Supporting Information

Sewage and organic pollution compounds in Nairobi River urban sediments characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS)

Rory P. Downham^a, Christopher H. Vane^b, Benedict Gannon^a, Lydia A. Olaka^c, and Mark P. Barrow^a*

- a. Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- b. British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham, NG12 5GG, UK
- c. Technical University of Kenya, Department of Geoscience and Environment, P.O. Box 52428-00200, Nairobi, Kenya

*Mark P. Barrow - Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK; orcid.org/0000-0002-6474-5357; Email: m.p.barrow@warwick.ac.uk

Supplementary Tables

Compound name	Formula	CAS no.	Structure	Product details
Cholesterol (5-Cholesten-3β-ol)	C ₂₇ H ₄₆ O	57-88-5	HO	CRS, European Pharmacopoeia C2155000
β-Sitosterol (Stigmast-5-en-3β-ol)	C ₂₉ H ₅₀ O	83-46-5	HO	Avanti Polar Lipids 700095
Stigmasterol (Stigmasta-5,22-dien-3β-ol)	C ₂₉ H ₄₈ O	83-48-7	HO	Avanti Polar Lipids 700062(P)
Coprostanol (5β-Cholestan-3β-ol)	C ₂₇ H ₄₈ O	360-68-9	HO	Sigma Aldrich C7578
Cholestanol (5α-Cholestan-3β-ol)	C ₂₇ H ₄₈ O	80-97-7	HO HO	Avanti Polar Lipids 700064(P)
5α-Sitostanol (5α-Stigmastan-3β-ol	C ₂₉ H ₅₂ O	83-45-4	HO	Avanti Polar Lipids 700121(P)

Table S.1: Details for the steroid standards.

Ion formulae (homologous series)	m/z range
$[C_{21}H_{32}+H]^+$ to $[C_{56}H_{102}+H]^+$	285.257677 to
	775.805429
$[C_{19}H_{30}+H]^+$ to $[C_{57}H_{106}+H]^+$	259.242027 to
	791.836729
$[C_{21}H_{42}O_1+H]^+$ to $[C_{53}H_{106}O_1+H]^+$	311.330842 to
	759.831644

Table S.2: Homologous series for recalibrating sediment APPI-FTICR mass spectra.

Table S.3: Steroid standard broadband recalibration lists

Compound	Ion formula	lon mass
		(calculated)
Cholesterol	[C ₂₇ H ₄₆ O] ^{•+}	386.354318
	[C ₂₇ H ₄₂ O+H] ⁺	383.330842
	$[C_{27}H_{44}+H]^+$	369.351578
	[C ₂₇ H ₄₄] ^{•+}	368.343752
β -Sitosterol	[C ₂₉ H ₅₀ O] ^{•+}	414.385617
	$[C_{29}H_{48}+H]^+$	397.382878
	$[C_{29}H_{46}O+H]^+$	411.362142
	[C ₂₉ H ₄₈] ^{•+}	396.375053
Stigmasterol	[C ₂₉ H ₄₈ O] ^{•+}	412.369967
	[C ₂₉ H ₄₆ +H] ⁺	395.367228
	[C ₂₉ H ₄₆] ^{•+}	394.359402
	$[C_{28}H_{42}+H]^+$	379.335927
Coprostanol and	[C ₂₇ H ₄₈ O] ^{•+}	388.369967
cholestanol	$[C_{27}H_{46}+H]^+$	371.367228
	$[C_{26}H_{44}O+H]^+$	373.346492
	$[C_{26}H_{42}+H]^+$	355.335927
5α-Sitostanol	$[C_{29}H_{52}O]^{\bullet+}$	416.401267
	[C ₂₈ H ₄₈ O+H] ⁺	401.377792
	$[C_{29}H_{50}+H]^+$	399.398528
	$[C_{28}H_{46}+H]^+$	383.367228

