- Article Title: Impacts on Atlantic killifish from neurotoxicants: genes, behavior, and population 1
- 2 relevant outcomes
- 3
- 4 Authors: Janice L. Albers¹, Lori N. Ivan¹, Bryan W. Clark², Diane E. Nacci², Rebekah H.
- Klingler³, Adam Thrash⁴, Juan P. Steibel¹, Natalia Garcia-Revero Vinas⁵, Michael J. Carvan³ 5
- and Cheryl A. Murphy ^{1,*} 6
- ¹ Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA 7 48824; albersja@msu.edu (J.A.); steibelj@msu.edu (J.S.); Inivan@msu.edu (L.I.); 8
- 9 camurphy@msu.edu (C.M.)
- ² U.S. Environmental Protection Agency, Office of Research and Development, Center for 10
- Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences 11 12 Division, Narragansett, RI, USA 02882; nacci.diane@epa.gov (D.N.); clark.bryan@epa.gov 13 (B.C.)
- ³ School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA 14 53204; klinglr@uwm.edu (R.K.); carvanmj@uwm.edu (M.C.) 15
- ⁴ Mississippi State University, Institute for Genomics, Biocomputing and Biotechnology, 16 Starkville, MS, USA 39759; thrash@igbb.msstate.edu (A.T.) 17
- ⁵ Environmental Laboratory, US Army Engineer Research and Development Center, US Army 18 Corps of Engineers, Vicksburg, MS, USA 39180; Natalia.G. Vinas@erdc.dren.mil (N.G.R.) 19
- * Correspondence: camurphy@msu.edu; Tel.: 517-432-7771 (C.M.) 20
- 21 22 63 pages
- 23 6 Figures
- 26 Tables
- 24

25

26 Supplemental

27 Behavior Assay Methods

After exposure, 7dpf embryos were rinsed in fresh seawater and transferred into 50-ml 28 conical centrifuge tubes full of fresh seawater (< 50 embryos per tube) and shipped overnight to 29 UWM, where they were placed in 12-well plates and maintained at 23°C (1-2 embryos per well 30 31 with 1ml artificial seawater; Falcon® Corning, NY 12 well plate 85 x 128 mm, 22 mm diameter well). At 10 dpf, embryos were phenotyped microscopically when abnormalities in 32 developmental stage and features were noted^{1,2}. At 14 dpf, plates were rocked gently (~120rpm) 33 34 and seawater added to each well to initiate hatching. Individual larvae were maintained in single wells for all assessments containing 3 mL seawater, incubated at 23°C, fed 24-h hatched Artemia 35 ad lib daily, and renewed with seawater on alternate days. Individuals were assessed daily for 36 survival until 23-24 dpf. 37

During larvae development, multiple behavior assays were conducted to determine if 38 chemical exposure altered important behavioral milestones. Logistical constraints required two 39 separate batches of fish to be produced (fertilized on August-8-2017 from parents on diets for 40 103 days and August-21-2017 from parents on diets for 115 days) and for some fish to be 41 42 included in multiple assays. KF were exposed to MeHg as embryos via parental transfer or were exposed through aqueous solution of PCB126 1-7 dpf. Embryos hatched at 14 dpf, assessed with 43 44 the Visual Motor Response (VMR) assay at 16 dpf (n=144), a random subset contributed brain 45 samples using lethal methods for gene expression at 17 dpf (n=69, 36 of whom had been through the VMR assay), assessed with Locomotion Behavior assay at 17 dpf (n=256, 108 of whom had 46 been through the VMR assay), and feeding abilities were assessed at 23 or 24 dpf (n=192, 84 of 47

whom had been through the VMR and Locomotion assay and 192 had been through the
Locomotion assay; see Table S1 for the total number of fish in each assay and treatment).

51 VMR Assay

Visual Motor Response (VMR) assays are a common test of fish neurological system 52 function by startling the fish and evaluating their response³. VMRs were conducted using the 53 same methodology as Mora-Zamorano et al. (2017), where 16 dpf larvae were tested in a special 54 55 behavior chamber while in the transparent 12-well microliter plates. The testing chamber isolated the larvae from light and sound, as described in three previous studies⁴⁻⁶ and provided 56 adequate light and video surveillance to view all individual movement. VMR assays were 57 58 conducted between the hours of 1200 and 1800 to minimize within day variability⁷. KF larvae were positioned in a dark behavior chamber and acclimated in the dark for 10 minutes (did not 59 use data during this period), after which they underwent two cycles of alternating 10 min light 60 and dark periods for a total of 50 min. This resulted in larvae used in the VMR analysis 61 experiencing two startles each from dark to light and from light to dark and 4-10 minute periods 62 differing light conditions: two dark and two light. Light levels during the light periods were set 63 to 69 lx based on the work by MacPhail et al. (2009; Fisher Scientific Traceable Dual-Range 64 Light Meter, Pittsburgh, PA). 65

Spontaneous movement of larvae was constantly recorded at a rate of 30 frames per sec and
tracked using DanioVision© system version 8.0 (Noldus Information Technology, Leesburg,
VA). Settings for tracking did not include smoothing of track. The minimal distance before
movement was recorded was set to 0.2 mm, at which time the direct distance between the two
points was calculated. Tracking errors were corrected by plotting all x, y coordinates and

locating and correcting occurrences where the track indicated movement but the fish did not
move or track was outside the boundary of the dish. Occasionally when Ethovision lost a fish for
1 to 3 frames (4-SCO-MeHg, 3-NBH-Ctrl, 3-NBH-PCB), the equidistant point/s between the
previous and next location were calculated and used as locations.

Similar to Albers et al. (2022), this study used the censored fish locations to define 75 76 individual larvae activity at each frame within each period. Speed at each frame was calculated as mm per sec and distance traveled in mm. Swimming was defined as larval movement that 77 was at least 6 mm/sec or 0.2 mm per frame (i.e. magnitude of velocity at larvae center) and 78 79 lasted longer than 5 frames (0.166 sec). Whereas the resting behavior occurred during frames where movement was less than 1 mm/sec or if greater than 1 mm/sec, lasted less than 5 frames. 80 Where resting behavior was defined, speed and distance for those frames were changed to zero. 81 In addition, the turning angle associated with each frame of swimming was calculated using the 82 difference between the four-quadrant inverse tangent of the two trajectories. Where the first 83 84 trajectory was constructed from the first two locations in the sequence, and the second trajectory from the second two locations in the sequence. This results in a turning angle that ranges from -85 3.14 to 3.14, where zero is straight ahead movement, negative values indicate right turns and 86 87 positive values indicate left turns. Swimming bout characteristics (i.e. time between rest periods) were summarized using multiple metrics: number of bouts per second; the mean duration, speed, 88 and turning angle (See Table S3 for definitions). The overall larval behavior during each period 89 90 in the assay was also summarized using multiple overall summary metrics: total distance traveled, total time swimming, overall average step length and variation, overall turning angle 91 and variation. 92

The fish larvae responded to the visual startle from the light change as is typical of previous 93 startle responses³. Consequently, two behavior endpoints were calculated specifically to 94 determine how larvae responding to the visual startle of the light turning off and on. To 95 determine the magnitude of the response to the visual startle, we determined the frame where the 96 maximum speed was traveled within 5 seconds after the startle. Then the difference between this 97 98 maximum speed and the speed at the time of the startle was calculated to define the magnitude of the startle response. Startle response time was calculated as the difference in time between the 99 startle and the frame where the maximum speed was traveled. 100

101

102 Locomotion Assay

Typically, KF larvae initiate swimming soon after hatching⁹. The focus of this study was to 103 assess larvae behavior at the point that larvae were independent and actively swimming. 104 Consequently, the locomotion assay was conducted when KF larvae were 17 dpf (3 dph, $6.8 \pm$ 105 0.67 mm in length, n=180), where each 12-well plate was transferred to the behavior testing 106 chamber. Since previous locomotion assays indicated some neurotoxicants impact larvae only 107 during light periods⁴, light levels were constant during the entire assay and set to 69 lx^7 . Assays 108 109 were conducted during the afternoon between 1200 and 1730 hrs. After an acclimation period of 5 min, spontaneous movement of larvae were tracked every 30th of a second using 110 111 DanioVision[©] software 8.0 with the same settings described for the VMR assay. Additionally, 112 DanioVision© lost track of one fish for more than 300 frames, so this fish was not included in the analysis (treatment SCO-PCB). 113 Using the censored fish locations, the same activity endpoints used the VMR assay were 114

calculated: average swimming bout speed, duration, frequency, turning angle (Table S3).

Additional behavior metrics that summarized other behaviors over the entire assay were also
calculated: total distance traveled and swimming time, average step length and turning angle
with their respective variations.

Using the same methods as Albers et al. (2022), a Hidden Markov Chain Model (HMM) was 119 constructed for each fish in the locomotion assay (all fish swam at least once) to describe the 120 121 different behavioral states and used them as additional behavior endpoints to determine effects from chemical exposure. A brief description of the method follows. For each larva and video 122 frame, the step length and turning angle during the assay were used to construct multiple larval 123 specific HMMs using the R package moveHMM^{10,11}. Multiple behavior state models were 124 examined that contained three possible swimming states: slow, medium, and fast swimming 125 states where s1 HMMs contained only one behavior state, s2 HMMs contained any two behavior 126 states, and s3 HMMs contained all three behavior states. The best fit HMM for each larvae was 127 determined from a suite of ten potential HMM models, differing in the number of behavior states 128 129 and initial starting values for each state (see Albers et al. 2022 Table S2 for model description and initial values). 130

Once all 10 of the possible HMMs were completed, a hierarchical selection for the best 131 132 fitting model was conducted, essentially using successfully converged models with the lowest AIC. Even though the initial state values were set up in increasing step length means, the 133 134 resulting best fit HMM state parameter estimates did not always have increasing step length for 135 each additional behavior. This is probably due to the final HMM behavior state being defined by not only the step length but also turning angle characteristics. To make sure the behavior state 136 137 comparisons were comparing similar states with the same name, the states were reordered and 138 renamed in order to compare between larvae. First, states were reordered using the mean step

length to describe them as slow, medium and faster swimming behavior states (i.e. changed the 139 state name). Next a Linear Discriminant Model was constructed using the lda function in the 140 MASS package¹² and cross validation to compare between models using the s3 models as a 141 reference. LDA prediction accuracy for all models (s1, s2, and s3) was measured using cross 142 validation where a random draw of 80% of the data was used to construct a model and then 143 144 calculated prediction accuracy of the remaining 20% of the data. This was done 50 times for each treatment group of data to determine overall accuracy (98 ± 0.02 %) and within state 145 accuracy (slow state = 99 ± 0.01 %, medium state = 99 ± 0.01 %, and fast state = 95 ± 0.05 %; 146 147 Table S4).

When treatment level tests were conducted on slow, medium and fast states, this comparison
was only conducted with fish that performed those states making the number of larvae used for
the model (see Treatment Testing section below) different for each comparison (Table S1).

151

152 *Feeding Assay*

Typically, KF larvae initiate feeding at 17 dpf¹³. This study focused on assessing larvae 153 behavior at the point that larvae were independent and feeding. Consequently, feeding ability in 154 KF was assessed when they were 23 or 24 dpf (9 or 10 dph; 10.6 ± 0.82 mm). Larva were 155 transferred from the 22 mm diameter wells to 54 mm diameter petri dishes at 22 dpf (60 mm 156 petri dish). Feeding of Artemia continued morning and evening until ~24hr prior to the assay, so 157 fish would be in a hungry state for the test. Similar to locomotion assays, feeding assays were 158 conducted over a two-day period between 1300 and 1920 hrs at a light level of 69 lx. Feeding 159 assays were conducted in the same behavior chamber as the locomotion assay, when after 5 160

minutes of acclimation, recording started and ~15 (range 13-19) live Artemia were added to the 161 dish. The test ended when 5 minutes had elapsed from when the Artemia were added to the dish. 162 Feeding bouts consisted of multiple presentations; the characteristic curved body posture, 163 continuously swimming straight or at rest by just opening their mouths. For each of these 164 presentations, the distance between the middle of the larva's mouth and Artemia was measured at 165 166 the time the larva orientated toward the *Artemia*, with their either eyes or body. This distance was termed predator reactive distance and was measured using ImageJ (version 1.51j8). For 167 each capture attempt toward an Artemia, we recorded whether the larva successfully captured the 168 169 Artemia and the time it took the larva to handle and consume the Artemia. Typically after a catching an Artemia, the larva sat or drifted momentarily and did not swim while it was 170 consuming the prey. Handling time was defined as the time between prey capture and when the 171 172 larva resumed normal swimming activity. Additionally, three consumption metrics were calculated: capture proportion defined as the number of captures divided by the total number of 173 Artemia added to the dish, miss proportion defined as the number of feeding capture attempts 174 that missed the Artemia divided by the total number of successful and unsuccessful capture 175 attempts, and capture attempt ratio defined as the total number of feeding capture attempts 176 177 (successful and unsuccessful) divided by the total number of Artemia added to the dish. When two Artemia were consumed during one feeding capture attempt, the consumption of both 178 179 Artemia were assigned the same measurements.

180

181 Bayesian Model Analysis

182

For each behavioral endpoint (Table S3), we conducted a series of preliminary and final 183 tests to determine whether there were differences between chemical dose treatments. The three 184 different behavior assays and the number of behavior responses we measured were Feeding-5, 185 Visual Motor Response (VMR) - 58, Locomotion - 30. Behavior responses that were not already 186 normally distributed, we attempted to normalize using the boxcox function in the R MASS 187 package¹² (Table S5). Using a basic model containing only the treatment factor, behavior 188 endpoints were transformed using the maximum lambda parameter for the exponential 189 transformation suggested by the boxcox function in the R MASS package. Below we describe 190 191 the five different models that were used on the 93 behavior responses to determine differences between treatments, (see Table S5 for final transformation and model used for each behavior 192 endpoint). Fitting multiple model types was necessary due to the various behavior endpoints 193 having distinctively different distributions such as a proportional, normal, or a skewed response 194 that even Box Cox transformations were not successful in normalizing. 195

196

197 Model Description

The Bayesian models used in locomotion and VMR behavior response models consisted of one main effect (treatment with 5 levels), covariate variable time of assay and a random batch effect because assays were ran in batches of 24-well dishes. The Bayesian model used for a locomotion and VMR behavior responses was

202

Locomotion or VMR Behavior Endpoint_{ijkl}

203

 $= \alpha + \beta_j * treatment_j + \delta_k * assay time_{k(i)} + \omega_l * batch_{l(i)} + \varepsilon_{ijkl}$

204	where <i>Locomotion or VMR Behavior Endpoint</i> $_{ijkl}$ is the behavioral response metric
205	on the <i>i</i> th individual, <i>j</i> th treatment, <i>k</i> th assay time and <i>l</i> th batch; α is the intercept, β_j is the
206	treatment coefficient with a <i>Normal</i> $(0,\sigma_{\beta}^2)$ distribution, δ is the assay time coefficient with a
207	<i>Normal</i> $(0,\sigma_{\delta}^2)$ distribution, ω_l is the batch coefficient, and ε_{ijkl} is the residual error. Treatment
208	and batch are indicator variables containing 1 if the observation belongs to the corresponding
209	factor category and 0 otherwise. Prior distributions for these two components are described in
210	Table S6. Additionally, priors were needed for the α , treatment and assay time effects. In all
211	models, we used non-informative, flat priors. For α , treatment, and assay time we assumed a
212	normal distribution with a mean of 0 and standard deviation of at least 1.0 x 10 ⁴ (i.e. precision of
213	1.0×10^{-4}). OpenBUGS model code for these models is shown in Tables S7, S8 and S9.
214	Two other Bayesian models were used to model the five feeding behavior responses that
215	did not contain a batch effect since feeding assays were conducted one fish at a time.
216	Additionally, days post fertilization (dpf) was included as a covariate since larvae were either 23
217	or 24 dpf. Lastly, these models did include intercept, treatment and assay time as described for
218	the locomotion and VMR behavior models.
219	
220	1) Normal response model
	Feeding Behavior Endpoint _{ijkl}
221	$= \alpha + \beta_j * treatment_j + \delta * assay time_{k(i)} + \omega * dpf_{l(i)} + \varepsilon_{ijkl}$
222	where <i>Feeding Behavior Endpoint</i> _{$ijkl$ is the prey handling time, lunge ratio or reaction}
223	distance (Table S5) on the <i>i</i> th individual, <i>j</i> th treatment, <i>k</i> th assay time and <i>l</i> th dpf; α , β_j and, δ and
224	their priors where described before, and ω is the dpf coefficient also with a non-informative

