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1. Detailed VAE Model Description

This section provides details of the VAE model to inform reproducibility of the computa-

tional results. Source code and documentation for the model is available at http://www.

cs.albany.edu/~petko/lab/code.html.

1.1 VAE background and description of the training loss function

In this study, we employ a variational autoencoder (VAE) model tailored for AgN -DNA

design. Unlike class-based methods, this model directly maps DNA sequences onto multiple

AgN -DNA properties. The model automatically extracts features during training and serves

as a generative model for the multi-objective design of new AgN -DNA. Additionally, it

provides interpretability for gaining insights into the relationship between DNA sequence

and AgN -DNA properties.

The model is adapted from the generative model proposed by Moomtaheen et al.1 with

specific modifications. This model employs a bidirectional LSTM-based β-VAE, consisting

of separate encoder and decoder neural networks (Figure S1). The encoder is designed to

learn the posterior distribution of the latent space representation z of input DNA sequences

x qϕ(z|x). It takes input DNA sequences represented by one-hot encoding, x, and maps input

sequences to a lower-dimensional latent space z. One-hot encoding is a method of converting

categorical data into a binary vector representation, where each category is represented by

a vector with a single high (1) value and the rest as low (0) values. In this context, each

nucleobase in a DNA sequence is converted into a binary vector, making it suitable for input

into the neural network. The decoder, denoted by pθ(x|z), is trained to reconstruct the latent

representations z back into the original DNA sequences x, thereby learning the likelihood

distribution and mapping from latent space back to sequences.2–5

In our case, the model input is a training set (S,A) that consists of sequences, S, and

their corresponding properties represented as feature vectors, A. The input sequence rep-
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Fig. S1: The VAE model comprises an encoder and decoder. The encoder includes input,
Bi-LSTM, fully connected, and output layers for µz and σz. The decoder employs an inverse
architectural approach, wherein the LSTM layer is succeeded by a linear (Lin) fully connected
layer, and a reshape operation is applied to generate decoded sequences.

resentation is fed into a bi-directional LSTM layer1 that comprises the first block of the

encoder. Including a bi-LSTM layer with a hidden size of h is essential for capturing long-

term dependencies in the preceding and succeeding context of a given DNA nucleobase. The

LSTM output is then reshaped and passed into a fully-connected layer that employs the

rectilinear (ReLU) activation function. The final layer of the encoder consists of dense layers

representing the mean (µz) and variance (σz) of the latent encoding in z.

In the decoder, a dense layer is first used to reconstruct DNA sequences based on the

information in the latent space. Subsequently, the LSTM block converts the output into

DNA sequences encoded in a one-hot representation.

To ensure a decoupled and distinct latent space, as well as achieve a precise reconstruction

of the input DNA sequence, we utilize a loss function, which consists of three elements:
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reconstruction LREC , a Kullback-Leibler (KL)-divergence LKL, and regularization LREG:

LV AE = LREC(ϕ, θ) + βLKL(ϕ, θ) + γ
∑
a∈A

La (1)

The first component in the loss function, LREC , encourages the decoder to effectively

reconstruct the original samples x using the latent representations z. This component quan-

tifies the accuracy of reconstruction. The second component of the loss function employs

the the Kullback-Leibler (KL) to penalize departure of the approximated distribution q(z|xi)

and a prior distribution P (z), typically a standard multivariate normal distribution. This

component encourages independence of the dimensions in the learned latent representation

z, and its importance is controlled by hyperparameter β, where higher values enforce a closer

alignment with the prior distribution.

The final component of the loss function introduces property regularization, which is

governed by a hyperparameter γ. The goal is that specific latent dimensions in z “align” well

with AgN -DNA properties encoded in A for each input sequence. Specifically, we align the

first two dimensions of z to the measured wavelength (WAV) and local integrated intensity

(LII) of the highest spectral peak of nanocluster products. The VAE is trained to align the

ordering of input clusters for WAV with a latent dimension serving as a WAV proxy, and

similarly for LII in z, aligning it with a corresponding LII proxy dimension in the latent

space. The explicit form of the La term is as follows:

La = MAE(tanh(δDr)− sign(Da)), (2)

where MAE denotes Mean Absolute Error, tanh() denotes the hyperbolic tangent function

applied element-wise, δ is a scaling parameter, sign() represents the sign function applied

element-wise, and Dr and Da are matrices of batch-specific square difference in Rb×b.

