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Supplementary Figure 1. Overview of microbiome behavior in time for female (A) and the donorB subject (B). 
The female subject trend is growing, however, it can be seen from the PCoA analysis that the first 50 days are different 
from the rest of the time series and that the trend starting from day 50 is stable. From donorB metadata we know that 
he was suffering from diarrhea on days around day 150. We see that this event decreases his alpha diversity which 
drops around day 150 and then increases to the baseline level. Also during the event, we can see changes in 
taxonomy as new taxa appear.

2

Whole community analysis

A

B



Shannon diversity index Faith’s phylogenetic index

Supplementary Figure 2. Shannon diversity index and Faith’s phylogenetic index behavior in time (each row represents one 
subject). Red lines represent the trend and trend coefficients calculated using regression analysis. Male alpha diversity remains 
relatively stable over time. In the female subject, the trend stabilizes from day 50 onward. Donor A's alpha diversity is stable over 
time despite perturbations. Donor B's alpha diversity drops significantly around day 150 and then gradually returns to baseline.



Supplementary Figure 3. Faith’s phylogenetic index behavior in time. A. Autocorrelation coefficients plots (the 
blue area indicates the significance level, representing confidence intervals for the autocorrelation coefficient). B. 
Spectrogram showing most dominant seasonalities of human gut microbiome. C. Reconstruction of alpha diversity 
using 5 dominant seasonalities plotted against raw alpha diversity change in time. D. Plot showing the relationship 
between number of used seasonalities to reconstruct alpha diversity and the seasonal reconstruction score.
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Supplementary Figure 4. Line plots of conditional variance estimated using GARCH model showing higher 
variance periods in each alpha diversity time series. Left: Shannon diversity index volatility; right: Faith’s PD index 
volatility.
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Subject p d q N modes Mode’s period [days]

male 3 0 10 3 20; 10; 5.7

female 2 0 7 6 11.4; 7.2; 4.4; 5; 3.6; 3.3

donorA 3 0 1 6 23.3; 14; 7; 5.8; 3.1; 3.5

donorB 4 0 7 6 10; 26.7; 6.1; 7.2; 4.4; 5.3
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Supplementary Figure 5. Dynamic Arimax model results. A. Parameters for an ARIMAX model, determined 
through k-fold cross-validation for each subject. The parameters include: p - the number of lag observations included 
in the model, or the order of the autoregressive (AR) part; d the degree of differencing required to make the time series 
stationary. q - the size of the moving average (MA) window, indicating the number of lagged forecast errors in the 
prediction equation. Additionally, the figure outlines the exogenous variable derived from FFT analysis, indicating; N 
Modes - the number of significant frequency modes identified; Mode's Period - the periods associated with each 
mode, ordered by their amplitude from highest to lowest, used to construct the seasonal exogenous variables of the 
ARIMAX model. B. The test set cross-validation results of the predictive model performance are presented, with the 
error measure calculated on a 20-day interval every 5 days. The first set of boxplots displays the mean average 
percentage error for each fold, while the second set demonstrates the Wasserstein distance. The analysis reveals that 
the model's performance is not consistently favorable across all folds. There are instances where the model does not 
perform well, indicating a lack of generalizability in its predictions. This lack of generalizability is attributed to external 
changes, such as events occurring in donorA and donorB. These findings suggest that the predictive model may be 
influenced by unpredictable factors or events specific to individual donors, making it challenging to achieve consistent 
and accurate predictions. Further investigation and refinement of the model may be necessary to enhance its 
generalizability and robustness to external variations.
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Supplementary Figure 6. White Noise Definition. A. and B. display the distribution of Ljung-Box test p-values 
against the flatness score for each taxon analyzed. These figures serve to illustrate the relationship between these two 
measures. Based on the observed distribution, we have chosen to introduce a new artificial measure termed "white 
noise behavior." This measure encompasses taxons that meet the following criteria: a Ljung-Box p-value less than 0.5 
and a flatness score above 0.4. However, we recommend conducting a thorough analysis of such a distribution on 
individual datasets to determine the optimal threshold for defining white noise behavior. C. and D. provide additional 
insight into the impact of features identified as noise on data variance. This figure demonstrates that these identified 
features have minimal or no effect on the overall variance of the data.