225normal prior assuming a normal distribution with a mean of 0 and standard deviation of at least226 $1.0 \ge 10^4$ (i.e. precision of $1.0 \ge 10^4$). Lastly, the residual error followed a normal distribution227 $\varepsilon \sim Normal(0, \sigma_{\varepsilon}^2)$ with variance $\frac{1}{\sigma_{\varepsilon}^2} = \tau_j \sim I - Gamma(0.0001, 0.0001)$. OpenBUGS code is228presented in Table S10.2292) Binomial response model230Feeding Behavior Endpoint_{ijkl} ~ Binomial(p_{ijkl}, N_{ijkl})231 $logit(p_{ijkl}) = \beta_j * treatment_{j(i)} + \delta * assay time_{k(i)} + \omega * dpf_{l(i)} + \varepsilon_{ijkl}$ 232

where *Feeding Behavior Endpoint*_{*ijkl*} is the prey capture probability or prey miss proportion (Table S8) on the *i*th individual, *j*th treatment, *k*th assay time and *l*th dpf and *N*_{*ijkl*} is the number of trials and *p*_{*ijkl*} is the probability of success distributed on a logit scale. The priors for β_j , δ and ω where described before. Lastly, the residual error followed a normal distribution $\epsilon \sim Normal(0, \sigma_{\epsilon}^2)$ with variance $\frac{1}{\sigma_{\epsilon}^2} = \tau_j \sim I - Gamma(0.01, 0.01)$. OpenBUGS code is presented in Table S11.

239

240 Model Fitting and Convergence Diagnostics

Bayesian models were constructed using OpenBUGS version 3.2.3 rev 1012¹⁴, R version 3.6.0¹¹ and packages R2OpenBUGS version 3.2¹⁵ and coda version 0.19-2¹⁶. We fit the basic model using three chains, each with a minimum of 10000 iterations, 1000 burn in, and 1 thin, and monitored a subsample of parameters for convergence: treatment effects, overall mean, residuals, variance(s), precision parameter(s), and degree of freedom parameter(s). Then we performed preliminary multiple MCMC chain convergence diagnostics using Trace plots. If

model did not converge, we increased either the number of iterations, burn in, or thin. Once the 247 preliminary model trace plots were not showing any obvious convergence problems, further 248 MCMC diagnostics were applied using a suite of tools to determine adequate MCMC chain 249 length, model convergence and fit. 1) Autocorrelation plots indicated the level of thinning 250 required to remove any autocorrelation. 2) Gelman-Rubin-Brooks shrink factor plots indicated 251 252 the adequate number of iterations needed for burn in. 3) Raftery and Lewis's diagnostic tables were used to determine the number of additional iterations needed for accurate parameter 253 estimation (default values of q = 0.025, $r = \pm 0.005$ and s = 0.95). 4) Finally, model goodness-254 255 of-fit was evaluated using residual diagnostics. When alternative models were to be compared, the model with the best posterior predictive distributions of residuals and replicated observations 256 was retained. 257

Once a best-fitted model had been determined, we re-fit the model with the appropriate 258 settings and monitored a slightly different suite of parameters: overall mean; population level 259 treatment effects; variance and precision parameters; tail area probabilities of observing a 260 difference; degrees of freedom; individual level predicted means, etc. With the model output and 261 iteration levels we also determined effective sample size (effectiveSize function in coda R 262 263 package), posterior distributions of parameters, and calculated a one-sided tail area probabilities (Bayesian P-values) from the two sided difference of parameter distributions. The summary 264 265 output of this last model fit is presented in the results section of the paper and all relevant 266 parameter posterior distributions can be found in Table S13.

267

268 Behavior Treatment Testing

All behavioral endpoints were examined for treatment differences using Bayesian statistical 269 methods (see Supplemental section for additional details). Bayesian models for locomotion 270 behavior responses consisted of one main effect (treatment with 5 levels), covariate variable 271 (time of test and/or dpf) and a random batch effect since assays were ran in batches of 12-well 272 dishes. Bayesian models for feeding behavior were the same except no random batch was 273 274 included since each assay was conducted with one larva. Response variables and residuals were examined for normality using density distributions and Box Cox transformation were applied 275 where needed in all non-negative response variables using the boxcox function in the MASS 276 package (Table S5²¹²). All responses that were normally distributed either with or without a 277 transformation were predicted using a normal distribution model, responses that were severely 278 right skewed were predicted using a t distribution model where degrees of freedom (df) was 279 estimated with dunif (3, 30), and responses that were proportional were fit with a logistic 280 distribution model (Tables S6, S7, S8 and S9, S10, respectively). Priors were set to be non-281 informative and all models were ran with three chains (see supplemental material for detailed 282 methods; Table S6). To facilitate future use of parameter estimates, this study generated both 283 overall population and individual level parameter estimates (Table S12). Lastly, a Chi-Square 284 test from the R stats package¹¹ was used to determine whether the proportion of s1, s2 and s3 285 HMMs selected were different between treatments. 286

287

288 Brain Gene Expression

289 Brain collection

Brain collection was performed essentially as described by Vargas et al. (2011) on 17 dpf
MeHg and PCB126 exposed larvae. A random subset of larvae were removed after the VMR

assay to contribute brain samples for gene expression at 17 dpf (n=69, 36 of whom had been 292 through the VMR assay and 33 had not). Larvae were gently transferred to a 60 mm petri dish 293 and 4°C embryo medium was quickly added to provide anesthesia. Five larvae were transferred 294 to a new petri dish, water was removed, and individuals were immobilized in a drop of 2% low 295 melting point agarose made with artificial cerebral spinal fluid (aCSF; 131 mM NaCl, 2 mM 296 297 KCl, 1.25 mM KH₂PO₄, 2 mM MgSO₄, 10 mM glucose, 2.5 mM CaCl₂, 20 mM NaHCO₃). A dissection pin was used to mount the larvae in dorsal/ventral recumbency, just under the surface 298 of the agarose. Artificial cerebral spinal fluid was added and dishes were placed on ice. Intact 299 300 brains were removed using dissection pins, transferred individually in 5µl aCSF to 1.5 ml microcentrifuge tubes, then frozen in liquid nitrogen prior to storage at -80°C. 301

302

303 Brain Gene Analysis

Genomic analysis was conducted at Mississippi State University, Institute for Genomics, 304 305 Biocomputing and Biotechnology. Total RNA was isolated from 6 embryos' brains per treatment from individual 17 dpf embryos using the Qiagen RNeasy® Micro Kit (Germantown, 306 MD, USA) following the Purification of Total RNA from Animal and Human Tissues protocol 307 308 in the RNeasy® Micro Handbook with slight modifications. The modification included homogenization of brain tissue in 350 µL of RLT buffer using a pellet pestle and elution of Total 309 310 RNA using 15 µL of RNase-free water. RNA quality was assayed using the Agilent High Sensitivity RNA ScreenTape System (Waldbronn, Germany) for the Agilent 2200 TapeStation 311 (Palo Alto, CA, USA), and RNA was quantified using the NanoDrop 2000 (ThermoFisher 312 Scientific, Waltham, MA). 313

314	The raw reads from 36 KF samples (6 groups with 6 reps) were mapped and quantified using
315	salmon ¹⁸ (v1.3.0) against the reference transcriptome (NCBI Fundulus heteroclitus annotation
316	release 102; assembly MU-UCD_Fhet_4.1). Tximport ¹⁹ (v1.16.1) was used to import transcript-
317	level estimates from salmon summarize this data to the gene level. These genes were filtered
318	such that only genes with an average log Counts per Million > 1 across all samples were retained
319	for differential expression analysis. EdgeR (v3.30.3) was used to determine differentially
320	expressed genes (DEGs). OrthoFinder (v2.5.4) was used to find orthologous genes in D. rerio.
321	The GO.db R package ²⁰ (v3.12.1) was used to look up GO terms from GO IDs, and the
322	KEGGREST R package ²¹ (v1.30.1) was used to look up KEGG pathway names. The GAGE R
323	package ²² (v2.40.0) was used to perform gene-set enrichment analysis using <i>D. rerio</i> GO gene-
324	sets, KEGG gene-sets and the D. rerio orthologs of genes that passed the filter. Significant
325	trends were determined using an alpha of 0.05 [false discovery rate (FDR) and q-value]. Brain
326	gene expression data for each embryo in each treatment can be found at
327	www.ncbi.nlm.nih.gov/geo.
328	

329 Individual Based Model

The model used in this study is described in Ivan et al. (In Review) with a few changes.
First, the calibration in this study was unique to KF and did not include any other species.
Second, the model in this study did not contain uncertainty as described in Ivan et al. (In
Review). Lastly, this study added an additional time period of summer since KF have an
extended spawning season and we wanted to investigate the possibility that seasonal changes in
predation may occur.

The IBM tracked 2500 individual larvae (based on wild densities) from hatch to juvenile transition, defined at 24 mm ²³ or until 100 days, whichever occurred first (Figure S2). Daily, individuals forage, grow and experience mortality. Killifish forage on two types of prey. Foraging consists of prey encounters, handling time, capture success and consumption of nauplii and/or copepods. Swimming speed, handling time, larvae reactive distance and capture success all determine how many prey an individual KF larval consumes. KF then grow ($G_{i,d}$ in g/d) as

342
$$G_{j,d} = C_{j,d} - R_{j,d} - F_{j,d} - U_{j,d} - SDA_{j,d}$$

343 where $C_{i,d}$ (g/d) is the consumption of prey by larval fish j, $R_{i,d}$ is respiration (g/d), $F_{i,d}$ is egestion 344 (g/d), $U_{i,d}$ is the excretion (g/d) and $SDA_{i,d}$ (g/d) is the specific dynamic action. Consumption is determined via the foraging but capped at $Cmax_{i,d}$ (g/d) as determined from the Wisconsin 345 346 Bioenergetic equations²⁴. Finally, KF are monitored for starvation and predation mortality. Predators of KF are adult KF and their predation rates are temperature dependent²⁴. Fish that die 347 are removed from the daily loop, as are fish that reach 24mm. Output variables of interest are 1) 348 the number of survivors (fry that reach the exit length within the 100 days) and 2) the mean 349 growth rate (mm/d) of survivors. 350

Sublethal effects of MeHg and PCB126 were incorporated into the model via multipliers 351 derived from the Bayesian individual level predicted treatment posterior distributions (Table 352 S13). The individual level posterior distributions were used to create 10,000 random values from 353 354 a truncated normal distribution. If the posterior distribution was from a transformed behavior endpoint, then these random values were back transformed. From these random values, the 355 multiplier distributions were generated (S12). Multipliers were placed on larval swimming 356 speed from the locomotion assay; larval capture success of zooplankton, larval handling time of 357 zooplankton, and larval reactive distance to zooplankton from the feeding assay. At the start of 358

each simulation (replication), each model individual *j* was assigned a multiplier for each of the above four variables. For each simulated KF (*j*), a swimming speed multiplier (SM_j) was generated as

362

$$SM_i = TD_i/MD$$

363 where TD_i is the average speed (mm/s) by fish j and MD is the treatment mean average speed (mm/s). Multipliers for handling time ($HM_i = TH_i/MH$), capture success ($CM_i = TC_i/MC$) 364 and reactive distance $(RM_i = TR_i/MR)$ were calculated for each experimental fish j as using the 365 same procedure. Finally, the amount of time a fish was active was determined by the proportion 366 of time fish were active in the locomotion assay. Proportions were derived from the posterior 367 distributions for each scenario. If necessary, back-transformations were performed prior to the 368 multiplier calculation. Lastly, the proportion of time a KF was actively searching for food or 369 encountering a predator was scaled to the percent of time active larvae were in the locomotion 370 assay by randomly assigning a time scaler to each fish at the beginning of the simulation (i.e. 371 multiply 12 hours by percent of time active in assay). 372

The model was calibrated using SCO KF such that growth rates were set to be approximately 0.3mm/d (unpublished). To determine if differences occurred between which season the adult fish spawn, we ran simulations for spring and summer runs. For spring runs beginning on Julian day 110, the first fish reached 24mm around day 53 with several individuals still growing but under the size of 24mm at the end of the model run (Figure S4). For the summer runs (Julian day 230), the first fish to reach 24mm at the end of the model run was on day 48 with few fish remaining in the simulation at the end of the model run (Figure S4).

381 **Results**

All larvae within each chemical/year/treatment group were successfully fitted with a HMM (Table S1). The number of larvae that consisted of one, two, or three behavior states exhibited a consistent pattern within each treatment, where a one state behavior model was never the best, three fish exhibited a two state model, and the rest of the fish were best fit using a three state behavior model (253 fish; Figure S3). Behavior/Gene Expression This study focused on finding behaviors that reacted in a similar pattern to either MeHg

390 or PCB126 treatments. In addition, we also tested individual genes and whether they responded

in a similar pattern as any of the behavior endpoints. These results are reported in Tables 2 and

392 S18 to S24.

393

394 References

- (1) Clark, B. W.; Matson, C. W.; Jung, D.; Di Giulio, R. T. AHR2 Mediates Cardiac
 Teratogenesis of Polycyclic Aromatic Hydrocarbons and PCB-126 in Atlantic Killifish
 (Fundulus Heteroclitus). *Aquat. Toxicol.* 2010, *99* (2), 232–240.
 https://doi.org/10.1016/j.aquatox.2010.05.004.
 Whitehead, A.; Triant, D. A.; Champlin, D.; Nacci, D. Comparative Transcriptomics
- Implicates Mechanisms of Evolved Pollution Tolerance in a Killifish Population. *Mol. Ecol.* 2010, *19* (23), 5186–5203. https://doi.org/10.1111/j.1365-294X.2010.04829.x.
- 403 (3) Emran, F.; Rihel, J.; Dowling, J. E. A Behavioral Assay to Measure Responsiveness of
 404 Zebrafish to Changes in Light Intensities. *J. Vis. Exp.* 2008, No. 20, 6.
 405 https://doi.org/10.3791/923.
- 406 (4) Mora-Zamorano, F. X.; Klingler, R.; Basu, N.; Head, J.; Murphy, C. A.; Binkowski, F. P.;
 407 Larson, J. K.; Carvan, M. J. Developmental Methylmercury Exposure Affects Swimming
 408 Behavior and Foraging Efficiency of Yellow Perch (Perca Flavescens) Larvae. ACS
- 409 *Omega* **2017**, *2* (8), 4870–4877. https://doi.org/10.1021/acsomega.7b00227.
- Mora-Zamorano, F. X.; Klingler, R. H.; Murphy, C. A.; Basu, N.; Head, J.; Carvan, M. J.
 Parental Whole Life Cycle Exposure to Dietary Methylmercury in Zebrafish (Danio Rerio
 Affects the Behavior of Offspring. *Environ. Sci. Technol.* 2016, *50* (9), 4808–4816.
 https://doi.org/10.1021/acs.est.6b00223.
- 414 (6) Mora-Zamorano, F. X.; Svoboda, K. R.; Carvan, M. J. The Nicotine-Evoked Locomotor
 415 Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio Rerio)