We apply a penalty term to pairs of instances whose embeddings in regularized dimen-

sions deviate from the expected order of their properties. This definition assumes that
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attribute values are uniformly distributed within batches and throughout the entire dataset.

However, when the training dataset contains attribute values that are not uniformly dis-

tributed, the regularization process tends to assign more weight to intervals with higher

occurrence(probability) while disregarding rare values. We alleviate this shortcoming by

stratification of the training batches discussed below.

1.2 Grid search and hyperparameter tuning

Hyperparameters can be classified into two main categories: architectural and loss hyper-

parameters. The parameters Lw, Ld, |z|, h/2 and w are architectural, as they define the

configuration of the model’s layers. Parameters α, β, γ, δ are related to loss, controlling the

evaluation of the loss function and how the model is trained. Each hyperparameter has a

distinct impact on specific metrics. We conduct a wide grid search for all hyperparameters

to optimize our model. The model selection was based on achieving high accuracy and corre-

lation for the desired properties. Furthermore, we carefully considered ordering of the mean

wavelength for different clusters in the latent space (Figure S2). We defined 4 different color

ranges based on the magic number properties of AgN -DNAs,
6 as follows:

• Green: λp < 590 nm, LII > 0.5

• Red: 590 nm < λp < 660 nm, LII > 0.5

• Far Red 660 nm < λp < 680 nm, LII > 0.5

• NIR: λp > 800 nm, LII > 0.5

We similarly tracked the ordering of brightness (local integrated intensity, LII) proxy to

ensure the mean of V eryDark < Dark < Bright < V eryBright.

• Very Dark: 0.5 < LII < 1

• Dark: 1 < LII < 3
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• Bright 3 < LII < 10

• Very Bright: LII > 10

The values we tested for each parameter are listed in Table SS1. The best-performing

values are in bold. Batch size was set to 32 based on the prior detailed analysis by Moomta-

heen et al.1, who experimented with different batch sizes on the same problem and dataset.

Batch size is just one of the many hyperparameters of the VAE, and the values of other

hyperparameters were screened as shown in Table S1 to find the best model.

Table S1: Hyper-parameters tuned during the model training phase and their ranges of
possible settings. Highlighted values indicate the selected optimal hyperparameters.

Hyperparameter Values used for grid search
α 0.001, 0.003, 0.005, 0.007, 0.01, 0.02
β 0.002, 0.004, 0.007, 0.009
γ 1, 1.2, 1.5, 1.8, 2, 2.5, 2.7, 3
δ 1, 3, 5

Latent Dimensions (|z|) 15, 16, 17, 18, 19, 20
LSTM Layers (Lw) 1, 3
LSTM Dropout (Ld) 0, 0.02, 0.3
LSTM Info (h/2) 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 30
Encoder Width (w) 12, 16

1.3 Improving VAE Performance by Batch Stratification

To improve the performance of our VAE model, we implemented a stratified sampling

method to ensure that each training batch reflects the overall distribution of nanocluster

properties. The goal is to address the challenge of imbalanced λp values, particularly the

under-representation of NIR sequences in the training data.7 Intuitively, we “discretize” the

two-dimensional property space of LII and wavelength into intervals, depicted in Figure S3,

and ensure that the properties of each training batch is representative of the overall dataset.

First, we convert the continuous values of λp and LII into discrete bins by employing the

quantile-based variable discretization implemented in the Pandas python library (specifically
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Fig. S2: Training dynamics of the unstratified VAE model utilized for de novo AgN -DNA
synthesis across e=4500 epochs. a) Progression of training accuracy. b) Breakdown of loss
components (LREC , LKLD, LREG). c,d) WAV and LII correlation, with grey dashed curves
capturing correlations of other latent dimensions. e) Average proxy wavelength for Green,
Red, Far Red, and NIR ranges. f) LII proxy averages for groups: Very Dark, Dark, Bright,
and Very Bright (black to light grey).