Compound	Ion formula	lon mass
	(simplified)	(calculated)
Cholesterol	[C ₂₇ H ₄₆ O] ⁺	386.354318
	[C ₂₇ H ₄₄] ⁺	368.343753
	$[C_{26}H_{43}O]^+$	371.330842
	$[C_{26}H_{41}]^+$	353.320278
	[C ₂₄ H ₃₈] ⁺	326.296803
	[C ₂₂ H ₃₇] ⁺	301.288978
	$[C_{19}H_{27}]^+$	255.210727
	$[C_{16}H_{23}O]^+$	231.174342
	[C ₁₆ H ₂₁] ⁺	213.163777
	$[C_{12}H_{18}O]^+$	178.135217
β -Sitosterol	$[C_{29}H_{50}O]^+$	414.385617
	[C ₂₈ H ₄₇ O] ⁺	399.362142
	$[C_{28}H_{45}]^+$	381.351577
	$[C_{26}H_{42}]^+$	354.328102
	[C ₂₄ H ₄₁] ⁺	329.320277
	$[C_{19}H_{29}O]^+$	273.221292
	[C ₁₉ H ₂₇] ⁺	255.210727
	$[C_{16}H_{23}O]^+$	231.174342
	[C ₁₆ H ₂₁] ⁺	213.163777
Stigmasterol	[C ₂₉ H ₄₈ O] ⁺	412.369967
	$[C_{29}H_{46}]^+$	394.359402
	[C ₂₈ H ₄₃] ⁺	379.335927
	[C ₁₉ H ₂₇ O] ⁺	271.205641
	[C ₁₅ H ₁₇] ⁺	197.132477
	[C ₁₄ H ₁₇] ⁺	185.132477
Coprostanol and	[C ₂₇ H ₄₈ O] ⁺	388.369967
cholestanol	[C ₂₇ H ₄₆] ⁺	370.359402
	[C ₂₆ H ₄₃] ⁺	355.335927
	[C ₁₉ H ₃₄] ⁺	262.265502
	$[C_{16}H_{25}O]^+$	233.189991
	$[C_{16}H_{23}]^+$	215.179427
5α-Sitostanol	$[C_{29}H_{52}O]^+$	416.401267
	$[C_{28}H_{49}O]^+$	401.377792
	$[C_{28}H_{47}]^+$	383.367228
	$[C_{21}H_{38}]^+$	290.296802
	$[C_{16}H_{25}O]^+$	233.189991
	[C ₁₆ H ₂₃] ⁺	215.179427

Table S.4: Steroid standard CID recalibration lists.

Peak m/z	Relative intensity, %	Assigned m/z	Ion formula	Interpretation	Detected by van Agthoven et al.? ¹
369.35158	100	369.351578	$[C_{27}H_{44}+H]^+$	$[M+H-H_2O]^+$	Y
368.34375	92.96	368.343753	[C ₂₇ H ₄₄] ^{●+}	[M–H ₂ O] ^{•+}	Y
386.35431	60.77	386.354318	[C ₂₇ H ₄₆ O] ^{●+}	[M] ^{●+}	Y
385.34651	7.74	385.346492	$[C_{27}H_{44}O+H]^+$	$[M+H-H_2]^+$	Y
371.33086	7.49	371.330842	$[C_{26}H_{42}O+H]^+$	$[M+H-CH_4]^+$	Y
383.33085	6.89	383.330842	$[C_{27}H_{42}O+H]^+$	[M+H–4H]⁺	Y
384.33868	4.14	384.338667	[C ₂₇ H ₄₄ O] ^{●+}	[M−H ₂] ^{•+}	Y
353.32031	3.78	353.320278	$[C_{26}H_{40}+H]^+$		Y
367.33596	2.55	367.335928	$[C_{27}H_{42}+H]^+$	$[M+H-H_2O-H_2]^+$	Y
301.28903	2.40	301.288978	$[C_{22}H_{36}+H]^+$		Y
177.16386	1.92	177.163777	[C ₁₃ H ₂₀ +H] ⁺	Solvent background ion	Ν
401.34142	1.11	401.341407	$[C_{27}H_{44}O_2+H]^+$	[M+H+O–H ₂] ⁺	Y
366.32813	1.09	366.328103	$[C_{27}H_{42}]^{\bullet+}$	$[M-H_2O-H_2]^{\bullet+}$	Y
382.32302	1.05	382.323017	[C ₂₇ H ₄₂ O] ^{•+}	[M–4H] ^{•+}	Y

Table S.5. Cholesterol monoisotopic ions detected via broadband APPI-FTICR MS (in propanol and toluene, but not dichloromethane), with a relative intensity > 1%.

