## **Appendix for:**

# Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes

Payam Ghiaci, Paula Jouhten, Nikolay Martyushenko, Helena Roca-Mesa, Jennifer Vázquez, Dimitrios Konstantinidis, Simon Stenberg, Sergej Andrejev, Kristina Grkovska, Albert Mas, Gemma Beltran, Eivind Almaas, Kiran R. Patil, Jonas Warringer

Corresponding authors: jonas.warringer@cmb.gu.se, eivind.almaas@ntnu.no, kp533@cam.ac.uk

#### Table of contents:

| Appendix Table S1  | page 2-7   |
|--------------------|------------|
| Appendix Table S2  | page 8-11  |
| Appendix Table S3  | page 12-14 |
| Appendix Table S4  | page 15    |
| Appendix Table S5  | page 16-17 |
| Appendix Table S6  | page 18    |
| Appendix Figure S1 | page 19    |
| Appendix Figure S2 | page 20    |
| Appendix Figure S3 | page 21    |
| Appendix Figure S4 | page 22    |
| Appendix Figure S5 | page 23    |
| Appendix Figure S6 | page 24    |

**Appendix Table S1. Strains used in the study.** Wine yeasts = commercial wine yeasts owned or marketed by Lallemand Inc (Canada). Vineyard yeasts = natural, non-commercialized vineyard yeasts; from grapes or vineyard soil in the DOQ Priorat wine-making region in Catalonia, and identified as *S. cerevisiae* using restriction fragment length polymorphisms.

| Name   | Labelled<br>as | Туре                      | Description                                                                                                                         | Heterozygosity ratio <sup>a</sup> |
|--------|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| L 71B  | E1             | Commercial<br>wine yeasts | Lalvin 71B <sup>®</sup> . Isolated by INRA-Narbone (France)                                                                         | 0.10                              |
| L CLOS | E2             | Commercial<br>wine yeasts | Lalvin CLOS <sup>®</sup> . Isolated by<br>URV in DOQ Priorat wine<br>region (Spain)                                                 | 0.10                              |
| L QA23 | E3             | Commercial<br>wine yeasts | Lalvin QA23 <sup>®</sup> . Isolated by<br>UTAD in Vinhos verdes<br>wine region (Portugal). <i>S.</i><br><i>cerevisiae bayanus</i>   | 0.25                              |
| LEC    | E4             | Commercial<br>wine yeasts | Lalvin EC1118 <sup>®</sup> . Isolated<br>in Champagne wine<br>region (France). <i>S.</i><br><i>cerevisiae bayanus</i>               | 0.52                              |
| L T73C | E5             | Commercial<br>wine yeasts | Lalvin T73 <sup>®</sup> . Isolated by<br>IATA-CSIC in DO<br>Alicante wine region<br>(Spain). <i>S. cerevisiae</i><br><i>bayanus</i> | 0.06                              |
| U VN   | E6             | Commercial<br>wine yeasts | Uvaferm VN <sup>®</sup> . Isolated by<br>IVICAM (Spain) in DO La<br>Mancha wine region<br>(Spain)                                   | 0.25                              |
| U BC   | E7             | Commercial wine yeasts    | Uvaferm BC <sup>®</sup> . Isolated by<br>Institute Pasteur                                                                          | 0.03                              |

|         |                        |                           | (France). S. cerevisiae<br>bayanus                                                                                                       |      |
|---------|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| U BDX   | E8                     | Commercial wine yeasts    | Uvaferm BDX <sup>®</sup> . Isolated by U. Bordeaux (France)                                                                              | 0.10 |
| U CS2   | E9<br>(Ctrl<br>strain) | Commercial<br>wine yeasts | Uvaferm CS2 <sup>®</sup> . Used as<br>the control strain<br>throughout the<br>phenotyping experiments.                                   | 0.66 |
| U EXE   | E10                    | Commercial<br>wine yeasts | Uvaferm EXENCE <sup>®</sup> .<br>Isolated by IWB in<br>Stellenbosch (South<br>Africa), result of the<br>crossing of two Sc<br>strains.   | 0.57 |
| U WAM   | E11                    | Commercial<br>wine yeasts | Uvaferm WAM <sup>®</sup> . Isolated<br>by U. Valladolid in DO<br>Rueda wine region<br>(Spain).                                           | 0.03 |
| U 43    | E12                    | Commercial<br>wine yeasts | Uvaferm 43 <sup>®</sup> . Isolated by<br>Institute Inter Rhône<br>(France). Fructofilic<br>yeast. <i>S. cerevisiae</i><br><i>bayanus</i> | 0.28 |
| U CEG   | D12                    | Commercial<br>wine yeasts | Uvaferm CEG <sup>®</sup> . Isolated<br>by Geisenheim Research<br>Station (Germany)                                                       | 0.30 |
| V BMW58 | D11                    | Commercial<br>wine yeasts | Velluto BMV58 <sup>®</sup> . Isolated<br>by IATA-CSIC in DO<br>Valencia wine region<br>(Spain). <i>S. uvarum</i>                         | ND   |