Embryos and Eleutheroembryos Exposed to Methylmercury. PLoS One 2016, 11 (4), 416 e0154570. https://doi.org/10.1371/journal.pone.0154570. 417 MacPhail, R. C.; Brooks, J.; Hunter, D. L.; Padnos, B.; Irons, T. D.; Padilla, S. (7)418 Locomotion in Larval Zebrafish: Influence of Time of Day, Lighting and Ethanol. 419 Neurotoxicology 2009, 30 (1), 52–58. https://doi.org/10.1016/J.NEURO.2008.09.011. 420 Albers, J. L.; Steibel, J. P.; Klingler, R. H.; Ivan, L. N.; Garcia-Reyero, N.; Carvan, M. J.; 421 (8) Murphy, C. A. Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury 422 and PCB126 Detected Using Hidden Markov Chain Models. Environ. Sci. Technol. 2022, 423 56 (6), 3514–3523. https://doi.org/10.1021/acs.est.1c07505. 424 (9) Weis, J. S.; Weis, P. Swimming Performance and Predator Avoidance by Mummichog 425 426 (Fundulus Heteroclitus) Larvae after Embryonic or Larval Exposure to Methylmercury. Can. J. Fish. Aquat. Sci. 1995, 52 (10), 2168-2173. https://doi.org/10.1139/f95-809. 427 Michelot, T.; Langrock, R.; Patterson, T. A. MoveHMM: An <scp>R</Scp> Package for (10)428 the Statistical Modelling of Animal Movement Data Using Hidden Markov Models. 429 *Methods Ecol. Evol.* **2016**, 7 (11), 1308–1315. https://doi.org/10.1111/2041-210X.12578. 430 R Core Team. R: A Language and Environment for Statistical Computing; R version (11)431 4.0.4, x86 64-w64-mingw32/x64 (64-bit): Vienna, Austria, 2019. 432 (12)Venables, W. N.; Ripley, B. D. Modern Applied Statistics with S, Fourth.; Springer New 433 York, 2002. 434 435 (13)Weis, J. S.; Weis, P. Effects of Embryonic Exposure to Methylmercury on Larval Prey-Capture Ability in the Mummichog, Fundulus Heteroclitus. Environ. Toxicol. Chem. 1995, 436 14 (1), 153–156. https://doi.org/10.1002/etc.5620140117. 437 (14)Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. The BUGS Project: Evolution, Critique 438 and Future Directions. Stat. Med. 2009, 28 (25), 3049-3067. 439 https://doi.org/10.1002/sim.3680. 440 (15)Sturtz, S.; Ligges, U.; Gelman, A. R2WinBUGS : A Package for Running WinBUGS 441 from R. J. Stat. Softw. 2005, 12 (3). https://doi.org/10.18637/jss.v012.i03. 442 Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence Diagnosis and Output 443 (16)Analysis for MCMC. *R News* **2005**, *6*, 7–11. 444 Vargas, R.; Jóhannesdóttir, I. b.; Sigurgeirsson, B.; Þorsteinsson, H.; Karlsson, K. Æ. The 445 (17)Zebrafish Brain in Research and Teaching: A Simple in Vivo and in Vitro Model for the 446 Study of Spontaneous Neural Activity. Adv. Physiol. Educ. 2011, 35 (2), 188-196. 447 448 https://doi.org/10.1152/advan.00099.2010. Patro, R.; Duggal, G.; Love, M. I.; Irizarry, R. A.; Kingsford, C. Salmon Provides Fast 449 (18)and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14 (4), 417-450 419. https://doi.org/10.1038/nmeth.4197. 451 (19) Soneson, C.; Love, M. I.; Robinson, M. D. Differential Analyses for RNA-Seq: 452 Transcript-Level Estimates Improve Gene-Level Inferences. F1000Research 2015, 4, 453 1521. https://doi.org/10.12688/f1000research.7563.1. 454 Carlson, M. GO.Db: A Set of Annotation Maps Describing the Entire Gene Ontology R 455 (20)Package Verson 3.12.1. 2019. 456 457 (21)Tenenbaum, D. KEGGREST: Client-Side REST Access to KEGG R Package Version 458 1.30.1.2015. Luo, W.; Friedman, M. S.; Shedden, K.; Hankenson, K. D.; Woolf, P. J. GAGE: Generally 459 (22)460 Applicable Gene Set Enrichment for Pathway Analysis. BMC Bioinformatics 2009, 10(1), 161. https://doi.org/10.1186/1471-2105-10-161. 461

- Abraham, B. J. Species Profiles Life Histories and Environmental Requirements of 462 (23)Coastal Fishes and Invertebrates Mid-Atlantic USA Mummichog and Striped Killifish; U 463 S Fish and Wildlife Service Biological Report 8211, 223 p., 1985. 464
- (24)Deslauriers, D.; Chipps, S. R. S. R.; Breck, J. E. J. E.; Rice, J. A. J. A.; Madenjian, C. P. 465 C. P. Fish Bioenergetics 4.0: An R-Based Modeling Application. Fisheries 2017, 42 (11), 466 586-596. https://doi.org/10.1080/03632415.2017.1377558. 467
- Smith, K. J.; Taghon, G. L.; Able, K. W. Trophic Linkages in Marshes: Ontogenetic (25)468
- Changes in Diet for Young-of-the-Year Mummichog, Fundulus Heteroclitus. In Concepts 469 and Controversies in Tidal Marsh Ecology; Weinstein, M. P., Kreeger, D. A., Eds.; 470 Kluwer Academic Publishers: Dordrecht, 2002; pp 121-237. https://doi.org/10.1007/0-471 472 306-47534-0 11.
- Marteinsdottir, G.; Able, K. W. Influence of Egg Size on Embryos and Larvae of 473 (26)Fundulus Heteroclitus (L.). J. Fish Biol. 1992, 41, 883-896. 474
- Kneib, R. T.; Parker, J. H. Notes: Gross Conversion Efficiencies of Mummichog and 475 (27)Spotfin Killifish Larvae from a Georgia Salt Marsh. Trans. Am. Fish. Soc. 1991, 120 (6), 476 803-809. https://doi.org/10.1577/1548-8659(1991)120<0803:NGCEOM>2.3.CO;2. 477
- 478 (28)Letcher, B. H.; Rice, J. A.; Crowder, L. B.; Rose, K. A. Variability in Survival of Larval Fish: Disentangling Components with a Generalized Individual-Based Model. Can. J. 479 Fish. Aquat. Sci. 1996, 53 (4), 787-801. https://doi.org/10.1139/f95-241. 480
- 481 (29)Fleeger, J. W.; Johnson, D. S.; Galván, K. A.; Deegan, L. A. Top-down and Bottom-up Control of Infauna Varies across the Saltmarsh Landscape. J. Exp. Mar. Bio. Ecol. 2008, 482 357 (1), 20–34. https://doi.org/10.1016/j.jembe.2007.12.003. 483
- (30)Fulford, R. S.; Rice, J. A.; Miller, T. J.; Binkowski, F. P.; Dettmers, J. M.; Belonger, B. 484 Foraging Selectivity by Larval Yellow Perch (Perca Flavescens): Implications for 485 Understanding Recruitment in Small and Large Lakes. Can. J. Fish. Aquat. Sci. 2006, 63 486 (1), 28-42. https://doi.org/10.1139/f05-196.
- 487
- Hartman, K. J.; Brandt, S. B. Predatory Demand and Impact of Striped Bass, Bluefish, and 488 (31) Weakfish in the Chesapeake Bay: Applications of Bioenergetics Models. Can. J. Fish. 489 Aquat. Sci. 1995, 52 (8), 1667–1687. https://doi.org/10.1139/f95-760. 490
- Walton, W. E.; Hairston, N. G.; Wetterer, J. K. Growth-Related Constraints on Diet 491 (32)Selection by Sunfish. *Ecology* **1992**, 73 (2), 429–437. https://doi.org/10.2307/1940750. 492
- Valiela, I.; Wright, J. E.; Teal, J. M.; Volkmann, S. B. Growth, Production and Energy 493 (33)494 Transformations in the Salt-Marsh Killifish Fundulus Heteroclitus. Mar. Biol. 1977, 40 (2), 135-144. https://doi.org/10.1007/BF00396259. 495
- Madon, S. P.; Williams, G. D.; West, J. M.; Zedler, J. B. The Importance of Marsh Access 496 (34)to Growth of the California Killifish, Fundulus Parvipinnis, Evaluated through 497
- Bioenergetics Modeling. Ecol. Modell. 2001, 136 (2-3), 149-165. 498
- https://doi.org/10.1016/S0304-3800(00)00416-6. 499
- 500 (35)Cowan, J. H. J.; Houde, E. D.; Rose, K. A. Size-Dependent Vulnerability of Marine Fish Larvae to Predation: An Individual-Based Numerical Experiment. ICES J. Mar. Sci. 1996. 501 502 53, 23–37.

Figure S1. Behavior assays used in this study to collect data on Atlantic killifish larvae for assessment of chemical responses and for inputs into the Individual Based Model.

Figure S2. Model flow chart showing daily processes included in the generalized individual-based model to assess contaminant effects on Atlantic killifish larval cohorts.

Figure S4. An example of the length (mm) verses simulation day for individual Scorton Creek control fish that were alive at the end of one run of a spring and summer scenario.

Figure S5. Significant mercury response patterns shared by gene expression and behavior endpoints in Scorton Creek (SCO) Atlantic killifish found in this study. Both the original and opposite behavior endpoint trends are listed. (HMM = Hidden Markov Chain model endpoint, TP = Transition Probability).

Adverse Outcome Pathway

Figure S6. Significant PCB126 treatment patterns shared by gene expression and behavior endpoints in the New Bedford Harbor (NBH) Atlantic killifish found in this study. Both the original and opposite behavior endpoint trends are listed. (HMM = Hidden Markov Chain model endpoint, TP = Transition Probability).

able 51: Summary of the number of ussays and Atlantic kinnish farvae (1 unautus neter octitus) used in this study									
Groups	SCO-Ctrl	SCO-Hg	SCO-PCB	NBH-Ctrl	NBH-PCB				
VMRs									
Number of Assays-Larvae	30	29	28	29	28				
Locomotion Assays									
Number of Assays-Larvae	56	68	31	66	35				
HMMs									
Number of Larvae Attempted and Fitted a									
Model	56	68	31	66	35				
Feeding Assays									
Number of Assays-Larvae	47	44	23	50	28				
Total Length (mm \pm SD)	10.78 (0.77)	10.63 (0.60)	9.80 (0.98)	10.81 (0.77)	10.35 (0.80)				
Number of Larvae that did not consume									
Artemia	0	1	0	0	0				

Table S1. Summary of the number of assays and Atlantic killifish larvae (*Fundulus heteroclitus*) used in this study

Table S2. Embryo treatment groups used in larval behavioral assays, where Atlantic killifish larvae originated from adults from Scorton Creek, MA (SCO) or New Bedford Harbor, MA (NBH). Larvae were fed low mercury (i.e. control) or high mercury (Hg) diets and exposed directly to PCB126 at nominal concentrations of 40 ng/L (Low PCB) or 400 ng/L (High PCB). Endpoints reported include hatching, survival and ratings for phenotypic abnormalities, including those specific to the heart. Lethal treatment groups (PCB126 400) were not used in larval behavior studies (DND = Did not determine, NA = not applicable).

Parents	Parent or Offspring Treatment	Treatment Number	PCB126 ng/g ^a	Mercury ng/g	%Embryo Survival	%Hatch	%Larval Survival	Phenotypic Abnormalities Mean Score	Heart Abnormalities Mean Score
SCO	Control ^b	1	0	9.8 ± 2.49	100	100	90	0	0
	Hg ~3600 ng tHg/g dw/day	2	NA	35.09 ± 17.06	100	87.5	87.5	0.13	0
	PCB126 40 ng/L ^b	3	19	DND	100	100	87.5	0.25	0.63
	PCB126 400 ng/L ^b	N/A	189	DND	100	0	0	4.6	4
NBH	Control ^b	4	0	DND	100	100	100	0	0
	PCB126 40 ng/L ^b	5	19	DND	85.71	85.71	85.71	0	0
	PCB126 400 ng/L ^b	N/A	189	DND	66.67	66.67	55.56	0.86	0.86

^a Estimated using previous experiments (Nacci et al. 1999)

 $^{\rm b}$ Also exposed to ~300 ng tHg/g dw/day through salmon-based diet

 Table S3. Description of behavior endpoints examined in this study.

Behavior Endpoint	Definition
Feeding Assay	
Prev Canture Prohability	The number of ortamic contures divided by the total number of ortani
	added to the assay
Prey Handling Time (sec)	The number of seconds between the prey capture attempt and resuming normal activity, averaged over all feeding capture attempts during the 5 min assay
Capture Attempt Ratio	The total number of prey capture attempts divided by the total number of artemia added to the assay.
Prey Miss Proportion	The number of prey capture attempts that missed the artemia divided by the total number of prey capture attempts during the assay.
Reaction Distance (proportion of body length)	The distance (mm) between the artemia and larva when the larvae first orientates (notices) the artemia divided by the larva total length (mm), averaged over all the feeding capture attempts during the 5 minute assay.
Visual Motor Response Assay	
Startle Magnitude (mm)	Per frame maximum speed within 5 seconds after the startle minus the speed at the time of the startle.
Startle Response time (sec)	Difference in time between the startle and the maximum speed traveled within 5 seconds after the startle
Locomotion and VMR Assav	
Swimming Bouts (per sec)	The number of active swimming bouts per second. Swimming was defined as movement at least 1 mm/s for more than 5 frames (0.166 sec).
Swimming Bout Duration (sec)	Duration of all swimming bouts averaged over the 5 minute period.
Swimming Bout Speed (mm/s)	Per frame swimming speed averaged during a swimming bout; average bout speed averaged over the 5 minute period.
Swimming Bout Turning Angle	Per frame turning angle averaged during a swimming bout; individual average bout turning angle averaged over the 5 minute period. Ranges from -3.14 to 3.14, where negative values indicate right turns and positive values indicate left turns.
Total Distance Traveled (mm)	Total distanced traveled during swimming bouts for the entire 5 minute assay.
Total Time Swimming (sec) Overall Step Length (mm)	Total time larvae were swimming during 5 minute test. Per frame distance traveled during a 0.033 second period (one frame to the next) averaged over the entire 5 minute test [i.e. includes zeros when fish moved less than 1 mm/s for more than 5 frames (0.166 sec)].
Overall Step Length Variation	Standard deviation of distance traveled during 0.033 second period (one frame to the next).
Overall Turning Angle	Per frame turning angle averaged over frames when fish were swimming. Ranges from -3.14 to 3.14, where negative values indicate right turns and positive values indicate left turns.
Overall Turning Angle	Standard deviation of per frame turning angle during 0.033 second period
Variation	(one frame to the next).
HMM Model Parameters	
Step Length (mm)	Per frame distance traveled during a 0.033 sec period (one frame to the next) while the larvae was in each behavior state.