Supplementary Figure 7. Number of White noise bacteria in human gut microbiome. 
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Supplementary Figure 9. A. Number of stationary and nonstationary taxa in foursubjects; B. Taxa autocorrelation.

Supplementary Figure 8. Taxa prevalence between subjects. A significant proportion of bacteria were classified as 
rare or predominantly absent (they are present in less than 10% of time series), while a smaller fraction was 
consistently present in the gut microbiome. Another subset appeared intermittently, making them neither rare nor 
constantly present. Surprisingly, almost half of each individual's microbiome was classified as noise, likely resulting 
from technical factors and metabolic conditions.
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Supplementary Figure 10. Number of seasonalities present in human gut microbiome. A. The analysis of the 
required number of seasonalities needed to accurately reconstruct the raw bacterial fluctuation in time. Each data point 
represents a specific ASV. The x-axis represents the number of seasonalities required for reconstruction, while the 
y-axis depicts the reconstruction score. Each dot corresponds to the score for reconstructing each bacterial species. 
B. Mean relationship between the number of modes used for reconstructing raw bacteria counts and the 
corresponding reconstruction score. The x-axis represents the number of modes, whereas the y-axis denotes the 
mean seasonal reconstruction score. The results demonstrate that, in contrast to alpha diversity, different bacterial 
species exhibit diverse behaviors. Additionally, the analysis highlights that the number of Fourier modes needed to 
accurately reconstruct the raw signal varies significantly among bacterial species (Panel A). These findings shed light 
on the complexity and heterogeneity of the gut microbiome seasonal dynamics. 
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Supplementary Figure 11. Dominant seasonalities in human gut microbiome. A. Dominant bacterial seasonality 
and corresponding seasonal reconstruction score. The red line represents a score cutoff of 0.5. It is observed that 
several bacteria exhibit short seasonalities identified by FFT with low reconstruction scores, suggesting that they may 
be noise. Moreover, longer seasonalities tend to have higher reconstruction scores. B. The panel demonstrates that 
the seasonalities in the gut microbiome are generally similar across analysed subjects, indicating consistency in the 
observed patterns. Overall, the plot provides insights into the dominant seasonalities present in the human gut 
microbiome. The findings suggest the presence of meaningful seasonal patterns in certain bacteria, while cautioning 
against short seasonalities with low reconstruction scores. Additionally, the consistent patterns observed across 
subjects contribute to our understanding of the general characteristics of gut microbiome seasonal dynamics.
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Supplementary Figure 12. Number of seasonal bacteria in human gut microbiome. A. Number of ASVs classified 
as seasonal in each subject. The classification is based on the successful reconstruction of bacterial raw counts using 
5 Fourier seasonalities and a minimum seasonal reconstruction score of 0.5. This panel provides an overview of the 
prevalence of seasonal bacteria across subjects. B. Adjusted dominant seasonalities in bacteria for each subject. The 
adjusted seasonalities were identified based on a reconstruction correlation score of at least 0.5. This panel highlights 
the presence of more reliable and significant seasonal patterns in the bacterial population of each subject.
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Supplementary Figure 13. Different Characteristics of Seasonal Bacteria in the Human Gut Microbiome. 
A. Relationship between the Seasonal Reconstruction Score of 5 Fourier Modes and Bacteria Flatness Score: This 
figure depicts the association between the seasonal reconstruction score, derived from the analysis of six dominant 
Fourier modes, and the bacteria flatness score. The results reveal that seasonal bacteria exhibit a remarkably low 
flatness score, indicating a high degree of regularity in their seasonal patterns. This observation serves as a sanity 
check, validating the presence of distinct seasonal behavior in these bacteria. B. Seasonal Reconstruction Score of 5 
Fourier Modes for Bacteria Classified as White Noise: This panel showcases the seasonal reconstruction scores for 
individual bacteria, differentiating those classified as white noise from bacteria classified as ‘signal’. Notably, bacteria 
displaying stochastic behavior, characterized by white noise patterns, generally do not exhibit discernible seasonality. 
Despite considering their six dominant seasonalities, we are unable to accurately reconstruct the seasonal patterns of 
these bacteria. This finding underscores the absence of predictable seasonal behavior in bacteria with stochastic 
dynamics.