‘pandas.qcut‘ 1). This method partitions the variable space into a pre-specified number of

bins, ensuring that each bin contains approximately an equal number of samples. We specify

10 bins for the two properties λp and LII. λp values range from 415 to 1200 nm are are divided

into 10 bins. Similarly LII values range from 0.5 to 408 and are divided into 10 bins. Values

are divided such that the overall 2-dimensional grid contains similar number of samples in

each box. Note that the quantile-based binning method ensures equal-sized (similar number

of items) bins for each attribute individually but not for their combinations. The resulting

1https://pandas.pydata.org/docs/reference/api/pandas.qcut.html
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Fig. S3: Heatmap showing the distribution of data points across the bins for batch creation.
The x-axis represents wavelength ranges and the y-axis represents LII ranges. Each cell value
indicates the count of data points falling within the respective bin, ensuring a diverse and
representative sampling across all ranges.

grid is shown as a heatmap in Figure S3, with bin boundaries denoted on the axes and

the number of training instances in each bin color-coded. For example, 8 sequences in the

dataset have 415 < λp < 544 and 21 < LII < 408. This bin has the lowest number of

samples, whereas 43 sequences have values 544 < λp < 566 and 0.8 < LII < 1.1, which is

the bin with the most samples.

400 600 800 1000 1200
p

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

p distribution

0 100 200 300 400
LII

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

LII distribution

Fig. S4: Left: distribution of λp. Right: distribution of LII.

To create batches that reflect the overall distribution of the dataset, we employed a

weighted random sampling technique using the ‘WeightedRandomSampler‘ function from
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the ‘torch.utils.data‘ module in PyTorch2.8,9 This technique calculates weights for each bin

based on the frequency of samples and utilizes an inverse frequency weighting approach

to sample balanced batches without replacement. We then train the same model as the

unstratified variant using stratification.

We tracked WAV proxy and LII proxy during training to assess if stratification improved

the VAE’s ability to distinguish Far Red and NIR sequences. The training progress is

visualized in Figure S5. Compared to the unstratified model (Figure S2), the stratified VAE

orders NIR sequences correctly in fewer epochs, with the average NIR proxy exceeding the

Far Red proxy in under 1,000 epochs. This stratified sampling method not only improved the

diversity of training batches but also enhanced the VAE’s ability to learn mappings across

the entire λp spectrum, leading to better model performance, particularly for the design of

NIR AgN -DNAs.

1.4 Sampling new sequences for desired AgN-DNA properties

The regularized VAE was introduced as a method to effectively model the joint distribu-

tion p(S,A) of DNA sequences and their AgN -DNA properties. The primary goal is to

generate DNA sequences that possess specific properties. To achieve this, we sample from

the latent space of the VAE, considering the property-regularized proxy dimensions falling

within predefined ranges. Instead of using a naive (rejection sampling) approach to obtain

samples within these ranges, we employed a more efficient method called truncated normal

sampling.10 We estimated a normal distribution in latent space to represent the expected

positions of training samples. Our main emphasis was on truncating samples from the tail

of the latent space, as this approach aligns with our objective of designing NIR AgN -DNAs

that exhibit both high λp and LII. Specifically, we determined the truncation bounds for

the regularized dimensions during the sampling process in the latent space based on the

corresponding distribution of NIRs present in the training data. For sequences with high λp

2https://pytorch.org/docs/stable/data.html
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Fig. S5: Stratified VAE model training over 4000 epochs, showing a) training accuracy, b)
loss components, c,d) WAV and LII correlations. e) Average proxy wavelengths for Green,
Red, Far Red, and NIR ranges, and d) LII proxy averages for Very Dark, Dark, Bright, and
Very Bright groups are also displayed.

and LII, we used the training means of the relevant proxies from the NIR training data as

truncation cut-offs and sampled from a region above the mean WAV and LII proxies of NIR

in latent space.