Step Length Variation	Standard deviation of the per frame distance traveled during 0.033 second period (one frame to the next) while in each behavior state.
Turning Angle	Per frame turning angle while in each behavior state. Ranges from -3.14 to 3.14, where negative values indicate right turns and positive values indicate left turns.
Turning Angle Variation	Angle concentration, i.e. kappa parameter in the von Mises distribution while in each behavior state.
Count	Number of frames a behavior state was performed.
Slow -> Slow, Medium ->	Per frame transition probability from state to state (e.g. Medium -> Slow
Slow, Slow -> Medium,	is the probability of a fish transitioning from a medium speed swimming
Medium -> Medium, Fast ->	state to a slow swimming state).
Slow, Fast -> Medium, Slow -	
> Fast, Medium -> Fast, Fast -	
> Fast	

										Total				
										number	Number			
										of	of			
	0 1	11			N 1.					behavior	renamed	Number	Number	Number
	Overal		C1		Mediu	m			Number of	states in	state ID	of	of	of
	Accura	acy s3	Slow S	state	State		Fast St	tate	observations	s1 and	in s1	larvae	larvae	larvae
Group	Mean	SD	Mean	SD	Mean	SD	Mean	SD	in s3 LDA	s2	and s2	with s3	with s2	with s1
NBH-Ctrl	1	0.01	1.00	0.00	1.00	0.00	0.98	0.03	198	0	0	66	0	0
NBH-PCB	1	0.00	1.00	0.00	1.00	0.00	1.00	0.00	108	4	1	36	2	0
SCO-Ctrl	1.00	0.10	1.00	0.01	1.00	0.01	0.99	0.02	168	0	0	56	0	0
SCO-Hg	0.96	0.03	0.98	0.03	1.00	0.00	0.90	0.07	204	0	0	68	0	0
SCO-PCB	0.99	0.02	1.00	0.00	0.98	0.05	0.97	0.06	90	2	0	30	1	0

Table S4. LDA cross validation results for different HMM behavioral states. N = 50 iterations. SD = standard deviation

			Number	of				
						Burn-		
Parameter	Transformation	Distribution	Larvae	Chains	Iterations	In	Thin	Sample
Feeding Assay								
Prey Capture Probability	$\log(y/(1-y))$	Logistic	192	3	55000	15000	20	120000
Prey Handling Time	(y+1)^-2.1, y*100	Normal	191	3	30000	10000	10	60000
Capture Attempt Ratio	(y+1)^-1.1, y*100	Normal	192	3	30000	10000	10	60000
Prey Miss Proportion	$\log(y/(1-y))$	Logistic	192	3	35000	10000	10	75000
Reaction Distance (mm)	(y+1)^1.5, y*100	Normal	192	3	30000	10000	10	60000
Locomotion Assay								
Swimming Bouts (per sec)	(y+1)^3.85, y*100	Normal	256	3	165000	45000	20	360000
Swimming Bout Duration (sec)	(y+1)^-3.3, y*100	Normal	256	3	80000	50000	20	90000
Swimming Bout Speed (mm/s)	(y+1)^-1, y*1000	Normal	256	3	175000	35000	20	420000
Swimming Bout Turning								
Angle	(y+1)^2.59, y*1000	Normal	256	3	620000	50000	15	1710000
Total Distance Traveled (mm)	(y+1)^0.22, y*100	Normal	256	3	210000	25000	20	555000
Total Time Swimming (sec)	(y+1)^0.8	Normal	256	3	805000	35000	20	2310000
Overall Step Length (mm)	(y+1)^-6.7, y*100	Normal	256	3	375000	45000	30	990000
Overall Step Length Variation	(y+1)^-3.7, y*100	Normal	256	3	80000	40000	20	120000
Overall Turning Angle	(y+1)^0.25, y*1000	Normal	256	3	60000	40000	15	60000
Overall Turning Angle								
Variation	(y+1)^-1.2, y*100	Normal	256	3	90000	40000	20	150000
HMM Model Parameters								
Slow State								
Count	(y+1)^1.41	Normal	256	3	60000	40000	10	60000
Medium State	· /							
Step Length (mm)	(y+1)^-30,							
	y*100000	Normal	255	3	115000	40000	20	225000
Step Length Variation	(y+1)^-30, y*100	Normal	255	3	60000	40000	10	60000
Turning Angle	y*10	Normal	255	3	100000	40000	20	180000
Turning Angle								
Variation	(y+1)^-0.65, y*100	Normal	255	3	110000	40000	20	210000
Count	(y+1)^0.05, y*100	Normal	255	3	60000	40000	15	60000
Fast State	· · · •							

Step Length (mm)	(y+1)^-4.3, y*1000	Normal	254	3	150000	40000	20	330000
Step Length Variation	(y+1)^-6.4, y*100	Normal	254	3	60000	40000	15	60000
Turning Angle	y*10	Normal	254	3	80000	60000	15	60000
Turning Angle								
Variation	(y+1)^0.2, y*100	Normal	254	3	80000	40000	20	120000
Count	NA	Normal	254	3	265000	40000	30	675000
tate Transition								
robabilities								
Slow -> Slow	asin(sqrt(y)), y*100	Normal	256	3	80000	50000	10	90000
Medium -> Slow	y*100	Normal	255	3	485000	55000	20	1290000
Slow -> Medium	asin(sqrt(y)), y*100	Student's T	255	3	75000	40000	20	105000
Medium -> Medium	y*100	Normal	255	3	125000	50000	20	225000
Fast -> Slow	(y+1)^-71.2, y*100	Student's T	254	3	60000	30000	10	90000
Fast -> Medium	(y+1)^-5.85, y*100	Normal	253	3	110000	50000	20	180000
Slow -> Fast	asin(sqrt(y)), y*100	Normal	254	3	85000	55000	15	90000
Medium -> Fast	(y+1)^-5.1, y*100	Normal	253	3	195000	45000	20	450000
Fast -> Fast	(y+1)^8.6	Normal	254	3	265000	55000	20	630000
l 1, Dark to Light								
tartle Magnitude (mm)	(y+1)^0.18, y*100	Normal	144	3	85000	40000	15	135000
tartle Time (sec)	(y+1)^-0.96, y*100	Normal	144	3	80000	40000	10	120000
l 2, Light to Dark								
artle Magnitude (mm)	(y+1)^-0.18, y*1000	Normal	144	3	90000	40000	15	150000
tartle Time (sec)	(y+1)^0.04, y*1000	Normal	144	3	60000	40000	15	60000
l 3, Dark to Light								
artle Magnitude (mm)	(y+1)^0.45, y*1000	Normal	144	3	130000	40000	20	270000
tartle Time (sec)	(y+1)^-1, y*100	Normal	144	3	85000	40000	20	135000
l 4, Light to Dark								
artle Magnitude (mm)	(y+1)^-0.14, y*1000	Normal	144	3	100000	40000	20	180000
tartle Time (sec)	(y+1)^-0.58, y*100	Normal	144	3	95000	40000	10	165000
l 1, Light								
wimming Bouts (per sec)	(y+1)^4.87, y*10	Normal	144	3	120000	45000	20	225000
wimming Bout Duration								
ec)	(y+1)^-5.3, y*1000	Normal	144	3	100000	45000	20	165000
	Step Length (mm) Step Length Variation Turning Angle Turning Angle Variation Count ate Transition robabilities Slow -> Slow Medium -> Slow Slow -> Medium Medium -> Medium Fast -> Slow Fast -> Medium Slow -> Fast Medium -> Fast Fast -> Fast Medium -> Fast Fast -> Fast A 1, Dark to Light cartle Magnitude (mm) cartle Time (sec) 1 2, Light to Dark cartle Magnitude (mm) cartle Time (sec) 1 3, Dark to Light cartle Magnitude (mm) cartle Time (sec) 1 4, Light to Dark tartle Magnitude (mm) cartle Time (sec) 1 1, Light wimming Bouts (per sec) wimming Bout Duration ec)	Step Length (mm) $(y+1)^{-4.3}, y*1000$ Step Length Variation $(y+1)^{-6.4}, y*100$ Turning Angle $y*10$ Turning Angle $y*10$ Variation $(y+1)^{0.2}, y*100$ CountNAate Transition $(y+1)^{-0.2}, y*100$ robabilities $sin(sqrt(y)), y*100$ Medium -> Slow $sin(sqrt(y)), y*100$ Medium -> Medium $y*100$ Fast -> Slow $(y+1)^{-71.2}, y*100$ Medium -> Medium $(y+1)^{-71.2}, y*100$ Fast -> Slow $(y+1)^{-5.1}, y*100$ Slow -> Fast $asin(sqrt(y)), y*100$ Medium -> Fast $(y+1)^{-5.1}, y*100$ Slow -> Fast $(y+1)^{-0.18}, y*100$ Medium -> Fast $(y+1)^{-0.18}, y*1000$ Yartle Time (sec) $(y+1)^{-0.14}, y*1000$ 12, Light to Dark $(y+1)^{-0.14}, y*1000$ artle Magnitude (mm) $(y+1)^{-0.14}, y*1000$ artle Magnitude (mm) $(y+1)^{-0.14}, y*1000$ artle Time (sec) $(y+1)^{-0.14}, y*1000$ 14, Light to Dark $(y+1)^{-0.58}, y*100$ artle Time (sec) $(y+1)^{-0.58}, y*100$ 11, Light $(y+1)^{-0.53}, y*1000$ $(y+1)^{-5.3}, y*1000$	Step Length (mm) Step Length Variation Turning Angle Turning Angle Variation Count $(y+1)^{-6.4}, y^{*100}$ Normal y*10Normal Normal Normal y*10Turning Angle Variation Count $(y+1)^{-0.2}, y^{*100}$ Normal NANormal Normal Normal Naate Transition robabilities $(y+1)^{-0.2}, y^{*100}$ Normal ate Transition robabilitiesNormal NASlow -> Slow Medium -> Medium Slow -> Medium Slow -> Medium Slow -> Fast Medium -> Fast Slow -> Fast Medium -> Fast (y+1)^-5.1, y*100 (y+1)^-5.1, y*100 Normal Artle Magnitude (mm) artle Time (sec)Normal (y+1)^-0.18, y*100 (y+1)^-0.96, y*100 Normal (y+1)^-0.96, y*100 Normal (y+1)^-0.04, y*1000 Normal artle Time (sec)Normal (y+1)^-0.18, y*1000 Normal (y+1)^-0.18, y*1000 Normal Normal tartle Magnitude (mm) (y+1)^-0.18, y*1000 Normal (y+1)^-0.18, y*1000 Normal tartle Time (sec)Normal (y+1)^-0.18, y*1000 Normal (y+1)^-0.18, y*1000 Normal tartle Time (sec)11, Dark to Light artle Magnitude (mm) artle Time (sec)(y+1)^-0.18, y*1000 (y+1)^-0.18, y*1000 Normal (y+1)^-0.14, y*1000 Normal tartle Time (sec)12, Light to Dark artle Magnitude (mm) artle Time (sec)(y+1)^-0.14, y*1000 (y+1)^-0.14, y*1000 Normal (y+1)^-0.58, y*100 Normal (y+1)^-0.58, y*100 Normal itartle Time (sec)14, Light wimming Bouts (per sec) wimming Bout Duration ec)(y+1)^-5.3, y*1000 Normal	Step Length (mm) $(y+1)^{-4.3}$, y^{*1000} Normal254Step Length Variation $(y+1)^{-6.4}$, y^{*100} Normal254Turning Angle y^{*10} Normal254Turning Angle y^{*10} Normal254Variation $(y+1)^{-0.2}$, y^{*100} Normal254CountNANormal254ate Transitionsin(sqrt(y)), y^{*100} Normal254obabilitiessin(sqrt(y)), y^{*100} Normal255Slow -> Slowasin(sqrt(y)), y^{*100} Normal255Medium -> Medium y^{*100} Normal255Fast -> Slow $(y+1)^{-71.2}$, y^{*100} Normal253Slow -> Medium $(y+1)^{-7.1.2}$, y^{*100} Normal253Fast -> Medium $(y+1)^{-5.5}$, y^{*100} Normal253Slow -> Fast $asin(sqrt(y))$, y^{*100} Normal254Medium -> Fast $(y+1)^{-5.1}$, y^{*100} Normal254Medium -> Fast $(y+1)^{-0.18}$, y^{*100} Normal14412, Light to Dark $(y+1)^{-0.18}$, y^{*1000} Normal14413, Dark to Light $(y+1)^{-0.14}$, y^{*1000} Normal14414, Light to Dark $(y+1)^{-0.14}$, y^{*1000} Normal14414, Light to Dark $(y+1)^{-0.58}$, y^{*100} Normal14414, Light wimming Bouts (per sec) $(y+1)^{-0.58}$, y^{*1000} Normal14414, Light wimming Bout Duration $(y+1)^{-0.53}$, y^{*1000} Normal144 </td <td>Step Length (mm)$(y+1)^{-4.3}, y^{*100}$Normal2543Step Length Variation$(y+1)^{-6.4}, y^{*100}$Normal2543Turning Angley^{*10}Normal2543Variation$(y+1)^{-0.2}, y^{*100}$Normal2543CountNANormal2543ate TransitionNANormal2543obabilitiessin(sqrt(y)), y*100Normal2553Slow -> Slowasin(sqrt(y)), y*100Normal2553Medium -> Slowy*100Normal2553Fast -> Slow(y+1)^-7.1.2, y*100Student's T2543Fast -> Slow(y+1)^-7.1.2, y*100Normal2553Fast -> Slow(y+1)^-7.1.2, y*100Normal2533Slow -> Fastasin(sqrt(y)), y*100Normal2543Medium -> Fast(y+1)^-5.1, y*100Normal2543fast -> Fast(y+1)^-0.18, y*100Normal2543Artle Magnitude (mm)(y+1)^-0.18, y*100Normal144312, Light to Dark(y+1)^-0.04, y*1000Normal1443artle Magnitude (mm)(y+1)^-0.14, y*1000Normal144313, Dark to Lightartle Magnitude (mm)(y+1)^-0.14, y*1000Normal144314, Light to Dark(y+1)^-0.14, y*1000Normal1443artle Time (sec)(y+1)^-0.58, y*100Normal144314</td> <td>Step Length (mm)$(y+1)^{-4.3}, y^{*100}$Normal$254$$3$$150000$Step Length Variation$(y+1)^{-6.4}, y^{*100}$Normal$254$$3$$60000$Turning Angle$y^{*10}$Normal$254$$3$$80000$Turning Angle$(y+1)^{-0.2}, y^{*100}$Normal$254$$3$$80000$CountNANormal$254$$3$$265000$ate TransitionSlow -> Slow$asin(sqrt(y)), y^{*100}$Normal$255$$3$$485000$Medium -> Slow$y^{*100}$Normal$255$$3$$485000$Slow -> Medium$y^{*100}$Normal$255$$3$$125000$Fast -> Slow$(y+1)^{-7.1.2}, y^{*100}$Student's T$255$$3$$110000$Fast -> Medium$(y+1)^{-7.1.2}, y^{*100}$Normal$253$$3$$110000$Slow -> Fast$asin(sqrt(y)), y^{*100}$Normal$254$$3$$85000$Medium -> Fast$(y+1)^{-5.1}, y^{*100}$Normal$253$$3$$195000$Fast -> Fast$(y+1)^{-0.18}, y^{*100}$Normal$144$$3$$80000$12, Light to Dark$x^{*100}$Normal$144$$3$$130000$artle Magnitude (mm)$(y+1)^{-0.14}, y^{*1000}$Normal$144$$3$$130000$$13, Dark$ to Light$(y+1)^{-0.14}, y^{*1000}$Normal$144$$3$$130000$$14,$ Light to Darkx^{*100}Normal$144$$3$$120000$<</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	Step Length (mm) $(y+1)^{-4.3}, y^{*100}$ Normal2543Step Length Variation $(y+1)^{-6.4}, y^{*100}$ Normal2543Turning Angle y^{*10} Normal2543Variation $(y+1)^{-0.2}, y^{*100}$ Normal2543CountNANormal2543ate TransitionNANormal2543obabilitiessin(sqrt(y)), y*100Normal2553Slow -> Slowasin(sqrt(y)), y*100Normal2553Medium -> Slowy*100Normal2553Fast -> Slow(y+1)^-7.1.2, y*100Student's T2543Fast -> Slow(y+1)^-7.1.2, y*100Normal2553Fast -> Slow(y+1)^-7.1.2, y*100Normal2533Slow -> Fastasin(sqrt(y)), y*100Normal2543Medium -> Fast(y+1)^-5.1, y*100Normal2543fast -> Fast(y+1)^-0.18, y*100Normal2543Artle Magnitude (mm)(y+1)^-0.18, y*100Normal144312, Light to Dark(y+1)^-0.04, y*1000Normal1443artle Magnitude (mm)(y+1)^-0.14, y*1000Normal144313, Dark to Lightartle Magnitude (mm)(y+1)^-0.14, y*1000Normal144314, Light to Dark(y+1)^-0.14, y*1000Normal1443artle Time (sec)(y+1)^-0.58, y*100Normal144314	Step Length (mm) $(y+1)^{-4.3}, y^{*100}$ Normal 254 3 150000 Step Length Variation $(y+1)^{-6.4}, y^{*100}$ Normal 254 3 60000 Turning Angle y^{*10} Normal 254 3 80000 Turning Angle $(y+1)^{-0.2}, y^{*100}$ Normal 254 3 80000 CountNANormal 254 3 265000 ate TransitionSlow -> Slow $asin(sqrt(y)), y^{*100}$ Normal 255 3 485000 Medium -> Slow y^{*100} Normal 255 3 485000 Slow -> Medium y^{*100} Normal 255 3 125000 Fast -> Slow $(y+1)^{-7.1.2}, y^{*100}$ Student's T 255 3 110000 Fast -> Medium $(y+1)^{-7.1.2}, y^{*100}$ Normal 253 3 110000 Slow -> Fast $asin(sqrt(y)), y^{*100}$ Normal 254 3 85000 Medium -> Fast $(y+1)^{-5.1}, y^{*100}$ Normal 253 3 195000 Fast -> Fast $(y+1)^{-0.18}, y^{*100}$ Normal 144 3 80000 12, Light to Dark x^{*100} Normal 144 3 130000 artle Magnitude (mm) $(y+1)^{-0.14}, y^{*1000}$ Normal 144 3 130000 $13, Dark$ to Light $(y+1)^{-0.14}, y^{*1000}$ Normal 144 3 130000 $14,$ Light to Dark x^{*100} Normal 144 3 120000 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Swimming Bout Speed	(y+1)^-0.75,							
	(mm/s)	y*10000	Normal	144	3	70000	40000	25	90000
	Swimming Bout Turning	2							
	Angle	(y+1)^2.25, y*1000	Normal	144	3	60000	40000	15	60000
	Total Distance Traveled	(y+1)^0.025,							
	(mm)	y*1000	Normal	144	3	55000	35000	20	60000
	Total Time Swimming	2							
	(sec)	(y+1)^0.65, y*10	Normal	144	3	150000	55000	20	285000
	Overall Step Length (mm)	(y+1)^-9.15, y*1000	Normal	144	3	130000	45000	15	255000
	Overall Step Length								
	Variation	(y+1)^-4.37, y*1000	Normal	144	3	130000	55000	20	225000
	Overall Turning Angle	(y+1)^5.7, y*100	Normal	144	3	90000	40000	20	150000
	Overall Turning Angle								
	Variation	(y+1)^-0.34, y*1000	Normal	144	3	100000	40000	20	180000
Pe	riod 2, Dark								
	Swimming Bouts (per sec)	(y+1)^4.1, y*10	Normal	144	3	150000	40000	20	330000
	Swimming Bout Duration								
	(sec)	(y+1)^-4.9, y*1000	Normal	144	3	75000	55000	15	60000
	Swimming Bout Speed								
	(mm/s)	(y+1)^0.45, y*1000	Normal	144	3	70000	40000	15	90000
	Swimming Bout Turning	(y+1)^12.9,							
	Angle	y*10000	Normal	144	3	60000	40000	15	60000
	Total Distance Traveled	5							
	(mm)	(y+1)^0.77	Normal	144	3	65000	35000	20	90000
	Total Time Swimming								
	(sec)	(y+1)^2.5, y/10000	Normal	144	3	60000	40000	10	60000
	Overall Step Length (mm)	(y+1)^-0.45, y*1000	Normal	144	3	80000	40000	15	120000
	Overall Step Length								
	Variation	(y+1)^-2.6, y*1000	Normal	144	3	85000	55000	25	90000
	Overall Turning Angle	(y+1)^10.2, y*100	Normal	144	3	60000	40000	15	60000
	Overall Turning Angle								
	Variation	(y+1)^-1.17, y*1000	Normal	144	3	70000	40000	20	90000
Pe	riod 3, Light								
	Swimming Bouts (per sec)	(y+1)^4.35	Normal	144	3	60000	40000	15	60000
	Swimming Bout Duration						-		-
	(sec)	(y+1)^-8.4, y*1000	Normal	144	3	120000	45000	20	225000
	· /	- / / /							