Peak m/z	Relative	Assigned	Ion formula	Interpretation
	intensity, %	m/z		
397.38288	100.00	397.382878	$[C_{29}H_{48}+H]^+$	$[M+H-H_2O]^+$
396.37505	81.18	396.375053	[C ₂₉ H ₄₈] ^{●+}	$[M-H_2O]^{\bullet+}$
414.38561	71.19	414.385618	[C ₂₉ H ₅₀ O] ^{●+}	[M]•+
411.36215	12.94	411.362143	$[C_{29}H_{46}O+H]^+$	[M+H–4H] ⁺
413.37778	12.43	413.377793	$[C_{29}H_{48}O+H]^+$	$[M+H-H_2]^+$
412.36996	7.22	412.369968	[C ₂₉ H ₄₈ O] ^{●+}	[M−H ₂] ^{•+}
487.42978	6.12	487.429828	$[C_{36}H_{54}+H]^+$	Unknown
399.36215	5.54	399.362143	[C ₂₈ H ₄₆ O+H] ⁺	$[M+H-CH_4]^+$
443.38835	4.23	443.388357	$[C_{30}H_{50}O_2+H]^+$	Unknown
381.35157	4.06	381.351578	[C ₂₈ H ₄₄ +H] ⁺	$[M+H-CH_4-H_2O]^+$
503.42472	3.86	503.424743	$[C_{36}H_{54}O+H]^+$	Unknown
429.37270	3.17	429.372707	$[C_{29}H_{48}O_2+H]^+$	Contaminant
177.16376	2.83	177.163777	$[C_{13}H_{20}+H]^+$	Solvent background ion
395.36725	2.80	395.367228	$[C_{29}H_{46}+H]^+$	$[M+H-H_2-H_2O]^+$
410.35433	1.61	410.354318	[C ₂₉ H ₄₆ O] ^{●+}	[M–4H] ^{●+}
383.36722	1.58	383.367228	$[C_{28}H_{46}+H]^+$	$[M+H-CH_4O]^+$
329.32025	1.57	329.320278	$[C_{24}H_{40}+H]^+$	
427.35704	1.26	427.357057	$[C_{29}H_{46}O_2+H]^+$	Contaminant
428.36485	1.22	428.364882	$[C_{29}H_{48}O_2]^{\bullet+}$	[M+O−H ₂] ^{●+}
394.35940	1.18	394.359403	[C ₂₉ H ₄₆] ^{●+}	$[M-H_2O-H_2]^{\bullet+}$
485.43527	1.09	485.435307	$[C_{33}H_{56}O_2+H]^+$	Unknown
382.35940	1.04	382.359403	[C ₂₈ H ₄₆] ^{•+}	[M–CH ₄ O] ^{●+}
489.40907	1.00	489.409093	$[C_{35}H_{52}O+H]^+$	Unknown

Table S.6. β-sitosterol monoisotopic ions detected via broadband APPI-FTICR MS (in propanol and toluene), with a relative intensity > 1%.

Peak m/z	Relative	Assigned	Ion formula	Interpretation
	intensity, %	m/z		
412.36996	100.00	412.369968	[C ₂₉ H ₄₈ O] ^{●+}	[M] ^{•+}
395.36723	59.01	395.367228	$[C_{29}H_{46}+H]^+$	$[M+H-H_2O]^+$
394.35942	42.64	394.359403	[C ₂₉ H ₄₆] ^{●+}	[M−H ₂ O] ^{•+}
409.34652	8.62	409.346492	$[C_{29}H_{44}O+H]^+$	[M+H–4H]⁺
369.31516	7.92	369.315192	$[C_{26}H_{40}O+H]^+$	$[M+H-C_3H_8]^+$
300.24459	7.67	300.244767	$[C_{21}H_{32}O]^{\bullet+}$	$[M-C_8H_{16}]^{\bullet+}$
411.36217	5.89	411.362143	$[C_{29}H_{46}O+H]^+$	$[M+H-H_2]^+$
379.33592	4.14	379.335928	$[C_{28}H_{42}+H]^+$	$[M+H-CH_4-H_2O]^+$
255.21051	4.12	255.210727	$[C_{19}H_{26}+H]^+$	$[M+H-C_{10}H_{22}O]^+$
351.30456	4.08	351.304628	$[C_{26}H_{38}+H]^+$	$[M+H-C_3H_8-H_2O]^+$
271.20544	4.02	271.205642	$[C_{19}H_{26}O+H]^+$	$[M+H-C_{10}H_{22}]^+$
397.34651	3.77	397.346492	$[C_{28}H_{44}O+H]^+$	$[M+H-CH_4]^+$
314.26026	2.95	314.260417	[C ₂₂ H ₃₄ O] ^{●+}	$[M-C_7H_{14}]^{\bullet+}$
410.35436	2.94	410.354318	[C ₂₉ H ₄₆ O] ^{●+}	[M−H ₂] ^{•+}
311.27317	2.92	311.273328	$[C_{23}H_{34}+H]^+$	
427.35713	2.87	427.357057	$[C_{29}H_{46}O_2+H]^+$	Contaminant
410.39074	2.81	410.390703	[C ₃₀ H ₅₀] ^{●+}	Contaminant
299.23676	2.51	299.236942	$[C_{21}H_{30}O+H]^+$	
282.23401	1.67	282.234202	[C ₂₁ H ₃₀] ^{•+}	
407.33089	1.66	407.330842	$[C_{29}H_{42}O+H]^+$	
393.35161	1.54	393.351578	$[C_{29}H_{44}+H]^+$	
270.19761	1.46	270.197817	[C ₁₉ H ₂₆ O] ^{●+}	
272.21327	1.42	272.213467	[C ₁₉ H ₂₈ O] ^{●+}	
297.2575	1.37	297.257677	$[C_{22}H_{32}+H]^+$	
273.22109	1.15	273.221292	$[C_{19}H_{28}O+H]^+$	
398.35431	1.12	398.354318	$[C_{28}H_{46}O]^{\bullet+}$	
381.3516	1.11	381.351578	[C ₂₈ H ₄₄ +H] ⁺	
408.33872	1.09	408.338667	[C ₂₉ H ₄₄ O] ^{●+}	
396.3387	1.06	396.338667	$[C_{28}H_{44}O]^{\bullet+}$	