Similarly, for Green sequences with low wavelengths (λp < 590), we used the training

means of the proxies from the Green training data; hence the mean latent value acted as

an upper bound, and we subsequently truncated the samples from the region below the

mean WAV proxy. Finally, to generate new DNA samples, we employed the trained VAE

decoder that provides an approximation for one-hot encoding. The newly generated DNA

sequences were then re-encoded using the VAE encoder, resulting in the re-encoded latent
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representation which was ultimately used to select candidates for synthesis (details of the

re-encoding process are available in1). Figure S6 illustrates the impact of our sampling

technique and how newly sampled proxy values (blue histograms) compare with the proxies

of the overall dataset (grey histograms) and those of range specific training instances (red

histograms).
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Fig. S6: Distributions of proxy values for generated sequences and training data. (a, b) WAV
and LII proxies for the Green spectral region and (c, d) WAV and LII proxies for the NIR
spectral region, respectively. The blue histograms represent the distribution of the WAV/LII
proxy values of VAE-generated sequences, gray histograms show the WAV/LII distribution
of the entire training dataset, and red histograms represent the distribution of the proxy
values for range-specific training data instances only, i.e. the fraction of the training data
that falls within the target property range.
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2. Model Interpretation via Shapley analysis

2.1 Background on Shapley analysis

While a model that accurately predicts or generates sequences with specific properties is

valuable, understanding the inner workings of such models is crucial for broader scientific

acceptance. Deep learning models, like the VAE presented here, are often considered “black

boxes”, making it challenging to interpret how DNA sequences is mapped onto AgN -DNA

properties.11 To elucidate what the VAE model captures about this mapping, we adapted

SHapley Additive exPlanations (SHAP) analysis to interpret its model predictions.12

Shapley values, based on an approach from game theory that scores team success based on

individual sub-team contributions, measure the marginal contribution of each feature to the

predictions across all possible subsets of the data. This method can be used to understand the

influence of different nucleobase positions within a DNA sequence on the model’s predictions.

In this context, the “team” corresponds to the complete DNA sequence, the “team members”

correspond to nucleobases at specific positions, and “sub-teams” correspond to subsequences

(motifs) of nucleobases. Success is quantified by the VAE’s ability to order templates by WAV

proxy and LII proxy in latent space.

Formally, the Shapley value for a team member i given a value function v is defined as

follows:

ϕi(v) =
1

|N |
∑

S⊆N\{i}

(
|N | − 1

|S|

)
(v(S ∪ {i})− v(S)) , (3)

where N represents the set of team members, corresponding to the length of a sequence

(N = 10 in our case), S denotes a subset of N (S ⊆ N), v(S) represents the value or payout

associated with subset S, and S ⊆ N \{i} denotes all subsets that do not include member i.
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2.2 Specific value function employed in analysis

To instantiate the SHAP analysis for model, we employ a Gaussian value function to assess

motifs based on their proximity to the mean proxy of a specific color (or LII) group as follows:

ϕi(v) =
1

|N |
∑

S⊆N\{i}

(
|N | − 1

|S|

)(
v(S ∪ {i} | µ, σ2)− v(S | µ, σ2)

)
(4)

In this equation, µ and σ2 are the mean and variance of each group from the training data

respectively, where we considered both color and brightness groups based on the partitioning

of λp and LII defined in the previous section.We scored motifs based on their difference from

the cluster mean and selected the top 20 subsequences closest to the mean to identify key

nucleobase patterns learned by the VAE for mapping sequences to properties. Figure S7

displays the probability of each nucleobase at each position across different λp ranges. The

top 20 subsequences for a sample of Green(λp < 590 nm) and NIR (λp > 800 nm) DNA

templates are shown in Table S2.

3. Experimental details

Experimental AgN -DNA synthesis was performed using previously developed methods; ex-

tensive details of these methods can be found in prior work.13 Details are briefly summarized

as follows. AgN -DNA synthesis was performed on 384 well clear bottom microplates (Corn-

ing) using a Tecan Freedom Evo 150 robotic liquid handler equipped with a 96 MultiChannel

Arm. DNA oligomers (Integrated DNA Technologies, 40 µM in H2O, standard desalting)

were mixed via pipetting with an aqueous solution of AgNO3 and NH4OAc (Sigma Aldrich),

pH 7. After 18 minutes, AgN -DNA solutions are partially reduced by a freshly prepared solu-

tion of NaBH4 (Sigma Aldrich). Finally, the microplate is centrifuged at low speed for < 60

seconds to remove any small bubbles in wells. Final stoichiometries were selected to match
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Fig. S7: Top 20 sub-sequences identified from primary sequences, ranked by Shapley scores,
representing proximity to the mean λp range for (a) Green, (b) Red, (c) Far Red, and (d) NIR
sequences. The linegraphs show the top 20 sub-sequences from the Shapley value analysis
for (e) dim Green, (f) dim NIR, (g) bright Green, and (h) bright NIR sequences. ”Dim”
denotes sequences within the lowest 30% of LII values, while ”bright” indicates sequences
within the highest 30% of LII values

.
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Table S2: Top 20 sub-sequences derived from primary sequences, ranked by Gaussian Shap-
ley scores that reflect their proximity to the mean of their respective group. Presented in
ascending order, the sub-sequences at the top possess the highest scores, highlighting their
pivotal role in the model’s predictions.