| Cross<br>Evolution | D10 | Commercial<br>wine yeasts | Cross Evolution <sup>®</sup> .<br>Selected by IWB in<br>Stellenbosch (South<br>Africa), result of the<br>backcrossing of two Sc | 0.33 |
|--------------------|-----|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| SL6                | G1  | Local cellar<br>isolates  | strains.<br>Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                            | 0.03 |
| SFB2               | G2  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.04 |
| SFB1               | G3  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.03 |
| SFB3               | G4  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.10 |
| SFB5               | G5  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.04 |
| SFB4               | G6  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.03 |
| SFB7               | G7  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.04 |
| SFB6               | G8  | Local cellar<br>isolates  | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery)                                                        | 0.03 |

| SFB10 | G9  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery) | 0.26 |
|-------|-----|--------------------------|--------------------------------------------------------------------------|------|
| SFB9  | G10 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery) | 0.22 |
| SFB8  | G11 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery) | 0.04 |
| SL4   | G12 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery) | 0.04 |
| SL3   | F12 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region<br>(Ferrer-Bobet winery) | 0.02 |
| M2    | M2  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery)  | 0.14 |
| М3    | М3  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery)  | 0.11 |
| M4    | M4  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery)  | 0.26 |
| M5    | M5  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery)  | 0.03 |
| M6    | M6  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery)  | 0.03 |

| M7  | M7  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery) | 0.05 |
|-----|-----|--------------------------|-------------------------------------------------------------------------|------|
| M9  | M9  | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery) | 0.03 |
| M10 | M10 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery) | 0.04 |
| M11 | M11 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery) | 0.19 |
| M12 | M12 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery) | 0.67 |
| M13 | M13 | Local cellar<br>isolates | Natural isolate from DOQ<br>Priorat wine region (Mas<br>Perinet winery) | 0.12 |
| Т3  | Т3  | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region                       | 0.04 |
| T4  | T4  | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region                       | 0.03 |
| Τ5  | Τ5  | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region                       | 0.03 |
| Т6  | Т6  | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region                       | 0.03 |
| Τ7  | Τ7  | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region                       | 0.03 |

| Т8  | Т8  | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region | 0.03 |
|-----|-----|--------------------------|---------------------------------------------------|------|
| T14 | T14 | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region | 0.05 |
| T15 | T15 | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region | 0.03 |
| T19 | T19 | Local cellar<br>isolates | Natural isolate from DO<br>Terra Alta wine region | 0.02 |

<sup>a</sup> The heterozygosity ratio was calculated as the number of heterozygotic SNPs/ the number of homozygotic SNPs.

Appendix Table S2. Description and rationale of ALE selection environments used in the study.

| ALE<br>selection  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description & Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCR<br>relaxation | <i>S. cerevisiae</i> use of organic nitrogen<br>sources common in grape must (proline,<br>arginine) is often repressed by the<br>presence of inorganic ammonium.<br>Ammonium stimulates the nitrogen<br>catabolite repression system (NCR),<br>which transcriptionally and post-<br>transcriptionally represses genes<br>required for uptake and catabolism of<br>e.g. proline and arginine. Incomplete<br>use of these nitrogen sources leads to<br>stuck fermentations, inability to<br>consume all sugar and invasion of the<br>must by spoiling microorganisms <sup>107</sup> .<br>Amines (RCH <sub>2</sub> NH <sub>2</sub> ), such as<br>methylamine, likewise stimulates NCR<br>and represses proline and arginine use.<br><i>Saccharomyces cerevisiae</i> lacks the<br>amine oxidases <i>AMO1</i> and <i>AMO2</i> and<br>is therefore not capable of using<br>methylated amines as nitrogen<br>sources <sup>108, 109</sup> . Methylamine therefore<br>suppresses the use of proline and<br>arginine by activating NCR but does<br>provide the nitrogen that yeast requires<br>for growth. | Select evolving populations on a synthetic grape must medium that only contains arginine and proline as nitrogen sources (15 mg/L each) and where use of arginine and proline is heavily repressed by the presence of methylamine (10 g/L). We expect a subset of populations to adapt by reducing the activation of NCR by methylamine, allowing yeast to better use arginine and proline to support growth. Because of the interconnectivity of intracellular nitrogen metabolite pools, we also expect increased flow through the proline and arginine catabolism systems to spill over into higher flows through other nitrogen metabolic pathways, such as those involving branched chain amino acids. This may result in increased production of aroma compounds, and enhanced wine taste and smell. |