	Swimming Bout Speed								
	(mm/s)	(y+1)^-2.1, y*10000	Normal	144	3	85000	60000	25	75000
	Swimming Bout Turning								
	Angle	(y+1)^1.8, y*1000	Normal	144	3	65000	40000	15	75000
	Total Distance Traveled	(y+1)^-0.01,							
	(mm)	y*10000	Normal	144	3	55000	35000	10	60000
	Total Time Swimming								
	(sec)	(y+1)^0.66, y*10	Normal	144	3	125000	55000	20	210000
	Overall Step Length (mm)	(y+1)^-11, y*1000	Normal	144	3	150000	40000	20	330000
	Overall Step Length								
	Variation	(y+1)^-7.7, y*1000	Normal	144	3	125000	55000	20	210000
	Overall Turning Angle	(y+1)^3.6, y*100	Normal	144	3	60000	40000	15	60000
	Overall Turning Angle								
	Variation	(y+1)^0.6, y*1000	Normal	144	3	65000	40000	20	75000
Peri	od 4, Dark								
	Swimming Bouts (per sec)	(y+1)^4	Normal	144	3	120000	40000	20	240000
	Swimming Bout Duration								
	(sec)	(y+1)^-7.93, y*1000	Normal	144	3	95000	40000	20	165000
	Swimming Bout Speed								
	(mm/s)	(y+1)^0.7, y*100	Normal	144	3	120000	40000	20	240000
	Swimming Bout Turning								
	Angle	(y+1)^1.84, y*1000	Normal	144	3	95000	40000	20	165000
	Total Distance Traveled								
	(mm)	(y+1)^0.8	Normal	144	3	75000	40000	20	105000
	Total Time Swimming								
	(sec)	(y+1)^2.53, y/1000	Normal	144	3	125000	40000	20	255000
	Overall Step Length (mm)	(y+1)^-0.32, y*1000	Normal	144	3	130000	40000	20	270000
	Overall Step Length								
	Variation	(y+1)^-1.55, y*1000	Normal	144	3	400000	45000	20	1065000
	Overall Turning Angle	(y+1)^1.6, y*1000	Normal	144	3	140000	40000	20	300000
	Overall Turning Angle								
	Variation	(y+1)^-1.4, y*1000	Normal	144	3	110000	40000	20	210000

Table S6. Distributions and priors for parameters in models used to determine differences in treatments for locomotion behavior responses.

Model				
Table	Residual	Residual Variance	Batch Effect	Batch Effect Variance
S6	$\varepsilon \sim Normal(0,\sigma_{\varepsilon}^2)$	$\frac{1}{\sigma_{z}^{2}} = \tau_{j} \sim I - Gamma(0.0001, 0.0001)$	$\varepsilon \sim Normal(0,\sigma_{\varepsilon}^2)$	$\frac{1}{\sigma_{i}^{2}} = \tau_{j} \sim I - Gamma(0.01, 0.01)$
S7	$\epsilon \sim Normal(0, \sigma_{\epsilon}^2)$	$\sqrt{\sigma_{\varepsilon}^2} = \sigma_{\varepsilon} \sim U(0,01,1000)$	$\epsilon \sim Normal(0, \sigma_{\epsilon}^2)$	$\sqrt{\sigma_{\varepsilon}^2} = \sigma_{\varepsilon} \sim U(0,01,1000)$
S 8	ε ~Student's T $(0,\sigma_{\varepsilon}^2,df)$	$\frac{1}{\sigma_{\varepsilon}^{2}} = \tau_{j} \sim I - Gamma(0.0001, 0.0001)$	ε ~Student's T $(0,\sigma_{\varepsilon}^2,df)$	$\frac{1}{\sigma_{\varepsilon}^2} = \tau_j \sim I - Gamma(0.01, 0.01)$

Table S7. Normal distribution OpenBUGS model containing treatment and time of assay effects and a random batch effect used to analyze locomotion behavior endpoints.

```
#inits<-function(){</pre>
# list(batch.eff=runif(N2,-1000,1000),tau=runif(1,0,10),tau.a=runif(1,0,10))}
#inits()
model;
ł
       for(i in 1:N){
       y[i]~dnorm(mu[i],tau)
       mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta mfn+batch.eff[batchid[i]]
       mean \sim dnorm(0, 1.0E-6)
#make covariate effect priors
       #time
       betta mfn \sim dnorm(0, 0.0001)
#make fixed main effect priors
       trt.eff[1]<-0
       for (i in 2:5)
       trt.eff[i]~dnorm(0,1.0E-6)
        }
#make random effect of batch priors
       for (i in 1:N2)
       batch.eff[i]~dnorm(0,tau.a)
        }
#predict estimates
#cell means models
       for(j in 1:5)
       Trt.mean[j]<-mean+trt.eff[j]
        }
#initial values
       var<-1/tau
       var.a<-1/tau.a
       tau~dgamma(0.0001,0.0001)
       tau.a~dgamma(0.01,0.01)
#difference calculations
       trt1<-Trt.mean[1]#sco salmon-fed ctl
       trt2<-Trt.mean[2]#sco tuna/hg fed
       trt3<-Trt.mean[3]#sco salmon-fed pcb40
       trt4<-Trt.mean[4]#nbh salmon-fed ctl
       trt5<-Trt.mean[5]#nbh salmon-fed pcb40
       diftrt2_1<-trt1
       pvaltrt2 1<-step(diftrt2_1)</pre>
       diftrt3 1<-trt3-trt1
       pvaltrt3_1<-step(diftrt3_1)</pre>
       diftrt3 2<-trt3-trt2
       pvaltrt\overline{3} 2<-step(diftrt3 2)
       diftrt4 1<-trt4-trt1
       pvaltrt4 1<-step(diftrt4 1)
```

```
diftrt5 4<-trt5-trt4
        pvaltrt5 4<-step(diftrt5 4)
        diftrt3 5<-trt3-trt5
        pvaltrt3 5<-step(diftrt3 5)
#ratio calculations
        ratiotrt2 1<-trt2/trt1
        ratiotrt3 1<-trt3/trt1
        ratiotrt3 2<-trt3/trt2
        ratiotrt4 1<-trt4/trt1
        ratiotrt5 4<-trt5/trt4
        ratiotrt3 5<-trt3/trt5
#posterior model checking, generate new obs based on model params mu, tau. assume normal dist
  for( i in 1 : N ) {
   ypred[i] ~ dnorm(mu[i],tau)
  }
#generate individual level predictions
   ypred 1 ~ dnorm(trt1,tau)#approximation of the individual observation, using average for other factors in
the model.
   ypred 2 ~ dnorm(trt2,tau)#randomly selected individual
   ypred 3 \sim \text{dnorm}(\text{trt3,tau})
   vpred 4 \sim dnorm(trt4,tau)
   ypred 5 \sim \text{dnorm}(\text{trt5},\text{tau})
#compute residuals using the kurtosis formula for both orig data (e) and rep data
  for( i in 1 : N ) {
   e[i]<-y[i]-mu[i]
  }
 SSE<-inprod(e[],e[])#sum of squares which is e squared
 ku<-sum(e[]) #sum up all values, there is one for each data point
 kpred<-sum(ypred[])</pre>
difs<-kpred-ku #find difference
difpval<-step(difs) #count how many times the rep data is larger than orig data
}
```

Table S8. Normal distribution OpenBUGS model containing treatment and time of assay effects and a random batch effect using uniform tau prior used to analyze locomotion behavior endpoints.

```
#inits<-function(){</pre>
# list(batch.eff=runif(N2,-1000,1000),sdev=runif(1,0.01,1000),sdev.a=runif(1,0.01,1000))}
#inits()
model;
{
       for(i in 1:N){
       y[i]~dnorm(mu[i],tau)
       mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta mfn+batch.eff[batchid[i]]
       }
       mean \sim dnorm(0, 1.0E-6)
#make covariate effect priors
       #time
       betta mfn \sim dnorm(0, 0.0001)
#make fixed main effect priors
       trt.eff[1]<-0
       for (i in 2:5){
       trt.eff[i]~dnorm(0,1.0E-6)
       }
#make random effect of batch priors
       for (i in 1:N2)
       batch.eff[i]~dnorm(0,tau.a)
       }
#predict estimates
#cell means models
       for(j in 1:5){
       Trt.mean[j]<-mean+trt.eff[j]
       }
#initial values
       sdev~dunif(0.01,1000)
       sdev.a~dunif(0.01,1000)
       var<-pow(sdev,2)
       var.a<-pow(sdev.a,2)
       tau<-pow(sdev,-2)
       tau.a<-pow(sdev.a,-2)
#difference calculations
       trt1<-Trt.mean[1]#sco salmon-fed ctl
       trt2<-Trt.mean[2]#sco tuna/hg fed
       trt3<-Trt.mean[3]#sco salmon-fed pcb40
       trt4<-Trt.mean[4]#nbh salmon-fed ctl
       trt5<-Trt.mean[5]#nbh salmon-fed pcb40
       diftrt2 1<-trt1
       pvaltrt2 1<-step(diftrt2 1)
       diftrt3 1<-trt3-trt1
       pvaltrt3 1<-step(diftrt3 1)
       diftrt3 2<-trt3-trt2
       pvaltrt3 2<-step(diftrt3 2)
       diftrt4 1<-trt4-trt1
```

```
pvaltrt4 1<-step(diftrt4 1)
        diftrt5 4<-trt5-trt4
        pvaltrt5 4<-step(diftrt5 4)
        diftrt3 5<-trt3-trt5
        pvaltrt3 5<-step(diftrt3 5)
#ratio calculations
        ratiotrt2 1<-trt2/trt1
        ratiotrt3 1<-trt3/trt1
        ratiotrt3 2<-trt3/trt2
        ratiotrt4 1<-trt4/trt1
        ratiotrt5 4<-trt5/trt4
        ratiotrt3 5<-trt3/trt5
#posterior model checking, generate new obs based on model params mu, tau. assume normal dist
  for( i in 1 : N ) {
   ypred[i] ~ dnorm(mu[i],tau)
  }
#generate individual level predictions
   ypred 1 \sim dnorm(trt1,tau)#approximation of the individual observation
   ypred 2 ~ dnorm(trt2,tau)#randomly selected individual
   ypred 3 \sim \text{dnorm}(\text{trt3,tau})
   vpred 4 \sim dnorm(trt4,tau)
   ypred 5 \sim \text{dnorm}(\text{trt5},\text{tau})
#compute residuals using the kurtosis formula for both orig data (e) and rep data
  for( i in 1 : N ) {
   e[i]<-y[i]-mu[i]
  }
 SSE<-inprod(e[],e[])#sum of squares which is e squared
 ku<-sum(e[]) #sum up all values, there is one for each data point
 kpred<-sum(ypred[])
difs<-kpred-ku #find difference
difpval<-step(difs) #count how many times the rep data is larger than orig data
}
```