Table S.7: Stigmasterol monoisotopic ions detected via broadband APPI-FTICR MS (in propanol and toluene), with a relative intensity > 1%.

Peak m/z	Relative	Assigned	Ion formula	Interpretation
	intensity, %	m/z		
388.36997	100.00	388.36997	$[C_{27}H_{48}O]^{\bullet+}$	[M] ^{•+}
373.34649	46.33	373.34649	$[C_{26}H_{44}O+H]^+$	$[M+H-CH_4]^+$
371.36723	45.58	371.36723	$[C_{27}H_{46}+H]^+$	$[M+H-H_2O]^+$
355.33593	32.43	355.33593	$[C_{26}H_{42}+H]^+$	$[M+H-CH_4-H_2O]^+$
177.16385	30.21	177.16378	$[C_{13}H_{20}+H]^+$	Solvent background ion
370.35941	26.19	370.3594	[C ₂₇ H ₄₆] ^{●+}	$[M-H_2O]^{\bullet+}$
387.36213	10.65	387.36214	$[C_{27}H_{46}O+H]^+$	$[M+H-H_2]^+$
369.35159	6.76	369.35158	$[C_{27}H_{44}+H]^+$	$[M+H-H_2O-H_2]^+$
215.17950	6.23	215.17943	$[C_{16}H_{22}+H]^+$	
435.38326	5.80	435.38327	$[C_{28}H_{50}O_3+H]^+$	Unknown
461.41400	4.17	461.41418	$[C_{34}H_{52}+H]^+$	Unknown
383.36726	3.66	383.36723	$[C_{28}H_{46}+H]^+$	Unknown
403.35702	3.58	403.35706	$[C_{27}H_{46}O_2+H]^+$	$[M+H+O-H_2]^+$
464.43764	3.43	464.43765	[C ₃₄ H ₅₆] ^{●+}	Unknown
385.34649	3.26	385.34649	[C ₂₇ H ₄₄ O+H] ⁺	[M+H–4H]⁺
421.36758	2.54	421.36762	$[C_{27}H_{48}O_3+H]^+$	[M+H+O ₂] ⁺
493.40377	2.30	493.40401	$[C_{34}H_{52}O_2+H]^+$	Unknown
386.35432	2.17	386.35432	[C ₂₇ H ₄₆ O] ^{●+}	[M–H ₂] ^{•+}
233.19007	2.03	233.18999	$[C_{16}H_{24}O+H]^+$	
331.29951	2.00	331.29954	[C ₂₃ H ₃₈ O+H] ⁺	
400.37001	1.99	400.36997	[C ₂₈ H ₄₈ O] ^{•+}	Unknown
417.37267	1.96	417.37271	$[C_{28}H_{48}O_2+H]^+$	Unknown
288.28119	1.77	288.28115	[C ₂₁ H ₃₆] ^{●+}	
199.11180	1.75	199.11174	[C ₁₄ H ₁₄ O+H] ⁺	Solvent background ion
462.42185	1.69	462.422	[C ₃₄ H ₅₄] ^{●+}	Unknown
479.38806	1.62	479.38836	$[C_{33}H_{50}O_2+H]^+$	Unknown
402.38572	1.53	402.38562	[C ₂₈ H ₅₀ O] ^{●+}	Unknown
447.39862	1.51	447.39853	$[C_{33}H_{50}+H]^+$	Unknown
429.40930	1.50	429.40909	$[C_{30}H_{52}O+H]^+$	Unknown
201.16386	1.39	201.16378	$[C_{15}H_{20}+H]^+$	
185.13256	1.25	185.13248	$[C_{14}H_{16}+H]^+$	Solvent background ion
198.10399	1.21	198.10392	[C ₁₄ H ₁₄ O] ^{•+}	Solvent background ion
445.40414	1.15	445.40401	$[C_{30}H_{52}O_2+H]^+$	Unknown
367.33592	1.13	367.33593	[C ₂₇ H ₄₂ +H] ⁺	
219.21082	1.09	219.21073	$[C_{16}H_{26}+H]^+$	Contaminant
183.11693	1.00	183.11683	$[C_{14}H_{14}+H]^+$	Solvent background ion