| GR          | S. cerevisiae often use fructose in grape              | Select evolving populations on a     |
|-------------|--------------------------------------------------------|--------------------------------------|
| relaxation  | must less well in the presence of                      | synthetic grape must medium that     |
|             | glucose. Incomplete use of fructose                    | only contains fructose as carbon     |
|             | often leads to stuck fermentations,                    | source and where use of fructose     |
|             | inability to consume all sugar and                     | is disfavoured due to the presence   |
|             | invasion of the must by spoiling                       | of 2-deoxy-D-glucose (2g/L). We      |
|             | microorganisms <sup>110</sup> . 2-deoxy-D-glucose,     | expect a subset of populations to    |
|             | which has the 2-hydroxyl group                         | adapt by relaxation of glucose       |
|             | replaced by hydrogen, possess many of                  | repression, allowing earlier and     |
|             | the properties of glucose, but because it              | faster use of fructose. Such strains |
|             | competitively inhibits the production of               | will be particularly useful for re-  |
|             | glucose-6-phosphate <sup>111</sup> , it cannot         | starting fermentations that have     |
|             | undergo glycolysis and cannot be used                  | stuck due to incomplete use of       |
|             | carbon or energy source by                             | fructose.                            |
|             | Saccharomyces cerevisiae.                              |                                      |
| Glutathione | Glutathione prevents oxidation of wine                 | Select evolving populations on a     |
| production  | but is rarely present in notable                       | synthetic grape must medium only     |
|             | concentrations in grape must. Yeast                    | containing glutamate, cysteine and   |
|             | produces glutathione from glutamate,                   | glycine (equal proportions;          |
|             | cysteine and glycine in a two-step                     | standard amounts of nitrogen         |
|             | reaction catalyzed by GSH1 and GSH2                    | retained 140 mg N/L) as nitrogen     |
|             | and can be excreted <sup>112</sup> . The intracellular | sources, increasing their            |
|             | demand for, and production of                          | intracellular pools and the flow     |
|             | glutathione, increases heavily under                   | through glutathione biosynthesis.    |
|             | oxidizing conditions imposed by addition               | Diamide is added at growth           |
|             | of the oxidizing agent diamide <sup>113</sup> .        | limiting concentrations (1.5 mM) to  |
|             |                                                        | simultaneously increase demand       |
|             |                                                        | for high intracellular glutathione   |
|             |                                                        | levels. We expect a subset of        |
|             |                                                        | populations to adapt by mutations    |
|             |                                                        | that directly (e.g. glutathione      |
|             |                                                        | biosynthesis) or indirectly (e.g.    |
|             |                                                        | precursor uptake) increase net       |
|             |                                                        | production of glutathione.           |

| Aroma<br>production  | Wine aroma compounds, e.g. fusel<br>alcohols, produced by wine yeasts are<br>bio-synthesized via pathways, e.g. the<br>Ehrlich pathway <sup>114</sup> , originating in the<br>intracellular pools of branched chain<br>amino acids, such as isoleucine,<br>phenylalanine and valine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Select evolving populations on a<br>synthetic grape must medium that<br>only contains isoleucine,<br>phenylalanine and valine (equal<br>proportions; standard amount of<br>nitrogen retained) as nitrogen<br>sources. We expect a subset of<br>populations to adapt by mutations<br>that directly (e.g. the Ehrlich<br>pathway) or indirectly (e.g. BCAA<br>uptake) increases the production<br>of fusel alcohols. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethanol<br>tolerance | Due to climate change, the sugar<br>content of grapes creeps upwards.<br>Because, yeast ferments sugar to<br>ethanol, so do the ethanol content of<br>wine. To avoid stuck fermentations,<br>sugar left in the wine, and wine<br>spoilage, this demands wine yeast<br>capable of growth and fermentation at<br>high concentrations of ethanol. The<br>need is particularly pronounced for<br>sparkling wine, which is produced by<br>two serial fermentations of grape must.<br>The second fermentation is initiated by<br>inoculating yeast into wine already high<br>in ethanol content, exposing the yeast<br>to an ethanol shock unless it is pre-<br>adapted <sup>115</sup> . Ethanol is volatile and<br>evaporates under open environment<br>selection experiments. Less volatile<br>alcohols, such as 1-butanol (bp 118 C<br>vs. 78 C of EtOH), have cellular effects<br>that mimic those of ethanol, and strains | Select evolving populations on a<br>synthetic grape must medium<br>supplemented by growth limiting<br>(1.3 % v/v) concentrations of 1-<br>butanol. We expect a subset of<br>populations to adapt by increasing<br>their tolerance to alcohols in<br>general, including to ethanol.                                                                                                                                 |