Table S9. Student's t distribution OpenBUGS model containing treatment and time of assay main effects and a random batch effect used to analyze locomotion behavior endpoints.

```
#inits<-function(){</pre>
# list(batch.eff=runif(N2,-
1000,1000, df=runif(1,3,30), df.a=runif(1,3,30), tau=runif(1,0,10), tau.a=runif(1,0,10))
#inits()
model;
{
       for(i in 1:N){
       y[i]~dt(mu[i],tau,df)
       mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta mfn+batch.eff[batchid[i]]
        }
       mean \sim dnorm(0, 1.0E-6)
#make covariate effect priors
       #time
       betta mfn~dnorm(0,0.0001)
#make fixed main effect priors
       trt.eff[1]<-0
       for (i in 2:5)
       trt.eff[i]~dnorm(0,1.0E-6)
#make random effect of batch priors
       for (i in 1:N2)
       batch.eff[i]~dt(0,tau.a,df.a)
        }
#predict estimates
#cell means models
       for(j in 1:5){
       Trt.mean[j]<-mean+trt.eff[j]
        }
#initial values
       df \sim dunif(3,30)
       df.a \sim dunif(3.30)
       var<-1/tau
       var.a<-1/tau.a
       tau~dgamma(0.0001,0.0001)
       tau.a \sim dgamma(0.01, 0.01)
#difference calculations
       trt1<-Trt.mean[1]#sco salmon-fed ctl
       trt2<-Trt.mean[2]#sco tuna/hg fed
       trt3<-Trt.mean[3]#sco salmon-fed pcb40
       trt4<-Trt.mean[4]#nbh salmon-fed ctl
       trt5<-Trt.mean[5]#nbh salmon-fed pcb40
       diftrt2 1<-trt1-trt1
       pvaltrt2 1<-step(diftrt2 1)
       diftrt3 1<-trt3-trt1
       pvaltrt3_1<-step(diftrt3_1)</pre>
       diftrt3 2<-trt3-trt2
```

```
pvaltrt3 2<-step(diftrt3 2)
       diftrt4 1<-trt1-trt1
       pvaltrt4 1<-step(diftrt4 1)
       diftrt5_4<-trt5-trt4
       pvaltrt5 4<-step(diftrt5 4)
       diftrt3 5<-trt3-trt5
       pvaltrt3 5<-step(diftrt3 5)
#ratio calculations
       ratiotrt2 1<-trt2/trt1
       ratiotrt3 1<-trt3/trt1
       ratiotrt3 2<-trt3/trt2
       ratiotrt4 1<-trt4/trt1
       ratiotrt5 4<-trt5/trt4
       ratiotrt3 5<-trt3/trt5
#posterior model checking, generate new obs based on model params mu, tau. assume normal dist
  for( i in 1 : N ) {
  ypred[i] ~ dt(mu[i],tau,df)
  }
#generate individual level predictions
   ypred 1 \sim dt(trt1,tau,df)#approximation of the individual observation, using average for other factors in the
model.
   ypred 2 \sim dt(trt2,tau,df)#randomly selected individual
   ypred 3 \sim dt(trt3,tau,df)
   vpred 4 \sim dt(trt4,tau,df)
   ypred 5 \sim dt(trt5,tau,df)
#compute residuals using the kurtosis formula for both orig data (e) and rep data
  for( i in 1 : N ) {
   e[i]<-y[i]-mu[i]
  }
 SSE<-inprod(e[],e[])#sum of squares which is e squared
 ku<-sum(e[]) #sum up all values, there is one for each data point
 kpred<-sum(ypred[])</pre>
difs<-kpred-ku #find difference
difpval<-step(difs) #count how many times the rep data is larger than orig data
```

}

Table S10. Normal distribution OpenBUGS model containing treatment, time of assay and days post hatch (dpf) effects used to analyze feeding behavior endpoints.

```
#inits<-function(){</pre>
# list(tau=runif(1,0,10))
#}
model;
{
       for(i in 1:N){
       v[i]~dnorm(mu[i],tau)
       mu[i]<-mean+trt.eff[trt[i]]+time[i]*betta mfn+dpf[i]*betta dpf
        }
       mean \sim dnorm(0, 1.0E-6)
#make covariate effect priors
       #time
       betta mfn \sim dnorm(0, 0.0001)
       #dpf
       #independent gaussian priors for the linear covariate
       betta dpf \sim dnorm(0, 0.0001)
#make fixed main effect priors
       trt.eff[1]<-0
       for (i in 2:5){
       trt.eff[i]~dnorm(0,1.0E-6)
        }
#back transform the outputs
#cell means models
       for(j in 1:5){
       Trt.mean[j]<-mean+trt.eff[j]
        }
#initial values
       tau~dgamma(0.0001,0.0001)
       var<-1/tau
       trt1<-Trt.mean[1]#sco salmon-fed ctl
       trt2<-Trt.mean[2]#sco tuna/hg fed
       trt3<-Trt.mean[3]#sco salmon-fed pcb40
       trt4<-Trt.mean[4]#nbh salmon-fed ctl
       trt5<-Trt.mean[5]#nbh salmon-fed pcb40
       diftrt2 1<-trt1
       pvaltrt2 1<-step(diftrt2 1)
       diftrt3 1<-trt3-trt1
       pvaltrt3 1<-step(diftrt3 1)
       diftrt3 2<-trt3-trt2
       pvaltrt3 2<-step(diftrt3 2)
       diftrt4 1<-trt1
       pvaltrt4 1<-step(diftrt4 1)
       diftrt5 4<-trt5-trt4
       pvaltrt\overline{5} 4<-step(diftrt5 4)
       #diftrt6 4<-trt6-trt4
       #pvaltrt6 4<-step(diftrt6 4)</pre>
```

```
#diftrt6 5<-trt6-trt5
        #pvaltrt6 5<-step(diftrt6 5)</pre>
        diftrt3 5<-trt3-trt5
        pvaltrt3 5<-step(diftrt3 5)
#ratio calculations
        ratiotrt2 1<-trt2/trt1
        ratiotrt3 1<-trt3/trt1
        ratiotrt3 2<-trt3/trt2
        ratiotrt4 1<-trt4/trt1
        ratiotrt5 4<-trt5/trt4
        #ratiotrt6 4<-trt6/trt4</pre>
        #ratiotrt6 5<-trt6/trt5</pre>
        ratiotrt3 5<-trt3/trt5
#posterior model checking, generate new obs based on model params mu, tau. assume normal dist
  for( i in 1 : N ) {
   ypred[i] ~ dnorm(mu[i],tau)
  }
#generate individual level predictions
   ypred 1 ~ dnorm(trt1,tau)#approximation of the individual observation, using average for other factors in
the model.
   vpred 2 \sim \text{dnorm}(\text{trt2,tau}) \# \text{randomly selected individual}
   ypred 3 \sim \text{dnorm}(\text{trt3},\text{tau})
   ypred 4 \sim \text{dnorm}(\text{trt4}, \text{tau})
   vpred 5 \sim \text{dnorm}(\text{trt5},\text{tau})
   \#vpred 6 ~ dnorm(trt6,tau)
#compute residuals using the kurtosis formula for both orig data (e) and rep data
  for( i in 1 : N ) {
   e[i]<-y[i]-mu[i]
  }
 SSE<-inprod(e[],e[])#sum of squares which is e squared
 ku<-sum(e[]) #sum up all values, there is one for each data point
 kpred<-sum(ypred[])</pre>
difs<-kpred-ku #find difference
difpval<-step(difs) #count how many times the rep data is larger than orig data
}
```

Table S11. Binomial distribution OpenBUGS model containing treatment, time of assay and days post hatch (dpf) effects used to analyze feeding endpoints.

```
#inits<-function(){</pre>
# list(betta mfn=runif(1,0,5),Trt.mean=runif(5,0,5),tau=runif#(1,0,10),betta dpf=runif(1,0,5))
#}
#inits()
model
{
       for( i in 1 : N ) {
       y[i] \sim dbin(p[i], bs[i])
       e[i]~dnorm(0.tau)
       logit(p[i]) <-time[i]*betta mfn+dpf[i]*betta dpf+Trt.mean[trt[i]]+e[i]
       }
#set priors
       tau \sim dgamma(0.01, 0.01)
       var<-1/tau
#make covariate effect priors
       #time
       betta mfn \sim dnorm(0, 0.0001)
       #dpf
       #independent gaussian priors for the linear covariate
       betta dpf~dnorm(0,0.0001)
#make fixed main effect priors
       for (i in 1:5){
       Trt.mean[i]~dnorm(0,1.0E-6)
       }
#back transform the outputs
#cell means models
       for(j in 1:5){
       trt.eff[j]<-Trt.mean[j]-Trt.mean[1]
       }
#other values
       trt1 < -1/(1 + exp(-Trt.mean[1]))#sco salmon-fed ctl, back transformed trt mean, in the scale of the
binomial prob. the probability of being attacked by the average population. do not back transformed
       trt2<-1/(1+exp(-Trt.mean[2]))#sco tuna/hg fed
       trt3<-1/(1+exp(-Trt.mean[3]))#sco salmon-fed pcb40
       trt4<-1/(1+exp(-Trt.mean[4]))#nbh salmon-fed ctl
       trt5 < -1/(1 + exp(-Trt.mean[5]))#nbh salmon-fed pcb40
       diftrt2 1<-Trt.mean[2]-Trt.mean[1]#compare on linear scale logit
       pvaltrt2 1<-step(diftrt2 1)
       diftrt3 1<-Trt.mean[3]-Trt.mean[1]
       pvaltrt3 1<-step(diftrt3 1)
       diftrt3 2<-Trt.mean[3]-Trt.mean[2]
       pvaltrt3 2<-step(diftrt3 2)
       diftrt4 1<-Trt.mean[4]-Trt.mean[1]
       pvaltrt4 1<-step(diftrt4 1)
       diftrt5 4<-Trt.mean[5]-Trt.mean[4]
       pvaltrt5 4<-step(diftrt5 4)
```

```
diftrt3 5<-Trt.mean[3]-Trt.mean[5]
       pvaltrt3 5<-step(diftrt3 5)
#ratio calculations
       ratiotrt2 1<-trt2/trt1 #use the back transformed scale
       ratiotrt3 1<-trt3/trt1
       ratiotrt3 2<-trt3/trt2
       ratiotrt4 1<-trt4/trt1
       ratiotrt5 4<-trt5/trt4
       ratiotrt3 5<-trt3/trt5
#posterior model checking, generate new obs based on model params
       for( i in 1 : N ) {
               ypred[i] ~ dbin(p[i],bs[i])
        }
#generate individual level predictions
       #need to estimate error for each group
       for(j in 1:5){
       ee[j]~dnorm(0,tau)
       }
       ypred 1 < 1/(1+\exp(-(Trt.mean[1]+ee[1]))) #probability of bs capture by a random individual in trt1
       ypred 2 <- 1/(1 + \exp(-(Trt.mean[2] + ee[2])))
       ypred 3 < 1/(1 + \exp(-(Trt.mean[3] + ee[3])))
       ypred 4 <- 1/(1 + \exp(-(\text{Trt.mean}[4] + e[4])))
       ypred 5 < 1/(1 + \exp(-(Trt.mean[5] + ee[5])))
```

}

Variable	Value	Units	Explanation	Reference					
Initialize larva									
Number of fish	2500	#	Number of larva	Smith et al. 2002					
Mean Length	5.96	mm	Mean length	Marteinsdottir and Able 1992					
Mean Stdev of Length	0.4	mm	Standard deviation of length	Marteinsdottir and Able 1992					
Length max	8	mm	Maximum length	Estimated					
Length min	5	mm	Minimum length	Estimated					
Length at which fish exists model	24	mm	Size at exit	Abraham 1985					
Time & physical									
Initial day of model	100	day	Julian date						
Number of days model ran	100	day							
Volume	1000	m ³	Volume of the aquatic habitat modeled						
			Yolk-sac growth						
Yolk-sac growth	0.40	mm/d	Growth of yolk-sac larvae	Marteinsdottir and Able 1992					
Length exogenous feeding begins	4	days	Days until start of feeding	Estimated					
W L a parameter	0.0000015	g dry	Length-weight function intercept	Kneib and Parker 1991					
W-L b parameter	3.25	NA	Length-weight function slope	Kneib and Parker 1991					
	Bi	ioenergetics	(from Deslauriers et al. 2017 unless otherwise noted)						
Ca	0.2	g/g/d	Intercept of the mass dependence function for consumption						
Cb	-0.25	NA	Slope of the mass dependence function for consumption						
CQ	2.22	°C	Temperature-dependent coefficient of consumption (approximates Q10)						
СТО	27	°C	Optimal temperature for consumption						
СТМ	34	°C	Maximum consumption temperature						
Ra	0.02	$gO_2/g/d$	Intercept of the mass dependence function for respiration						
Rb	-0.17	NA	Slope of the mass dependence function for respiration						
RQ	2	°C	Temperature-dependent coefficient of respiration (approximates Q10)						
RTO	29	°C	Optimal temperature for respiration						

Table S12. A list of all parameters included in the individual-based model, units, equation reference and references (mm = millimeter, m = meter, d = day, g = gram, \circ C = Celsius, J = joule, # = count, s = sec, hr = hour, μ g = microgram, O₂ = oxygen, W = weight, L = length, ml = milliliter).

RTM	36	°C	Maximum respiration temperature	
Act	1.25	NA	Activity multiplier on respiration	
SDA	0.1	NA	Specific dynamic action coefficient	
FA	0.1	NA	Egestion coefficient	
UA	0.06	NA	Excretion coefficient	
ED	3000	J/g wet	Energy density of larvae	
Percent dry	0.2	%	Dry to wet conversion	Estimated
Starvation	75	%	Probability of starvation	Letcher et al. 1996
			Prey	
Small prey density	0.0175	#/ml	Copepods	Fleeger et al. 2008
Large prey density	0.008	#/ml	Amphipods	Estimated but based on
				ostracods in Fleeger et al.
				2008
Small prey length	0.485	ml	Copepods	Fulford et al. 2006
Large prey length	0.6	ml	Amphipods	Fulford et al. 2006
Small prey mass	1.215	μg dry	Copepods	Fulford et al. 2006
Large prey mass	3.8	μg dry	Amphipods	Fulford et al. 2006
Large prey energy density	2301.2	J/g wet	Copepods	Hartman and Brandt 1995
Small prey energy density	4125.424	J/g wet	Amphipods	Hartman and Brandt 1995
			Foraging	
SSa	0.776	mm/s	Intercept of the fish length to swimming speed function	Letcher et al. 1996
SSb	1.07	NA	Slope of the fish length to swimming speed function	Letcher et al. 1996
Handling Time a	0.264	S	Intercept of the handling time function relative to prey to	Walton et al. 1992
			predator length ratio	
Handling Time b	7.0151	NA	Slope of the handling time function relative to prey to	Walton et al. 1992
			predator length ratio	
Light	12	hr	Active time during the day	Letcher et al. 1996
			Killifish Predators (Adults)	
Number of predators	200	#	Number of predators	Calibrated
Mean predator length	45	mm	Mean predator length	Assigned (Age 1 size)
Stdev predator length	2.5	mm	Standard deviation of length	Estimated
Min predator length	25.5	mm	Minimum length	Estimated
Max predator length	96	mm	Maximum length	Valiela et al. 1977
Predator CTM	34	°C	Maximum temperature for consumption	Madon et al. 2001
Predator CTO	27	°C	Optimum temperature for consumption	Madon et al. 2001

Predator CQ	2.22	°C	Temperature-dependent coefficient of consumption (approximates Q10)	Madon et al. 2001
Predator swimming speed	3	Body Lengths	Multiplier on body lengths for distance swum in a second	Cowan et al. 1996
Predator reactive distance	0.8	mm	Reactive distance multiplier Calibration	Cowan et al. 1996
Growth	0.31	mm/d	Change in fish length from 0-16 days post hatch	Nacci unpublished data

Table S13. A list of all behavior parameter distributions and resulting multipliers used to assess treatment impacts in the individual based model. Posterior distributions are from the individual level predicted responses and multipliers were generated from back transformed values. N indicates this behavior was significantly lower than the control, P indicates this behavior was significantly higher than the control.