Table S.8. Coprostanol monoisotopic ions detected via broadband APPI-FTICR MS (in propanol and toluene), with a relative intensity > 1%.

Table S.9. Cholestanol monoisotopic ions detected via broadband APPI-FTICR MS (in propanol and toluene), with a relative intensity > 1%.

Peak m/z	Relative intensity,	Assigned m/z	Ion formula	Interpretation
388.36997	100.00	388.369968	[C ₂₇ H ₄₈ O] ^{•+}	[M]•+
371.36723	19.49	371.367228	[C ₂₇ H ₄₆ +H] ⁺	[M+H–H ₂ O] ⁺
373.34649	11.12	373.346492	[C ₂₆ H ₄₄ O+H] ⁺	[M+H–CH ₄] ⁺
387.36214	6.24	387.362143	[C ₂₇ H ₄₆ O+H] ⁺	[M+H–H ₂] ⁺
355.33593	4.02	355.335928	$[C_{26}H_{42}+H]^+$	$[M+H-CH_4-H_2O]^+$
370.35940	2.28	370.359403	[C ₂₇ H ₄₆] ^{●+}	$[M-H_2O]^{\bullet+}$
177.16379	1.32	177.163777	$[C_{13}H_{20}+H]^+$	Solvent background ion

Table S.10. 5 α -Sitostanol monoisotopic ions detected via broadband APPI-FTICR MS (in propanol and toluene), with a relative intensity > 1%.

Peak m/z	Relative	Assigned	Ion formula	Interpretation
	intensity, %	m/z		
416.40126	100.00	416.401268	$[C_{29}H_{52}O]^{\bullet+}$	[M] ^{•+}
399.39853	14.74	399.398528	$[C_{29}H_{50}+H]^+$	$[M+H-H_2O]^+$
530.46924	12.08	530.469347	$[C_{35}H_{62}O_3]^{\bullet+}$	Contaminant
401.37780	10.10	401.377793	[C ₂₈ H ₄₈ O+H] ⁺	$[M+H-CH_4]^+$
415.39344	7.77	415.393443	$[C_{29}H_{50}O+H]^+$	$[M+H-H_2]^+$
177.16379	4.42	177.163777	$[C_{13}H_{20}+H]^+$	Solvent background ion
383.36723	4.04	383.367228	$[C_{28}H_{46}+H]^+$	$[M+H-CH_4-H_2O]^+$
447.34686	3.05	447.346886	$[C_{28}H_{46}O_4+H]^+$	Contaminant
398.39072	2.78	398.390703	[C ₂₉ H ₅₀] ^{●+}	$[M-H_2O]^{\bullet+}$
402.38562	2.48	402.385618	$[C_{28}H_{50}O]^{\bullet+}$	
413.37778	1.55	413.377793	$[C_{29}H_{48}O+H]^+$	
474.40667	1.27	474.406747	$[C_{31}H_{54}O_3]^{\bullet+}$	Contaminant
397.38287	1.08	397.382878	$[C_{29}H_{48}+H]^+$	
414.38563	1.00	414.385618	$[C_{29}H_{50}O]^{\bullet+}$	

Table S.11: Ion formula assignments for the standard cholesterol CID spectrum. Interpretations marked* are based on work by West and Reid².