|                        | resistant to 1-butanol tend to be resistant to ethanol.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sugar<br>tolerance     | Due to climate change, the sugar<br>content of grapes creeps upwards <sup>116</sup> .<br>High sugar content exposes yeast to<br>osmotic and ethanol stress and affects<br>sugar uptake by emphasizing the<br>importance of low affinity hexose<br>transporters.                                                                                                                                                                                                          | Select evolving populations on a<br>synthetic grape must medium with<br>high (35 %; standard proportions<br>of glucose and fructose retained)<br>sugar concentrations. We expect<br>some populations to adapt by<br>increasing their tolerance to<br>osmotic and ethanol stress, and to<br>be able to take up sugar faster<br>and more efficiently at higher<br>sugar concentrations. |
| Vitamin<br>starvation  | Vitamins are required for yeast growth<br>and metabolism because of their roles<br>as enzymatic cofactors. In many grape<br>musts, access to vitamins constrains<br>yeast growth and metabolism lead to<br>stuck fermentation, sugar and nitrogen<br>left in the medium, and wine spoilage <sup>107</sup> .<br>The problem is exacerbated by climate<br>change, which leads to faster grape<br>maturation and lower vitamin content of<br>mature grapes <sup>117</sup> . | Select evolving populations on a<br>synthetic grape must medium poor<br>in vitamins (1 % of normal;<br>standard proportions retained).<br>We expect some populations to<br>adapt by increasing their capacity<br>to grow and metabolize at low<br>vitamin concentrations.                                                                                                             |
| Nitrogen<br>starvation | Grape must is often rich in carbon, but<br>poor in nitrogen, leading to nitrogen<br>starved yeast, stuck fermentations,<br>sugar left in the wine and wine<br>spoilage <sup>118</sup> .                                                                                                                                                                                                                                                                                  | Select evolving populations on a<br>synthetic grape must medium poor<br>in nitrogen (10 % of normal;<br>standard proportions retained).<br>We expect some populations to<br>adapt by increasing their capacity<br>to grow and metabolize at low<br>nitrogen concentrations.                                                                                                           |

## **Appendix Table S3. Growth medium composition for each ALE selection and side-effect environments.** Synthetic grape must<sup>34</sup> was the background media throughout all the experiments.

| Abbreviation | Description                                                                                                                     | ALE selection             | Side-effect<br>environment |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|
| S-NCR        | SGM adjusted as [arginine (15 mg N/l) +<br>proline (15 mg N/l)] as sole N sources +<br>1% Methyl amine                          | NCR relaxation            |                            |
| S-GR         | SGM adjusted as 20% Fru. + 2-deoxy<br>glucose (0.2 g/100 ml)                                                                    | GR relaxation             |                            |
| S-Gluth      | SGM adjusted as [Glycine (47 mg N/l) +<br>Glutamine (47 mg N/l) + Cysteine (47<br>mg N/l)] as sole N source + 1.5 mM<br>Diamide | Glutathione<br>production |                            |
| S-Aroma      | SGM adjusted as [Valine (10 mg N/l) +<br>Iso-leucine (10 mg N/l) + Phenylalanine<br>(10 mg N/l)] as sole N sources              | Aroma<br>production       |                            |
| S-But        | SGM + 1.3% 1-butanol (v/v)                                                                                                      | Ethanol<br>tolerance      |                            |
| S-35Sug      | SGM adjusted as 17.5% Glu. + 17.5%<br>Fru as C source                                                                           | Sugar tolerance           |                            |
| S-Vit        | SGM adjusted as 1% of normal vitamin concentration                                                                              | Vitamin<br>starvation     |                            |
| S-Nit        | SGM adjusted as 10% of normal amino acid concentration                                                                          | Nitrogen<br>starvation    |                            |
| S-40Sug      | SGM adjusted as 20% Glu. + 20% Fru<br>as C source                                                                               |                           | C utilization              |
| S-Fru        | SGM adjusted as 20% Fructose as a C source                                                                                      |                           | C utilization              |