10

A



11

Supplementary Figure 14. Cumulative PCoA feature loading of each bacterial regime. Each point represents a 
ASV displaying different regime. We can see that the bacteria belonging to rare and noise regime has the lowest 
regime despite being the most numerous. On the other hand unstable and temporal regime has the highest loading. 
PCoA was calculated for each subject separately based on it’s Aitchison distance matrix between timepoints.

Subject All Rarefied Signal Noise Rare

male 1399 1253 (90%) 358 (26%) 426 (30%) 615 
(44%)

female 591 551 (93%) 187 (32%) 189 (32%) 215 
(37%)

donorA 2862 1524 (53%) 210 (7%) 643 (23%) 2009 
(70%)

donorB 1524 1005 (66%) 280 (18%) 318 (21%) 926 
(61%)

Supplementary Table 1. Number of bacteria in each subject. All percentages are computed with respect to “All” 
(second column)l. Signal bacteria (stable / unstable and prevalent / temporal - see Supplementary Figure 14) 
comprises ~30% of male and female microbiomes and 7 / 18% of donorA / donorB microbiomes respectively (this may 
be an artifact coming from experiment). However, the absolute number is stable for all subjects and ranges between 
187 and 358.



12

Cluster analysis

NetworkX graphs

Panels in Supplementary Figure 15 (see caption in p. 20) corresponds to Fig. 5A in the main 
text but using all bacteria (subplot A), coloured by different features (B-K) or generated using 
different ρthr (L-M). Specifically, we can notice that  ρthr = 0.6 provides better graph separability as 
compared to 0.5 or 0.7 (compare Fig. 5A and subplots L, M in Supplementary Figure 15). 
Medium-size subgraphs contain abundant species (subplots B, C) with complex dynamics (both 
stationary and non-stationary, seasonal and non-seasonal, and different occurrence percentage). 
On the other hand, the cloud is built from bacteria that are different to anything else and are 
probably the most intriguing. It also exhibits rich dynamics but this is more subject dependent. 
Seasonal bacteria (I, J) can be found in both regions. Moreover, similar number of seasonal 
species are present in all subjects’ clouds. Most abundant species (with largest PC1+PC2 loading; 
subplots G, H) are present in the connected subgraphs but not all subgraphs comprise such 
species - many of them can also be found in the cloud. All regions exhibit high taxonomic diversity 
(E) but one can identify smaller clusters which are homogeneous. According to expectations, rare 
bacteria clusters are stationary (K). The same holds for abundant clusters but, interestingly, we can 
also find large connected components dominated by non-stationary species. 
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Supplementary Figure 15. Results of cluster analysis performed with NetworkX. Each subplot (A-M) represents 
a network (one panel per subject) of bacterial species (nodes) colored by different feature, where edges represent 
connections equal or stronger than ρthr = 0.6 (equivalent to |ρ| ≥ 0.6) except subplot L and M, where ρthr  = 0.5 and 0.7 
have been used. In subplots A, B, L and M “none” represents bacteria that didn’t pass rarefaction. Red circle in each 
panel separates the inner part from the cloud.

Regime evolution in time

Supplementary Figure 16 (see caption in p. 22) corresponds to Fig. 5B-C but for female and 
donorA subjects (panels A and B) or for male subject but generated using different ρthr  (panels C, 
and D).
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Supplementary Figure 16. Change in total counts after rarefaction over time for female (A), donorA (B) and male 
(C, D) subject stratified by regime (color) and group of bacteria (panels) i.e. cloud, largest connected components and 
the rest. In panel A and B ρthr = 0.6 whereas in panel C and D ρthr = 0.5 and 0.7 respectively. Rcloud represents a 
diameter that separates the inner part from the cloud.
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Examples

Supplementary Figure 17. Example bacteria selected from NetworkX graph shown in Fig. 5A in the manuscript. Each 
color for every subject represents a different group (cluster) of bacteria.