Cholesterol standard fragmentation mass spectrum					Interpretation	Detected in
Peak	Rel.	Assigned	Ion formula	Electron		Kawangware
m/z	inten.,	m/z	(simplified)	species		CID spectrum,
	%					tor isolation at
						m/2 386.35?
386 35435	100.00	386 354318	[C37H4cO] ⁺	Odd	[M]+•	Y (37 41)
231 17433	72 49	231 174342	$[C_{12}H_{23}O]^+$	Even		Y (79 02)
301 28897	64 66	301 288978	[C16H230]	Even	$C_1 H_2 O \log s^*$	Y (29 73)
371 33086	56.45	371 3308/2	$[C_{22}[1_{37}]]$	Even		V (85 56)
368 3/1376	35 53	368 3/13753	$[C_{26}H_{43}O]$	Odd		Y (12 03)
500.54570	55.55	508.545755	[C2/1144]	Ouu	H ₂ O and Culles	1 (12.03)
213.16377	23.39	213.163777	[C ₁₆ H ₂₁] ⁺	Even	losses	Y (59.02)
353.32027	21.43	353.320278	$[C_{26}H_{41}]^+$	Even	H ₂ O and CH ₃ losses	Y (35.38)
255.21072	21.23	255.210727	[C ₁₉ H ₂₇]⁺	Even	H ₂ O and C ₈ H ₁₇ loss*	Y (14.85)
273.22129	20.29	273.221292	$[C_{19}H_{29}O]^+$	Even	C ₈ H ₁₇ loss*	Y (14.94)
229.19507	13.65	229.195077	$[C_{17}H_{25}]^+$	Even	C ₁₀ H ₂₁ O loss*	Y (14.65)
326.29680	13.34	326.296803	$[C_{24}H_{38}]^+$	Odd		Y (5.53)
246.19781	13.02	246.197817	$[C_{17}H_{26}O]^+$	Odd		Y (20.81)
228.18724	13.01	228.187252	$[C_{17}H_{24}]^+$	Odd		Y (9.66)
343.29953	8.99	343.299542	$[C_{24}H_{39}O]^+$	Even		Ν
178.13523	7.40	178.135217	$[C_{12}H_{18}O]^+$	Odd		Ν
161.13249	7.29	161.132477	$[C_{12}H_{17}]^+$	Even		Y (19.99)
327.30463	7.25	327.304628	$[C_{24}H_{39}]^+$	Even		Y (13.02)
245.18998	6.93	245.189992	$[C_{17}H_{25}O]^+$	Even		Y (7.55)
227.17942	6.46	227.179427	$[C_{17}H_{23}]^+$	Even		Y (7.25)
300.28112	5.74	300.281153	$[C_{22}H_{36}]^+$	Odd		Ν
232.18215	5.56	232.182167	$[C_{16}H_{24}O]^+$	Odd		Y (17.79)
313.28896	5.30	313.288978	$[C_{23}H_{37}]^+$	Even		Ν
173.13249	5.01	173.132477	$[C_{13}H_{17}]^+$	Even		Y (8.37)
301.25257	4.80	301.252592	$[C_{21}H_{33}O]^+$	Even		Ν
160.12467	4.57	160.124652	$[C_{12}H_{16}]^+$	Odd		Ν
357.31526	4.51	357.315192	$[C_{25}H_{41}O]^+$	Even		Ν
189.16378	4.28	189.163777	$[C_{14}H_{21}]^+$	Even	C ₁₃ H ₂₅ O loss*	Y (8.65)
175.14814	3.96	175.148127	$[C_{13}H_{19}]^+$	Even		Y (8.57)
314.29681	3.96	314.296803	[C ₂₃ H ₃₈] ⁺	Odd		Y (4.73)
159.11683	3.62	159.116827	$[C_{12}H_{15}]^+$	Even		Y (4.56)
163.14813	3.53	163.148127	$[C_{12}H_{19}]^+$	Even		Y (5.66)
199.14812	3.40	199.148127	[C ₁₅ H ₁₉]⁺	Even	C ₁₂ H ₂₅ and H ₂ O losses	Y (13.80)
325.28901	3.31	325.288978	$[C_{24}H_{37}]^+$	Even		Y (3.69)
187.14811	3.28	187.148127	$[C_{14}H_{19}]^+$	Even		Y (7.20)
339.30460	3.18	339.304628	$[C_{25}H_{39}]^+$	Even		N

(Table S.11 continued...)