| S-Lac  | SGM adjusted as 2% Lactose as a C source                   | <br>C utilization |
|--------|------------------------------------------------------------|-------------------|
| S-Mal  | SGM adjusted as 2% Maltose as a C source                   | <br>C utilization |
| S-Man  | SGM adjusted as 2% Mannose as a C source                   | <br>C utilization |
| S-Raf  | SGM adjusted as 2% Raffinose as a C source                 | <br>C utilization |
| S-Gly  | SGM adjusted as 2% Glycerol as a C source                  | <br>C utilization |
| S-Gal  | SGM adjusted as 2% Galactose as a C source                 | <br>C utilization |
| S-Ala  | SGM adjusted as Alanine (mg N/I) as sole N source          | <br>N utilization |
| S-Asp  | SGM adjusted as Aspartic acid (mg N/I)<br>as sole N source | <br>N utilization |
| S-Glt  | SGM adjusted as Glutamine (mg N/I) as sole N source        | <br>N utilization |
| S-Glyc | SGM adjusted as Glycine (mg N/I) as sole N source          | <br>N utilization |
| S-GABA | SGM adjusted as GABA (mg N/I) as sole<br>N source          | <br>N utilization |
| S-Met  | SGM adjusted as Methionine (mg N/I) as sole N source       | <br>N utilization |
| S-Pro  | SGM adjusted as Proline (mg N/I) as sole N source          | <br>N utilization |
| S-Phe  | SGM adjusted as Phenylalanine (mg<br>N/l) as sole N source | <br>N utilization |

| S-Urea | SGM adjusted as Urea (mg N/I) as sole<br>N source   | <br>N utilization |
|--------|-----------------------------------------------------|-------------------|
| S-Val  | SGM adjusted as Valine (mg N/I) as sole<br>N source | <br>N utilization |

Appendix Table S4. List of strains used in validations at semi-industrial fermentation of grape musts.

| Parental lineage | ALE evolved population | ALE selection environment |
|------------------|------------------------|---------------------------|
| M3               | M3 (2,35)              | High Sugar                |
| E2               | E2 (26,37)             | High Sugar                |
| G11              | G11 (23,22)            | High Sugar                |
| M12              | M12 (18,23)            | High Sugar                |
| E9               | E9 (0,7)               | High Ethanol              |

Appendix Table S5. ALE evolved populations for which glutathione levels were measured.

| Parental lineage | ALE population evolved for improved glutathione use |
|------------------|-----------------------------------------------------|
| E6               | E6 (30,7)                                           |
|                  | E6 (31,30)                                          |
| G10              | G10 (19,18)                                         |
| Т3               | T3 (15,35)                                          |
|                  | T3 (15,32)                                          |
| Τ5               | T5 (11,15)                                          |
| T4               | T4 (0,43)                                           |
|                  | T4 (0,19)                                           |
| E11              | E11 (22,31)                                         |
| G9               | G9 (13,1)                                           |
| T15              | T15 (10,19)                                         |
| М3               | M3 (1,35)                                           |
| G6               | G6 (1,36)                                           |

| M4  | M4 (15,28)  |
|-----|-------------|
| E7  | E7 (15,46)  |
| E5  | E5 (15,39)  |
| M7  | M7 (9,24)   |
| D12 | D12 (21,34) |

| Name (x, y position on solid media) | Selection environment  |
|-------------------------------------|------------------------|
| T3 (15,35)                          | Glutathione production |
| T3 (15,32)                          | Glutathione production |
| M4 (15,28)                          | Glutathione production |
| M7 (9,24)                           | Glutathione production |
| M9 (21,0)                           | High Sugar             |
| E2 (26,37)                          | High Sugar             |
| F12 (6,31)                          | High Sugar             |
| G1 (30,13)                          | High Sugar             |
| G10 (16,17)                         | High Sugar             |
| M3 (0,33)                           | High Sugar             |
| M3 (2,35)                           | High Sugar             |
| M3 (1,34)                           | High Sugar             |
| T14 (16,15)                         | High Sugar             |
| E11 (21,4)                          | NCR relaxation         |
| G6 (0,37)                           | NCR relaxation         |
| M4 (14,5)                           | NCR relaxation         |
| M7 (11,24)                          | NCR relaxation         |
| T4 (3,41)                           | NCR relaxation         |
| T6 (5,10)                           | NCR relaxation         |
| M5 (4,43)                           | NCR relaxation         |
| E9 (0,7)                            | High EtOH              |
| G7 (30,45)                          | High EtOH              |
| M2 (13,40)                          | High EtOH              |
| T3 (12,35)                          | High EtOH              |
| T3 (13,35)                          | High EtOH              |
| T3 (15,35)                          | High EtOH              |

