |0,+,+,+⟩ to |3/2,−,−,−⟩, with three in-gap states that correspond to excitations into
|1,−,−,+⟩, |1,−,+,−⟩, and |1,+,−,−⟩, while the third quantum number indicates the parity in
channel c, C. As in the two-orbital scenario discussed in the main text, the system evolves from a
higher-occupation/small-spin state into a lower-occupation/high-spin state due to the effect of the
Hund’s coupling. This transition also manifests as a concurrent flip of the polarity of the in-gap
states.

Supplementary Note 7

In this Supplementary Note we show that the fundamental features of the MCQPT are independent
of the relationship between the intra-orbital interaction U and the Hund’s coupling JH.

Provided that the magnitude of the Hund’s coupling is larger than the splitting of the orbital
energy levels δε, the simulation of the MCQPT for different U/JH ratios (0.5 and 10 in top and
bottom rows of Fig. S11, respectively) exhibits the same phenomenology as the scenario discussed
in the main text (U/JH = 2), namely, a large change in the total spin of the ground state and
occupation of the impurity, which manifest as a simultaneous change in the polarity of all the in-
gap states. The various choices of U presented in this Note make explicit the crucial assumption
that the impurity is in a mixed-valence state: in each case, the MCQPT occurs at a different value
of ε, as expressed in Eq. (3) in the main text. Crucially, the variation in ε required to trigger the
MCQPT is independent of U , therefore, the assumption that impurity energy levels vary with the
tip-sample distance is not constrained by its specific value.

Following previous studies of iron impurities on FeSe systems 21, we set |ε| and U to be on
the order of 100 meV in all the other simulations presented in this work. Further, as the Hund’s
coupling originates from inter-orbital Coulomb interactions, we chose it to be of the order of U
(yet, smaller) 10.
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Figure S11 Dependence of the MCQPT on the intra-orbital Coulomb interaction.
Top row: a Simulated in-gap LDOS at the impurity site as a function of ε/∆. b Evolution
of the energy of the four lowest-lying many-body states. c Evolution of the average total
electron occupation on the impurity for all four many-body states. The color-coding and
the arrows are the same as in main text Fig. 3 (MTF3). Calculation parameters: JH, δε,
η same as in MTF3, U = 15∆ = 0.5JH. Bottom row (d-f): Same as top row but with
U = 300∆ = 10JH. Note that the horizontal axes (ε/∆) span a different range in each row.
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