Supplementary Figure 17 shows same example bacteria clustered together in the largest 
connected components. Heatmaps showing their mutual proportionality |ρ| are presented in 
Supplementary Fig. 18. Clearly, species placed close to each other on the graph have larger 
proportionality, which stays in line with the analysis presented in the next section (see 
Supplementary Fig. 19). Interestingly, in some cases (bacteria 3, 4, 5 versus 1, 2, 8, 9 in group A 
for female, bacteria 1 versus 2-6  in group A for donorA) we can notice anti co-occurrence, but in 
order to shed more light on the underlying effect behind it, both higher taxonomic resolution and 
functional analysis are required. 
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Supplementary Figure 18. Heatmaps showing proportionality between bacteria presented in Supplementary Figure 
17 (one heatmap per bacterial group).

Sanity check - Euclidean distance vs |ρ|

In order to check whether similar bacteria are placed close to each other in the graphs we 
compared absolute value of their proportionality |ρ| against Euclidean distance (Supplementary 
Figure 19). Indeed, we can see clear relation i.e. the larger |ρ| the smaller distance which is 
evident especially for the largest connected components (left panels). When it comes to the cloud 
(right panels) existence of few points above the threshold ρthr (=0.6) comes from the fact that the 
cloud definition is imperfect and some smaller clusters were tiered apart by imposing the criterion 
on the cloud diameter value (Rcloud = 0.75). Distance distribution for |ρ| ≤ 0.6 on the right panels 
shows that the polar angle doesn’t matter for distant points (singletons in the cloud). However, this 
conclusion doesn’t hold for the inner regions (left panels) which are of our special interest. 
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Supplementary Figure 19: Relationship between proportionality |ρ| and Euclidean distance of bacteria shown in 
NetworkX graph in Fig. 5 in the manuscript.

Hierarchical clustering

Using proportionality matrix as a feature matrix (treating it as a usual distance matrix didn’t 
perform well) we constructed hierarchical clusters in order to compare them with the NetworkX 
graphs. As a sanity check we computed intra-cluster proportionality. According to expectations, the 
proportionality is high especially for the most abundant ones (see Supplementary Figure 20 and 
21). Panel D in Supplementary Figure 15 shows location of the most abundant clusters (with 
cardinality ≥ 5 and mean abundance after rarefaction ≥ 0.1). Interestingly, they are mainly located 
in the central region of the graph (comprising largest connected components) supporting the 
hypothesis that this is the main part of the graph that drives the microbiome dynamics. We can also 
observe that some clusters e.g. 1, 2 and 4 for male subjects are placed very close to each other. 
Indeed, in this example the inter-cluster similarity is very high (ρ = 0.79 ± 0.12)  and they can be 
treated as one larger cluster. It demonstrates that the NetworkX approach is more robust although 
it doesn't allow for strict cluster extraction.
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Supplementary Figure 20. Results of hierarchical clustering. Distribution of intra-cluster proportionality. Abundant 
clusters are clusters with mean bacterial abundance equal or higher than 0.1.
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Supplementary Figure 21. The same as in Supplementary Figure 20 but each box plot corresponds to mean ρ 
distribution of bacteria in clusters of a given size (shown in x-axis).
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Input data processing 
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Supplementary Figure 22: Imputation of Missing Timepoints. Blue points indicate timepoints that were originally 
present in the dataset, while red dots signify timepoints that have been imputed using the PCHIP interpolation method
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Rarefaction curves
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Supplementary Figure 23: Rarefaction Curves. For each subject, the upper plot illustrates the relationship between 
sequencing depth and the Shannon diversity measure. The lower plot depicts the relationship between sequencing 
depth and the number of samples meeting a specific threshold.