Killifish			Individual Level Distribution				Multipliers				
Group	Chemical	Variable	Mean	SD	Minimum	Maximur	n	Mean	SD	Minimum	Maximum
SCO	Control	Prey Handling Time	27.89	8.186	11.88	43.67		1.000	0.287	0.547	1.986
SCO	Control	Prey Miss Proportion	-2.674	1.308	-5.255	-0.1185		1.000	0.110	0.589	1.105
SCO	Control	Reaction Distance (mm) Swimming Bout Speed	167.3	19.05	129.4	204.9		1.000	0.232	0.464	1.510
SCO	Control	(mm/s) Total Time Swimming	137.1	27.9	82.41	191.7		1.000	0.221	0.644	1.698
SCO	Control	(sec)	58.94	16.72	26.14	91.75		0.547	0.168	0.194	0.943
SCO	MeHg	Prev Handling Time	28.51	8.2	12.4	44.64		0.972	0.281	0.530	1.924
SCO	MeHg	Prey Miss Proportion	-3.305	1.328	-5.952	-0.7121		1.047	0.070	0.746	1.108
SCO	MeHg	Reaction Distance (mm) Swimming Bout Speed	177.7	19.1	139.9	215.3	р	1.151	0.226	0.619	1.643
SCO	MeHg	(mm/s) Total Time Swimming	144.4	27.91	89.75	199.1		0.936	0.194	0.614	1.547
SCO	MeHg	(sec)	53.25	16.69	20.48	85.98		0.481	0.163	0.142	0.869
SCO	PCB126	Prev Handling Time	17.94	8.278	1.574	34.12	p	1.662	0.827	0.756	7.003
SCO	PCB126	Prev Miss Proportion	-1.346	1.327	-3.963	1.251	p	0.826	0.211	0.247	1.090
SCO	PCB126	Reaction Distance (mm) Swimming Bout Speed	172.3	19.32	134.6	209.9	1	1.078	0.230	0.540	1.575
SCO	PCB126	(mm/s) Total Time Swimming	142.8	28.13	87.5	197.8		0.951	0.203	0.619	1.591
SCO	PCB126	(sec)	48	16.85	14.91	81.09	n	0.425	0.161	0.094	0.808
NBH	Control	Prev Handling Time	27.89	8.162	11.74	43.84		1.000	0.287	0.545	2.004
NBH	Control	Prev Miss Proportion	-3.003	1.308	-5.589	-0.4375		1.000	0.083	0.657	1.076
NBH	Control	Reaction Distance (mm)	179.9	18.97	142.5	216.9		1.000	0.190	0.557	1.414
	~ .	Swimming Bout Speed				10.5					
NBH	Control	(mm/s) Total Time Swimming	141.5	27.87	86.93	196		1.000	0.212	0.654	1.670
NBH	Control	(sec)	51.82	16.7	19.06	84.56		0.466	0.163	0.130	0.851
NBH	PCB126	Prev Handling Time	23.22	8.243	6.883	39.16	p	1.238	0.424	0.637	2.917
NBH	PCB126	Prey Miss Proportion	-2.261	1.323	-4.893	0.314	Ľ	0.933	0.135	0.457	1.072

NBH	PCB126	Reaction Distance (mm)	172	19.27	133.6	210	0.907	0.198	0.446	1.339
		Swimming Bout Speed								
NBH	PCB126	(mm/s)	134.3	28.12	79.02	189.3	1.073	0.243	0.682	1.856
		Total Time Swimming								
NBH	PCB126	(sec)	49.88	16.81	16.94	82.89	0.443	0.161	0.111	0.830

Table S14. Posterior distributions for all model parameters and each behavioral endpoint.

Submitted this table as a text tab separated file.

Table S15. Significant results of the treatment effects on Atlantic killifish larvae behavior after exposure to sublethal levels of MeHg and PCB126. Presented for each behavior endpoint and treatment is the mean (original or back-transformed), transformed mean, P-value in parentheses, and pattern of significant trends. Trends are based on original mean trends. P-values and trends are reported in the following order: SCO-Ctrl vs SCO-Hg, SCO-Ctrl vs SCO-PCB, SCO-Ctrl vs NBH-Ctrl, SCO-PCB vs NBH-PCB, NBH-Ctrl vs NBH-PCB (Neg = significant negative trend, Pos = significant positive trend, \Box = no significant trend, HMM = Hidden Markov Chain model endpoint).

					NBH-	Significant
Parameter	SCO-Ctrl	SCO-Hg	SCO-PCB	NBH-Ctrl	PCB	Trends
VMR						
Assay						
Period 2, Light to Dark						
Startle Magnitude (mm)	53.1345	59.8116	52.3395	68.6335	63.3233	
	487.5	477.4	488.8	465.9	472.6	
	(0.3196)	(0.9036)	(0.0360)	(0.1214)	(0.5232)	\square \square Pos \square \square
Period 4, Light to Dark	52.2579	53.0612	50.9493	57.2169	66.7569	
Startle Magnitude (mm)	573.2	572	575.2	566.1	554.2	
	(0.8874)	(0.8288)	(0.4220)	(0.0232)	(0.1919)	🗆 🗆 🗆 Neg 🗆
Period 1, Light	× ,		`	~ /	`	C
Swimming Bouts (per sec)	1.4819	1.5468	1.2431	1.5020	1.4358	
	836.7	948.8	511.2	870.3	763.7	
	(0.1182)	(0.0)	(0.6360)	(0.0009)	(0.1418)	🗆 Neg 🗆 Neg 🗆
Swimming Bout Duration	· · · · ·			× ,		6 6
(sec)	0.3002	0.2629	0.2542	0.2749	0.2619	
	248.7	290.2	301.1	276.1	291.5	
	(0.1124)	(0.0464)	(0.2898)	(0.7192)	(0.5566)	\Box Neg \Box \Box
Swimming Bout Speed	× ,		`	~ /	`	0
(mm/s)	6.5159	6.3247	5.7085	6.2343	6.3508	
	2203	2246	2399	2267	2240	
	(0.5312)	(0.0058)	(0.3576)	(0.0268)	(0.7044)	🗆 Neg 🗆 Neg 🗆
Total Distance Traveled					. ,	
(mm)	1793.29	1570.01	1123.74	1678.03	1468.77	
	1206	1202	1192	1204	1200	

		(0.2974)	(0.0002)	(0.5050)	(0.0264)	(0.3612)	\Box Neg \Box Neg \Box
	Total Time Swimming						
	(sec)	274.1170	248.8296	193.3380	260.8265	234.9453	
		385.2	361.8	307.3	373	348.6	
		(0.2366)	(0.0002)	(0.5358)	(0.0443)	(0.2256)	🗆 Neg 🗆 Neg 🗆
	Overall Step Length (mm)	0.0994	0.0890	0.0649	0.0935	0.0835	0 0
		420.3	458.4	562.6	441.5	480.1	
		(0.3298)	(0.0006)	(0.5848)	(0.0410)	(0.3312)	🗆 Neg 🗆 Neg 🗆
	Overall Step Length		()	()	()	()	8 8
	Variation	0.2049	0.1952	0.1677	0.2062	0.1937	
		442.8	458.8	507.8	440.8	461.3	
		(0.4754)	(0.0048)	(0.9284)	(0.0464)	(0.3688)	🗆 Neg 🗆 Neg 🗆
	Overall Turning Angle		()			()	8 8
	Variation	1.3142	1.2338	1.5346	1.2971	1.2882	
		751.8	760.9	728.9	753.7	754.7	
		(0.3578)	(0.0220)	(0.8462)	(0.0112)	(0.9192)	\Box Pos \Box Pos \Box
Pe	riod 2, Dark	()		()	()		
	Swimming Bouts (per sec)	2.2416	2.3658	1.9063	2.2950	2.2384	
	C u <i>i</i>	1242	1449	793.8	1328	1237	
		(0.0688)	(0.0001)	(0.4440)	(0.0002)	(0.430)	🗆 Neg 🗆 Neg 🗆
	Swimming Bout Duration	(******)	(******)	((*****_)	(
	(sec)	0.3432	0.3025	0.3778	0.3158	0.3061	
	()	235.6	273.9	208	260.6	270.2	
		(0.0712)	(0.1895)	(02334)	(0.0045)	(0.6512)	
	Overall Turning Angle	-0.0051	-0.0028	0.0023	-0.0009	0.0022	
		94 96	97.15	102.4	99 1	102.3	
		(0.5550)	(0.0470)	(0.2654)	(0.9728)	(0.3944)	$\square Pos \square \square \square$
Pe	riod 3 Light	(0.0000)	(0.0170)	(0.2001)	(0.9720)	(0.5) (1)	
10	Swimming Bouts (per sec)	2 9236	3 0012	2 4600	2 9255	2 8737	
		382.4	416.4	221.3	383.2	361 7	
		(0.3224)	(0,0)	(0.9792)	(0,0002)	(0.5366)	🗆 Νέσ 🗆 Νέσ 🗆
	Swimming Bout Duration	(0.5227)	(0.0)	(0.772)	(0.0002)	(0.5500)	
	(sec)	0 1563	0 1256	0 1268	0 1321	0 1375	
		295 3	370.1	366.8	352.8	338.8	
		(0.0168)	(0, 0, 2, 2, 8)	(0.0634)	(0.3758)	(0.6542)	Neg Neg 🗆 🗆 🗆
		(0.0100)	(0.0220)	(0.0007)	(0.5750)	(0.05 ± 2)	

	Total Distance Traveled						
	(mm)	1738.8938 9281	1357.4067 9304	1060.2124 9327	1463.5928 9297	1511.6317 9294	
		(0.0588)	(0.0004)	(0.1918)	(0.0092)	(0.8392)	\Box Neg \Box Neg \Box
	Total Time Swimming	075 (074	001 1000	101 4070	040 7010	047.0142	
	(sec)	2/5.69/4	231.1920	191.4978	240./212	247.0143	
		409	304.3	321.9	3/4.1	380.5	Neg Neg 🗆 Neg
		(0.0496)	(0,0002)	(0.1236)	(0.0126)	(0.780)	
	Overall Step Length (mm)	0.0948	0.0752	0.0620	0.0811	0.0844	
	1 0 ()	369.4	450.3	516.1	424.1	410.3	
		(0.0508)	(0.0006)	(0.1834)	(0.0130)	(0.7398)	🗆 Neg 🗆 Neg 🗆
	Overall Step Length						0 0
	Variation	0.1940	0.1722	0.1565	0.1813	0.1818	
		255.3	294.2	326.4	277.3	276.4	
		(0.0876)	(0.0024)	(0.3310)	(0.0328)	(0.9690)	\Box Neg \Box Neg \Box
	Overall Turning Angle						
	Variation	1.3954	1.4524	1.6561	1.4191	1.3179	
		1689	1713	1797	1699	1656	
-		(0.5788)	(0.0156)	(0.8142)	(0.0022)	(0.3350)	\square Pos \square Pos \square
Pe	riod 4, Dark						
	Swimming Bouts (per sec)	3.6596	3.8141	3.1062	3.7049	3.6593	
		471.4	537.1	284.3	490	471.3	
		(0.1446)	(0.0)	(0.6766)	(0.0001)	(0.6808)	\Box Neg \Box Neg \Box
	Swimming Bout Duration	0.0120	0 1000	0.0076	0 1042	0 1020	
	(sec)	0.2132	0.1882	0.2370	0.1945	0.1930	
		210	234.7	184.4	244.0	240.7	
	Total Distance Traveled	(0.0390)	(0.1202)	(0.1392)	(0.0055)	(0.920)	
	(mm)	5464 0032	4659 5653	5184 4966	5132 6770	5115 4270	
	(mm)	977 4	860 5	937 2	929 7	927.2	
		(0.0240)	(0.4388)	(0.3494)	(0.8470)	(0.9570)	Neg 🗆 🗆 🗆 🗆
	Overall Step Length (mm)	0.3034	0.2584	0.2867	0.2845	0.2837	
	r 8. ()	918.7	929.1	922.5	923	923.2	
		(0.020)	(0.3978)	(0.3298)	(0.8648)	(0.9572)	Neg 🗆 🗆 🗆 🗆
		× /	` /	· /	· /	· /	-

Overall Step Length						
Variation	0.3931 598.2	0.3562 623.6	0.3638 618.2	0.3932 598.1	0.3938 597.7	
Locomption Agan	(0.0444)	(0.1142)	(0.9948)	(0.1124)	(0.9770)	neg 🗆 🗆 🗆 🗆
Locomotion Assay	0.6614	0 (100	0.5510	0 (520	0 (017	
Swimming Bouts (per sec)	0.6614	0.6489	0.5510	0.6538	0.6217	
	706	685.8	541.8	693.6	643.3	
~ · · – – · / `	(0.5820)	(0.0004)	(0.7370)	(0.0460)	(0.2444)	\Box Neg \Box Neg \Box
Swimming Bout Duration (sec)	0.7389	0.6894	0.6973	0.6522	0.6834	
	16.11	17.72	17.45	19.07	17.93	
	(0.2120)	(0.4114)	(0.0218)	(0.7884)	(0.4554)	\square \square Neg \square \square
Swimming Bout Turning						
Angle	-0.0006	0.0019	-0.0130	0.0107	-0.0402	
	398.9	404.7	346.3	396.1	403	
	(0.8572)	(0.4998)	(0.4304)	(0.1922)	(0.0038)	\square \square \square \square Neg
Total Distance Traveled (mm)	998.40	1005.00	966.80	1028.00	899.10	
	465.2	444.8	433	444.3	441.5	
	(0.0739)	(0.0261)	(0.0699)	(0.5896)	(0.8328)	\Box Neg \Box \Box
Total Time Swimming (sec)	162.3100	142.7790	125.3102	138.0342	131.5586	-
	58.94	53.23	47.99	51.82	49.88	
	(0.0588)	(0.0045)	(0.0197)	(0.6506)	(0.5844)	🗆 Neg Neg 🗆 🗆
HMM Endpoints		× ,	× ,	()	× ,	6 6
Medium State						
Step Length (mm)	0.2631	0.2666	0.2673	0.2693	0.2619	
	90.54	83 41	81 92	78 15	93 11	
	(0.2846)	(0.1266)	(0.0701)	(0.0460)	(0.0282)	🗆 🗆 🖓 Pos Neg
Step Length Variation	0.0483	0.0514	0.0516	0.0536	0.0475	
	24 28	22.26	22.12	20.89	24 87	
	(0.2842)	(0.1797)	(0.0794)	(0.0863)	(0.0386)	
Turning Angle	0 2329	(0.1757)	(0.0794)	(0.0005)	0 2078	
Turning Turgic	0.2327	-0.5255	0.7827	-0.3140 5.14	2.078	
	(0.1170)	-5.233	-0.7827	-3.14	(0.0468)	
Turning Angle	(0.1170)	(0.3038)	(0.0417)	(0.3434)	(0.0408)	
Variation	1 0057	1.0184	1 3174	1 2770	1 5122	
v ai latioli	1.9037	62 25	57.01	1.2/17	54.05	
	47.77	03.33	57.91	30.30	54.95	