1.0.0.0 0.000		,			
206.20288	3.09	206.202902	$[C_{15}H_{26}]^+$	Odd	Ν
203.14301	3.04	203.143042	$[C_{14}H_{19}O]^+$	Even	Y (4.04)
145.10121	3.03	145.101177	$[C_{11}H_{13}]^+$	Even	Ν
214.17160	2.74	214.171602	$[C_{16}H_{22}]^+$	Odd	Y (12.50)
147.11684	2.72	147.116827	$[C_{11}H_{15}]^+$	Even	Ν
201.16377	2.54	201.163777	$[C_{15}H_{21}]^+$	Even	Y (11.87)
299.27325	2.45	299.273328	$[C_{22}H_{35}]^+$	Even	Ν
260.21347	2.41	260.213467	$[C_{18}H_{28}O]^+$	Odd	Y (5.42)
174.14030	2.36	174.140302	$[C_{13}H_{18}]^+$	Odd	Ν
185.13248	2.18	185.132477	$[C_{14}H_{17}]^+$	Even	Y (9.81)
215.17938	2.18	215.179427	$[C_{16}H_{23}]^+$	Even	Y (12.67)
316.31241	2.18	316.312453	$[C_{23}H_{40}]^+$	Odd	Y (31.75)
149.13251	2.11	149.132477	$[C_{11}H_{17}]^+$	Even	Y (2.90)
283.24201	2.07	283.242027	$[C_{21}H_{31}]^+$	Even	Ν
171.11688	2.05	171.116827	$[C_{13}H_{15}]^+$	Even	Y (4.19)
285.25783	1.98	285.257677	$[C_{21}H_{33}]^+$	Even	Ν
191.17945	1.95	191.179427	$[C_{14}H_{23}]^+$	Even	Y (5.35)
135.11683	1.89	135.116827	$[C_{10}H_{15}]^+$	Even	Ν
242.20286	1.77	242.202902	$[C_{18}H_{26}]^+$	Odd	Ν
340.31251	1.74	340.312453	$[C_{25}H_{40}]^+$	Odd	Ν
158.10902	1.73	158.109002	$[C_{12}H_{14}]^+$	Odd	Ν
247.20563	1.72	247.205642	$[C_{17}H_{27}O]^+$	Even	Ν
200.15589	1.55	200.155952	$[C_{15}H_{20}]^+$	Odd	Ν
164.11958	1.52	164.119567	$[C_{11}H_{16}O]^+$	Odd	Ν
172.12469	1.50	172.124652	$[C_{13}H_{16}]^+$	Odd	Ν

β-sitosterol standard fragmentation mass spectrum					Interpretation	Detected in
Peak m/z	Rel. inten., %	Assigned m/z	lon formula (simplified)	Electron species		Kawangware CID spectrum, for isolation at m/z 414.39? (rel. inten., %)
213.16379	100.00	213.163777	$[C_{16}H_{21}]^+$	Even	H ₂ O and C ₁₃ H ₂₇ losses	Y (45.65)
231.17434	95.30	231.174342	$[C_{16}H_{23}O]^+$	Even	C ₁₃ H ₂₇ loss	Y (43.32)
399.36217	59.23	399.362143	$[C_{28}H_{47}O]^+$	Even	CH ₃ loss	Y (100)
329.32025	48.75	329.320278	$[C_{24}H_{41}]^+$	Even	C₅H ₉ O loss	Y (7.50)
381.35160	29.20	381.351578	$[C_{28}H_{45}]^+$	Even	H₂O and CH₃ loss	Y (29.03)
255.21071	25.73	255.210727	[C ₁₉ H ₂₇] ⁺	Even	H ₂ O and C ₁₀ H ₂₁ losses	Y (12.89)
273.22127	24.81	273.221292	$[C_{19}H_{29}O]^+$	Even	C ₁₀ H ₂₁ loss	Y (9.71)
414.38566	22.85	414.385618	$[C_{29}H_{50}O]^+$	Odd	[M] ^{•+}	Y (14.67)
228.18727	20.74	228.187252	$[C_{17}H_{24}]^+$	Odd		Y (8.69)
396.37508	20.31	396.375053	$[C_{29}H_{48}]^+$	Odd	H ₂ O loss	Y (4.47)
246.19779	19.80	246.197817	$[C_{17}H_{26}O]^+$	Odd		Y (19.30)
245.18997	15.44	245.189992	$[C_{17}H_{25}O]^+$	Even		Y (3.09)
229.19508	15.16	229.195077	$[C_{17}H_{25}]^+$	Even		Y (10.75)
227.17944	14.78	227.179427	$[C_{17}H_{23}]^+$	Even		Y (7.89)
354.32808	13.14	354.328103	$[C_{26}H_{42}]^+$	Odd		N
355.33593	10.65	355.335928	$[C_{26}H_{43}]^+$	Even		Y (15.41)
203.14305	10.28	203.143042	$[C_{14}H_{19}O]^+$	Even		Y (3.94)
185.13250	8.94	185.132477	$[C_{14}H_{17}]^+$	Even		Y (4.14)
178.13524	8.92	178.135217	$[C_{12}H_{18}O]^+$	Odd		N
214.17161	8.79	214.171602	$[C_{16}H_{22}]^+$	Odd		Y (5.58)
187.14815	8.35	187.148127	$[C_{14}H_{19}]^+$	Even		Y (7.22)
173.13250	8.23	173.132477	$[C_{13}H_{17}]^+$	Even		Y (7.98)
215.17943	8.08	215.179427	$[C_{16}H_{23}]^+$	Even	C ₁₃ H ₂₅ and H ₂ O losses	Y (5.32)
161.13250	8.07	161.132477	$[C_{12}H_{17}]^+$	Even		Y (10.50)
199.14816	7.59	199.148127	[C1 ₅ H ₁₉]⁺	Even	$C_{14}H_{29}$ and H_2O losses	Y (11.23)
201.16381	7.37	201.163777	$[C_{15}H_{21}]^+$	Even	C ₁₄ H ₂₇ and H ₂ O losses	Y (7.36)
175.14816	7.06	175.148127	$[C_{13}H_{19}]^+$	Even		Y (4.91)
189.16381	6.91	189.163777	$[C_{14}H_{21}]^+$	Even		Y (6.00)
203.17943	6.56	203.179427	$[C_{15}H_{23}]^+$	Even		Y (7.48)
371.33080	6.56	371.330842	$[C_{26}H_{43}O]^+$	Even		N
232.18217	5.95	232.182167	$[C_{16}H_{24}O]^+$	Odd		Y (5.41)
328.31237	5.53	328.312453	$[C_{24}H_{40}]^+$	Odd		N
341.32029	5.15	341.320278	$[C_{25}H_{41}]^+$	Even		Ν
159.11685	4.65	159.116827	$[C_{12}H_{15}]^+$	Even		Y (4.93)
342.32803	4.59	342.328103	$[C_{25}H_{42}]^+$	Odd		Y (3.51)

