Detection of carbon dioxide and hydrogen peroxide

on the stratified surface of Charon with JWST

Silvia Protopapa^{1*}, Ujjwal Raut^{2,3}, Ian Wong^{4,5,6}, John Stansberry^{6,7,8}, Geronimo L. Villanueva⁴, Jason Cook⁹, Bryan Holler⁶, William M. Grundy^{7,8}, Rosario Brunetto¹⁰ Richard J. Cartwright¹¹, Bereket Mamo^{3,2}, Joshua P. Emery⁸, Alex H. Parker¹², Aurelie Guilbert-Lepoutre¹³, Noemi Pinilla-Alonso¹⁴, Stefanie N. Milam⁴, Heidi B. Hammel¹⁵ ^{1*}Southwest Research Institute, Boulder, CO, USA. ²Southwest Research Institute, San Antonio, TX, USA. ³University of Texas at San Antonio, San Antonio, TX, USA. ⁴NASA Goddard Space Flight Center, Greenbelt, MD, USA. ⁵American University, Washington, DC, USA. ⁶Space Telescope Science Institute, Baltimore, MD, USA. ⁷Lowell Observatory, Flagstaff, AZ, USA. ⁸Northern Arizona University, Flagstaff, AZ, USA. ⁹Pinhead Institute, Telluride, CO, USA. ¹⁰Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, Orsay, France. ¹¹Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. ¹²SETI Institute, Mountain View, CA, USA. ¹³LGL-TPE, UMR 5276 CNRS, University Lyon 1, ENS, Villeurbanne, France. ¹⁴Florida Space Institute, University of Central Florida, Orlando, FL, USA. ¹⁵Association of Universities for Research in Astronomy, Washington,

*Corresponding author(s). E-mail(s): silvia.protopapa@swri.org;

DC, USA.

This file includes Supplementary Table 1 and Supplementary Figures 1 to 5.

Filename ¹	$Date^2$	$Time^3$	Obs. #	Grating	Filter	Exp. $Time^4$
jw01191004001_03101_00001	2022-09-24	17:35:06.553	004	G140H	F100LP	204.244
jw01191004001_03101_00002	2022-09-24	17:41:49.112	004	G140H	F100LP	204.244
jw01191004001_03103_00001	2022-09-24	17:50:48.902	004	G235H	F170LP	277.189
jw01191004001_03103_00002	2022-09-24	17:58:41.734	004	G235H	F170LP	277.189
jw01191004001_03105_00001	2022-09-24	18:08:48.432	004	G395H	F290LP	554.378
jw01191004001_03105_00002	2022-09-24	18:21:18.447	004	G395H	F290LP	554.378
jw01191005001_03101_00001	2023-04-18	01:29:16.432	005	G140H	F100LP	204.244
jw01191005001_03101_00002	2023-04-18	01:35:51.119	005	G140H	F100LP	204.244
jw01191005001_03103_00001	2023-04-18	01:45:04.734	005	G235H	F170LP	277.189
jw01191005001_03103_00002	2023-04-18	01:53:06.205	005	G235H	F170LP	277.189
jw01191005001_03105_00001	2023-04-18	02:03:04.343	005	G395H	F290LP	554.378
jw01191005001_03105_00002	2023-04-18	02:15:42.999	005	G395H	F290LP	554.378
jw01191103001_03101_00001	2023-04-21	07:00:42.847	103	G140H	F100LP	204.244
jw01191103001_03101_00002	2023-04-21	07:07:23.103	103	G140H	F100LP	204.244
jw01191103001_03103_00001	2023-04-21	07:16:31.149	103	G235H	F170LP	277.189
jw01191103001_03103_00002	2023-04-21	07:24:24.365	103	G235H	F170LP	277.189
jw01191103001_03105_00001	2023-04-21	07:34:30.759	103	G395H	F290LP	554.378
jw01191103001_03105_00002	2023-04-21	07:47:01.158	103	G395H	F290LP	554.378
jw01191106001_03101_00001	2023-04-19	04:59:16.507	106	G140H	F100LP	204.244
jw01191106001_03101_00002	2023-04-19	05:05:51.195	106	G140H	F100LP	204.244
jw01191106001_03103_00001	2023-04-19	05:15:04.809	106	G235H	F170LP	277.189
jw01191106001_03103_00002	2023-04-19	05:23:06.281	106	G235H	F170LP	277.189
jw01191106001_03105_00001	2023-04-19	05:33:04.419	106	G395H	F290LP	554.378
jw01191106001_03105_00002	2023-04-19	05:45:43.074	106	G395H	F290LP	554.378

Supplementary Table 1 Details of the JWST/NIRSpec Observations of Charon (Program ID #1191)

¹Data are publicly available from the Space Telescope Science Institute's Mikulski Archive for Space Telescopes: https://mast.stsci.edu/. Details for JWST program #1191 are available at https://www.stsci.edu/jwst/phase2-public/1191.pdf.