	(0.0084)	(0.0646)	(0.0992)	(0.490)	(0.4818)	Neg 🗆 🗆 🗆 🗆
State Transition	· · · · ·			× /	~ /	C
Probabilities						
Slow -> Slow	0.9094	0.9305	0.8851	0.9570	0.9122	
	126.5	130.4	122.5	136.2	127	
	(0.2398)	(0.1464)	(0.0056)	(0.0985)	(0.0079)	\square \square Pos \square Neg
Medium -> Slow	0.5339	0.6187	0.5556	0.7497	0.5763	c
	53.39	61.87	55.56	74.97	57.63	
	(0.1552)	(0.6680)	(0.0006)	(0.6762)	(0.0048)	\square \square Pos \square Neg
Slow -> Medium	0.0575	0.0481	0.0709	0.0277	0.0564	C
	24.21	22.11	26.95	16.71	23.97	
	(0.4856)	(0.2776)	(0.0144)	(0.2382)	(0.0174)	\square \square Neg \square Pos
Medium -> Medium	0.3892	0.5603	0.4469	0.6711	0.4445	U
	38.92	56.03	44.69	67.11	44.45	
						Pos \square Pos \square
	(0.0258)	(0.3768)	(0.0004)	(0.9704)	(0.0038)	Neg
Fast -> Slow	0.0051	0.0036	0.0071	0.0023	0.0056	-
	69.58	77.34	60.35	85.07	67.38	
	(0.3214)	(0.1630)	(0.0568)	(0.2860)	(0.0290)	\square \square \square \square Pos
Slow -> Fast	0.0226	0.0188	0.0296	0.0124	0.0223	
	15.1	13.75	17.29	11.14	14.98	
						\square \square Neg Pos
	(0.3210)	(0.0592)	(0.0061)	(0.0432)	(0.0072)	Pos
Medium -> Fast	0.1753	0.1164	0.1567	0.1142	0.1581	
	43.88	57.04	47.59	57.61	47.3	
	(0.0244)	(0.4452)	(0.0224)	(0.9528)	(0.0831)	Neg 🗆 Neg 🗆 🗆
Fast -> Fast	0.7732	0.7981	0.7748	0.7966	0.7738	
	137.8	155.4	138.9	154.3	138.2	
	(0.0380)	(0.8732)	(0.0654)	(0.9198)	(0.0718)	Pos \square \square \square \square
ling Assay						
Prey Capture Probability	0.9962	0.9999	0.9986	0.9999	0.9992	
	5.559	9.482	6.576	9.644	7.176	
	(0.0058)	(0.5228)	(0.0032)	(0.7296)	(0.1432)	Pos \square Pos \square \square
Prey Handling Time	0.8375	0.8171	1.2669	0.8368	1.0039	
	27.87	28.53	17.93	27.89	23.23	

						\square Pos \square Pos
	(0.6996)	(0.0)	(0.9940)	(0.0227)	(0.0155)	Pos
Capture Attempt Ratio	0.9400	1.0390	1.1956	1.0484	1.1340	
	48.24	45.67	42.1	45.44	43.44	
						Pos Pos Pos \square
	(0.0430)	(0.0001)	(0.0226)	(0.4230)	(0.1535)	
Prey Miss Proportion	0.0649	0.0355	0.2064	0.0474	0.0935	
	-2.667	-3.302	-1.347	-3.001	-2.272	
	(0.0865)	(0.0012)	(0.3366)	(0.0334)	(0.0606)	\Box Pos \Box Pos \Box
Reaction Distance (mm)	0.4093	0.4671	0.4372	0.4792	0.4350	
	167.3	177.7	172.3	179.9	171.9	
	(0.0096)	(0.2978)	(0.0012)	(0.9364)	(0.0732)	Pos \square Pos \square \square

Table S16. Significantly differentially expressed genes (alpha = 0.05) found in the brains of Atlantic killifish *Fundulus heteroclitus* in this study. Significant trends and FDR value are reported (Ctrl = Control treatment, Neg = significant negative trend, Pos = significant positive trend, SCO = Scorton Creek larvae, NBH = New Bedford Harbor larvae, Hg = methylmercury). Blanks indicate comparison was tested but did not result in a significant difference.

Submitted this table as a text tab separated file.

Table S17. Significantly altered gene pathways (alpha = 0.05) found in the brains of Atlantic killifish *Fundulus heteroclitus* in this study. Significant trends and q-value are reported (Ctrl = Control treatment, Neg = significant negative trend, Pos = significant positive trend, SCO = Scorton Creek larvae, NBH = New Bedford Harbor larvae, Hg = methylmercury). Blanks indicate comparison was tested but did not result in a significant difference.

Submitted this table as a text tab separated file.

Table S18. Significant MeHg treatment patterns shared by differentially expressed genes and behavior endpoints in Atlantic killifish *Fundulus heteroclitus* found in this study. Both the original and opposite behavior endpoint trends are listed (Neg = significant negative trend, Pos = significant positive trend, - = no significant trend, HMM = Hidden Markov Chain model endpoint).

Significant Treatment		
Pattern	Gene Expression	Behavior Endpoint
Pos	LOC105915521, LOC105916522,	HMM Fast -> Fast Transition
	LOC105917295, LOC105918273,	Probabilities, Lung Ratio,
	LOC105922825, LOC105924291,	HMM Medium -> Medium
	LOC105934237, LOC105936060,	Transition Probabilities, Prey
	LOC110366363, LOC110366373,	Capture Probability, Reaction
	LOC118559084, LOC118560703,	Distance (mm)
	LOC118560704, LOC118562969,	
	LOC118563898, si:ch211-186j3.6	
Neg	klhl6, LOC105915433, LOC105933875,	HMM Medium State Turning
	LOC118566104, scamp1, si:dkey-21c1.4	Angle Variation, HMM
		Medium -> Fast Transition
		Probabilities, Overall Step
		Length Period 4 (mm), Overall
		Step Length Variation Period 4,
		Swimming Bout Duration
		Period 3 (sec), Total Distance
		Traveled Period 4 (mm), Total
		Time Swimming Period 3 (sec)

Table S19. Significant PCB126 (PCB) treatment patterns shared by differentially expressed genes and behavior endpoints in Atlantic killifish *Fundulus heteroclitus* found in this study. Both the original and opposite behavior endpoint trends are listed (Ctrl = Control treatment, Neg = significant negative trend, Pos =

significant positive trend, NS = no significant trend, HMM = Hidden Markov Chain model endpoint, TP = Transition Probability).

Submitted this table as a text tab separated file.

Table S20. Significant PCB126 (PCB) treatment patterns shared by gene pathways and behavior endpoints in Scorton Creek (SCO) Atlantic killifish found in this study. Both the original and opposite behavior endpoint trends are listed (Ctrl = Control treatment, Neg = significant negative trend, Pos = significant positive trend, NS = no significant trend, HMM = Hidden Markov Chain model endpoint, TP = Transition Probability).

Submitted this table as a text tab separated file.

Table S21. Summary of PCB126 (PCB) significant treatment patterns found in Atlantic killifish behavior endpoints (Ctrl = control treatment, Tan = significant negative trend compared to control, Blue = significant positive trend compared to control, Black = no significant trend compared to control, HMM = Hidden Markov Chain model endpoint, TP = Transition Probability).

	Significant Treatment				
Reference Number	SCO- Ctrl vs SCO- PCB	SCO-Ctrl vs NBH- Ctrl	SCO-PCB vs NBH- PCB	NBH-Ctrl vs NBH- PCB	- Behavior Endpoint
1					Prey Handling Time
2					Prey Miss Proportion, Overall Turning Angle Variation Period 1, Overall Turning Angle Variation Period 3
3					Swimming Bouts (per sec), Swimming Bouts Period 1 (per sec), Swimming Bouts Period 2 (per sec), Swimming Bouts Period 3 (per sec), Swimming Bouts Period 4 (per sec), Swimming Bout Speed Period 1 (mm/s), Total Distance Traveled Period 1 (mm), Total Time Swimming Period 1 (sec), Overall Step Length Period 1 (mm), Overall Step Length Variation Period 1, Total Distance Traveled Period 3 (mm), Overall Step Length Period 3 (mm), Overall Step Length Variation Period 3
4					Overall Turning Angle Period 2
5					Total Distance Traveled (mm), Swimming Bout Duration Period 1 (sec), Swimming Bout Duration Period 3 (sec)
6					Capture Attempt Ratio
7					Total Time Swimming (sec)
8					Prey Capture Probability, Reaction Distance (mm), Startle Magnitude Period 2
9					Swimming Bout Duration (sec), HMM Medium -> Fast TP
10					HMM Slow -> Slow TP, HMM Medium -> Slow TP, HMM Medium -> Medium TP
11					HMM Medium State Turning Angle, HMM Slow -> Medium TP

Table S22. Summary of mercury (Hg) significant treatment patterns found in Atlantic killifish behavior endpoints (Ctrl = control treatment, Tan = significant negative trend compared to control, Blue = significant positive trend compared to control, Black = no significant trend compared to control, HMM = Hidden Markov Chain model endpoint, TP = Transition Probability).

SCO-Ctrl	
vs SCO-Hg	Behavior Endpoint
	Capture Attempt Ratio, Prey Capture Probability, Reaction Distance (mm), HMM Fast -> Fast TP, HMM Medium -> Medium TP
	HMM Medium State Turning Angle Variation, HMM Medium -> Fast TP, Swimming Bout Duration Period 3 (sec), Total Time Swimming Period 3 (sec), Overall Step Length Period 4 (mm), Overall Step Length Variation Period 4, Total Distance Traveled Period 4 (mm)

Table S23. Summary of mercury (Hg) and PCB126 significant treatment patterns found in Scorton Creek (SCO) and PCB126 (PCB) effects on New Bedford Harbor (NBH) Atlantic killifish behavior endpoints (Ctrl = control treatment, Tan = significant negative trend compared to control, Blue = significant positive trend compared to control, Black = no significant trend compared to control, HMM = Hidden Markov Chain model endpoint).

	Significant Treatment Pattern					
	SCO-	SCO-	SCO-	SCO-	NBH-	
	Ctrl vs	Ctrl vs	Ctrl vs	PCB vs	Ctrl vs	
Reference	SCO-	SCO-	NBH-	NBH-	NBH-	
Number	Hg	PCB	Ctrl	PCB	PCB	Behavior Endpoint
1						Total Time Swimming Period 3 (sec)
2						Capture Attempt Ratio
3						Swimming Bout Duration Period 3 (sec)

4

Table S24. Significant PCB126 (PCB) treatment patterns shared by gene expression and behavior endpoints in the endpoints in Scorton Creek (SCO) and New Bedford Harbor (NBH) Atlantic killifish found in this study. Genes with unknown names and functions are reported in Table S19. Both the original and opposite behavior endpoint trends are listed (Ctrl = control treatment, Tan = significant negative trend compared to control, Blue = significant positive trend compared to control, Blue = hidden Markov Chain model endpoint).

Significant Treatment Pattern					Behavior Endpoint	
SCO-Ctrl vs SCO- PCB	SCO-Ctrl vs NBH- Ctrl	SCO-PCB vs NBH- PCB	NBH-Ctrl vs NBH- PCB	Gene Expression	Original Treatment Pattern	Opposite Treatment Pattern
				Metabolic: cmc2, rab4a	HMM Medium State Step Length Variation, Swimming Bout Turning Angle	HMM Fast -> Slow TP
				Neural: avp, si:dkey-175g6.2, uba1, gad2, ext2, usp22, spata2 Nucleic: polr2a, kdm2ab, rapgef1b, dyrk1b Signaling: pi4kab, plc11, gareml, grin2ab, stx16, c2cd5, slc6a8, slc8a2b, kctd9a, prkab1a, si:ch211-168f7.5, slc30a1a Metabolic: arhgap1, mag, selenoi, epn3b, sucla2, plcxd3, elov16, atp1b2b, arhgap25 Development: aldh1a2 Circulatory: b4gat1, pam, numb Cellular: ache, fam163ba, sec62, slc25a14, clptm1, coro7, bcat2, rusc1 Protein Binding and Synthesis: oat, znf598 Miscellaneous: abl2, klhl26, b3galt1b	Swimming Bout Duration Period 3 (sec), Total Distance Traveled (mm)	Overall Turning Angle Period 2

Neural: grna, fam53b, psma6a, nusap1, scinla, pmm2, ckma Nucleic: nrm, anapc15, olig4, tead3b, msx1a, nsmce2, emx2, heyl, nt5c2l1, foxn4, rad51ap1, her12, pane1, cpsf3, pagr1, spi1b, ascl1b Signaling: myl1, adh5, si:dkey-148a17.6, fcer1g, mylz3, pvalb3, hvcn1, sparc Metabolic: naga, lcat, gch2, rgs18, rac2 Development: acta1b, tnnt3a, vegfd, dla Sensory: vps28, lhfpl4b, bco1 Stress: slc25a39, cpn1 Circulatory: hcls1, ckmb, mb Transport: scamp4, cahz Cellular: nmrk1, mlc1, egln3, mibp, hs2st1b, vsir, rdh8a, tmem45a, si:dkey-9i23.16 Imunity: ctss2.1, tnfaip8l2b Protein Binding and Synthesis: sumf1 Miscellaneous: si:dkey-225f5.4, si:ch211-236d3.4, fam89b

Neural: atcaya, ubap1, hectd1, rnf41, tulp4a, lrrc4.1, neurl1aa, desi1a, lnx1, sema3ab, zdhhc17, cntnap2a, usp24 Nucleic: fam98a, seta, senp3b, bhlhe41, rerea, rc3h1b, rprd2a, grid2ipa, evx2, khdc4, tent4a, kdm3b, arid2, fut9a, znf346, rfx1b, elk4, gkia, foxj3, srfb, zfr2, klf6a, larp4ab, pdik1l, ssbp4 Signaling: erbin, spred2a, crk, map3k9, ppp3ccb, nlk1, araf, gramd4a, ndrg3a, zmym2, bmp2k, slit1b, ppp2r5ca, iqsec2b, gpr63, pdpk1b, dusp8a, gnb1b Metabolic: tbc1d22b, gal3st3, arfgap1, casd1, atp8a2, cdk17, pitpnab, pdk3a, ralaa, ptdss1a, nudt3b **Development**: tmem65 Stress: rlim, kmt2e Circulatory: mybpc2b Transport: atp1a3a, ptpn23a, scamp1, slc6a17, ap2b1 Cellular: ano8b, zgc:114120, tmem86a, asphd2, si:dkeyp-27e10.3, shank1, enah, ubap2a, kiaa1549la, tm9sf3, syt14a, zdhhc20b, clip3, tspan7b, klc2, ubap2l, dmtn Digestive: mtor **Protein Binding and Synthesis:**

Overall Turning Angle Period 2 Swimming Bout Duration Period 3 (sec), Total Distance Traveled (mm)

Total Time Swimming Captur (sec) Ratio

Capture Attempt Ratio

Table S25. Individual based model results showing treatment means for individual larva survival and growth of Atlantic killifish *Fundulus heteroclitus* found in this study.

	IBM Output Mean		
	Survival	Growth	
Scenario	(%)	(mm/d)	
Spring			
SCO-Ctrl	1.512	0.29871	
SCO-MeHg	1.648	0.29782	
SCO-PCB	0.044	0.12975	
NBH-Ctrl	1.084	0.29197	
NBH-PCB	0.416	0.29251	
Summer			
SCO-Ctrl	1.068	0.30167	
SCO-MeHg	1.244	0.30697	
SCO-PCB	0.288	0.25546	
NBH-Ctrl	0.788	0.28597	
NBH-PCB	0.42	0.28322	