### Appendix Table S6. List and description of sequenced ALE populations



Appendix Figure S1. Design of wine yeast ALE experiments. (A) 48 commercial and non-commercial wine yeast strain (Supplementary Table 1) were ALE evolved as replicated (n=24) asexual populations over 30 growth cycles. ALE populations were cultivated (black arrows = evolution track) as colonies on eight synthetic grape media designed to select for traits desired by the wine industry. We generated 48 parent populations from single clones of each parental lineage (not shown) and replicated these 24x to generate a 1152 colony array cultivated on synthetic grape must. Colonies were stored at -80°C in 96 arrays in 20% glycerol. Frozen stocks were revived on synthetic grape must and transferred to evolution plates representing the eight selection regimes. The 9216 ALE populations were passed through 30 cycles of growth, sampling and transfer ( $n = \sim 10^5$  cells) to fresh plates. We stored the cycle 30 end-point of each population as a frozen ALE record before reviving and cultivating these in 1536 format, while counting cells in each growing colony (grey arrows=phenotyping track). The 1152 cycle 0 start points were revived and cultivated in parallel, on separate plates. Populations were cultivated as multiple replicates (n=2-4; on separate plates) in each of the eight designed selection environments and in the 18 nitrogen or carbon limited side effect environments. A fixed control was introduced and cultivated in every 4th position on every plate and used to control for systematic growth variation between and within plates. We extracted cell-doubling times from high quality growth curves, log<sub>2</sub> transformed and normalized these measures to those of the 384 fixed controls on the same plate. (B) A zoom-in view of one experimental plate, showing the arrangement of experimental and fixed control populations. (C) Growth of wine yeasts (color) growing on synthetic grape must. Black = fixed control (parental lineage E9). Grey field: time window in which the cell doubling time was extracted.





Appendix Figure S2. Replication improves ALE adaptation outcomes. Doubling time line chart of the best adapted replicate (coloured) and population mean (average of all replicates: black) of each lineage in each environment. Error bars = SEM (n=2-4 for the best replicate and n=24 for the population).



**Appendix Figure S3. Selecting ALE populations for larger culture validation. (A)** 3D histogram of adaptation of populations with shorter doubling time compared to their parents in selection regime (colour). Environments with little or no adaptation are excluded. Arrows: ALE populations selected for validation. In parenthesis: number of ALE populations with significantly different doubling times compared to the parent (FDR: *q*=0.05). **(B)** Design of a stepwise scale-up for validation. Coloured yeast represents ALE selection environments. Numbers = number of populations tested.





Appendix Figure S4. Selecting clones for 80L scale-up experiments. 11 clones (iso 1-11) were isolated from the high sugar adapted ALE population E2 (26, 37) (pop.) and clonally expanded (n=24) on synthetic grape must. Their  $\log_2$  doubling time normalized to that of the global control strain E2 is shown and compared to that of ALE population E2 (26, 37). Arrows: p<0.05 (one sided Student's t-test), error bars = S. d. Isolates 3 and 10 were selected for scale-up experiments in 80L grape must.



Appendix Figure S5. High sugar adapted ALE clonal isolates ferment grape must well in larger liquid cultures. We followed the capacity of clonal isolates from the high sugar adapted ALE population E2 (26, 37) and the parent E2 strain to ferment grape must in 80L cultures, by measuring the grape must density. The time-resolved grape must density is shown for isolates (iso) 3 and 12 and the corresponding parent strain cultivated in the same grape must.



**Appendix Figure S6. Sequence variations in high sugar adapted ALE clones.** We sequenced the high sugar adapted ALE population E2 (26, 37) as well as isolates 3 and 12 from this population and called variants relative the E2 parent strain. The Venn diagram shows the genes containing called single nucleotide variants in the clones and in the high sugar adapted ALE population E2 (26, 37).