 $^2 \mathrm{Date}$ format: (yyyy-mm-dd); UTC date at the start of exposure.

 $^3\mathrm{Time}$ format: (hh:mm:ss.sss); UTC time at the start of exposure.

 $^{4}\mathrm{Exposure}$ Time: (s); Effective exposure time.

Supplementary Fig. 1 Comparing JWST and New Horizons spectra of Charon with a focus on the 2.21-µm feature. a The JWST/NIRSpec grand-average spectrum of Charon (black line) is plotted alongside the best fit model (red line) for the 2.0-µm region. For comparison, the spectra from the New Horizons/LEISA's C_LEISA_HIRES scan of Charon, normalized to the JWST data at 1.34 µm, are shown [8]. Specifically, the magenta dots illustrate the disk-averaged spectrum of Charon, while the green dots display the spectrum from regions that showcase the most pronounced 2.21-µm absorption band (green to yellow regions in the 2.21-µm band depth map at the bottom of panel c). \mathbf{b} Displayed here are the residuals (data/model) within the 2.2-µm spectral range. For context, laboratory spectra — both in terms of the imaginary part of the refractive index k (brown lines) and absorbance (teal line) (where a peak in k or absorbance signifies an absorption band) +of amorphous and crystalline NH₃ [80, 81], a H₂O-NH₃ ice mixture containing 10% NH₃ [40], and ammonium chloride (NH₄Cl) [82] are presented. Considering the position and width of the 2.21- and 1.99- μ m absorption bands, marked by gray dashed lines, we deduce that NH₃ diluted in H₂O is the best candidate for the nature of the NH_3 -bearing species on Charon. c The top and bottom panels, respectively, show the volume fraction of crystalline H_2O ice and the 2.21-µm band depth map of Charon. Both are derived from a pixel-by-pixel Hapke radiative transfer model analysis of the New Horizons C_LEISA_HIRES scan [8]. Source data are provided as a Source Data file.

Supplementary Fig. 2 Markov Chain Monte Carlo (MCMC) parameter exploration of the Lorentzian fit to the 2.7- μ m $\nu_1 + \nu_3$ CO₂ band. This corner plot visualizes the 1D and 2D posterior distributions resulting from the MCMC fitting of the 2.7- μ m CO₂ absorption band using a Lorentzian model. The explored parameters include amplitude, band center λ_c , and half of the full width at half maximum (FWHM). The contours represent the 1- σ , 2- σ , and 3- σ confidence intervals, derived from the quantile levels of 16%, 50%, and 84%. The MCMC simulation, conducted using the emcee Python library, used 1000 walkers and a chain length of 3000 steps. When generating the best-fit parameters derived using a Levenberg-Marquardt minimization process prior to the MCMC run. These parameters are shown in the spectral fit in Figure 2c.

Supplementary Fig. 3 CO₂ abundance as derived from the 2.7-µm $\nu_1 + \nu_3$ absorption band. a The grand-average spectrum of Charon, obtained by JWST/NIRSpec (represented by black points) along with the corresponding 1- σ errors (gray bars), is plotted against the best-fit model (red line) for the 2.7-µm region. b The residuals between the data and the best fit are shown. The model consists of an areal mixture of 80% crystalline H₂O ice, 18% amorphous H₂O ice, and 2% crystalline CO₂. Source data are provided as a Source Data file.

Supplementary Fig. 4 Charon's spectrum before and after correcting for Pluto's flux contamination. The JWST spectrum of Charon corresponding to Observation #103 before (blue) and after (green) correction for Pluto's flux contamination (red) is shown, with $1-\sigma$ errors indicated for each spectrum. The comparison highlights that Pluto and Charon do not share the same spectral features. On average, Pluto's flux contamination contributes 5% across the spectral range. However, in the specific wavelength ranges between 2.8 and 3 µm, and between 4.19 and 5.3 µm, the contamination increases significantly to 47% and 38%, respectively. Source data are provided as a Source Data file.

Supplementary Fig. 5 Comparison of measured and synthetic solar spectra. The solar spectrum at 1 au, as modeled by Kurucz (represented by the green line and sourced from the CAL-SPEC database), is compared with the solar spectrum implemented by the Planetary Spectrum Generator (PSG). The latter combines the Kurucz model at short wavelengths up to 2.0 μ m with measurements from the ACE instrument onboard SCISAT-1 beyond 2 μ m. Both spectra are shown at a resolving power of 5000. As expected, there is perfect agreement between the two spectra at shorter wavelengths. However, the CALSPEC model clearly does not reproduce the observed spectrum beyond 4.3 μ m. Source data are provided as a Source Data file.