λp < 590nm λp > 800nm

Index AAAATCCCTA AGAGTCCAAC GGGGACCTAA CGAGAACTCA

1 A−−−−C −−−− A−−−−−−−−− −G−−−−C −−− −G−−−−−−−−
2 −−−−−−−− T− −−A−−−−−−− −G−−−−C −−A −G−−−−−−−A
3 −A−−−−C −−− A−A−−−−−−− −G−−−−−−−A −G−−−−C −−−
4 A−−−−C −−−A A−−−−C −−−− GG−−−−C −−− −G−−−−−−C−
5 A−−−−CC −−A A−A−−−−−−C G−−−−− C −−A −−−−−−−−−A
6 −−A− T −−−−− A−−−−− C −−− −G−−− C −−−A −G−−−−C − C−
7 −A−−TC −−−− −−A−−C −−−− G−−−−−−−A −G−−−−C −−A
8 A−−−−CC −−− −−A−−− C −−− −G−−− CC −−A −G−−−−−−CA
9 −−A− T − C −−− A−A− T −−−−− G−−−−C −−−A −−−−−− C −−−
10 −A−−−−CCT− −−A− T −−−−− GG−−− CC −−− −G−G−−−−−A
11 −A−−− C −−−− A−A−−− C −−− GG−−−−−−− −G−−−−C − CA
12 A−−−−− C −−− A−−−−−−A−− G−−−−−−− −G−−A−−−−−
13 −−−−−C −−−− A−−− T −−−−− G−−−−− C −−− CG−−−−C −−−
14 −−−ATC −−−− −−AG−−−−−− GG−−− C −−−− −G−G−−−−C−
15 A−−− T −−−−− A−AG−−−−−− G−−−−CC −−A −G−G−−C − C−
16 −A−−−−−−−A A−−−−CC −−− −G−−− C −−−− −G−G−−C −−−
17 −−A−−− C −−− A−A−−C −−−− −−−−−− C −−− −G−G−−−−−−
18 A−A−−CC −−A A−A−−−−A− C −G−−−−−−AA −G−G−−−−CA
19 −−A−−− CCT− −−A−−−−A−− −−G−−− C −−A −GA−−−−−−A
20 AA−−− CC −−A AGA−−−−−−− −G−−− CC −−− −G−−A− C − C−

conditions used for training data collection in previous work.13–15 5 Ag+/DNA stoichiometry

was used for measurements in the visible spectrum, whereas 7 Ag+/DNA stoichiometry was

used for measurements in the NIR. The final concentration of DNA was 20 µM in both cases,

and NaBH4/AgNO3 was always maintained at 0.5. Well plates were stored in the dark at

4 °C and measured 7 days after synthesis. Full experimental details are provided in freely

available supporting information of past publications.13

Fluorescence emission spectra were collected using two microplate readers. A Tecan Spark

was used to acquire emission in the visible range (400-850 nm). NIR emission (675-1,425

nm) was measured in a Tecan Infinity 200 Pro with a custom-built InGaAs photodetector,16

using 50 nm bandpass filters and posteriorly correcting for detector spectral responsivity. In

both instruments, 280 nm light was used to universally excite all AgN -DNAs.
17 To extract

15



peak wavelength from visible emission spectra, the 400-800 nm range is fit to the sum of

three Gaussians in terms of energy (in eV). The LII is normalized to a well studied AgN -DNA

with green and red emission across all training data.18 Any spectra with more than 3 peaks

or with a normalized LII less than 0.5 were discarded. For NIR emission, peak wavelengths

were extracted using a weighted average of the of the maximum, and two neighboring points

to the right and left. The resulting training dataset comprises 2,204 DNA sequences, each

with 10 nucleobases, and includes the wavelength and brightness properties of the stabilized

AgN -DNAs.
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