1.0.0.0 0.22 0		,				
353.32032	4.56	353.320278	$[C_{26}H_{41}]^+$	Even		Ν
217.19508	4.36	217.195077	$[C_{16}H_{25}]^+$	Even		Y (3.87)
241.19506	3.81	241.195077	$[C_{18}H_{25}]^+$	Even		Y (4.18)
171.11685	3.79	171.116827	$[C_{13}H_{15}]^+$	Even		Y (6.24)
186.14033	3.75	186.140302	$[C_{14}H_{18}]^+$	Odd		N
231.21073	3.42	231.210727	$[C_{17}H_{27}]^+$	Even		Y (2.69)
260.21343	3.17	260.213467	$[C_{18}H_{28}O]^+$	Odd		N
339.30467	2.83	339.304628	$[C_{25}H_{39}]^+$	Even		Y (2.77)
217.15870	2.71	217.158692	$[C_{15}H_{21}O]^+$	Even	C ₁₄ H ₂₉ loss	Y (5.65)

(Table S.12 continued...)

Stigmasterol standard fragmentation mass spectrum					Interpretation	Detected in
Peak m/z	Rel.	Assigned	lon	Electron		Kawangware
	inten.,	m/z	formula	species		CID spectrum,
	%		(simplified)			for isolation at
						m/z 412.37?
211 14012	100.00	211 140127	[C]+	E ven		(rel. Inten., %)
211.14812	100.00	211.148127	[C ₁₆ H ₁₉]	Even	$C_{13}H_{29}U$ loss	Y (37.10)
379.33593	78.42	379.335928	[C ₂₈ H ₄₃] ⁺	Even	H ₂ O and CH ₃ losses	Y (45.73)
225.16377	45.36	225.163777	$[C_{17}H_{21}]^+$	Even	C ₁₂ H ₂₇ O loss	Y (13.23)
226.17159	40.11	226.171602	$[C_{17}H_{22}]^+$	Odd	C ₁₂ H ₂₆ O loss	Y (13.27)
197.13248	32.04	197.132477	$[C_{15}H_{17}]^+$	Even	C ₁₄ H ₃₁ O loss	Y (13.92)
239.17941	23.55	239.179427	$[C_{18}H_{23}]^+$	Even		Y (8.88)
185.13248	22.37	185.132477	$[C_{14}H_{17}]^+$	Even		Y (12.73)
253.19506	22.01	253.195077	$[C_{19}H_{25}]^+$	Even	C ₁₀ H ₂₁ and H ₂ O losses	Y (13.65)
169.10118	21.49	169.101177	[C ₁₃ H ₁₃]⁺	Even		Y (5.51)
199.14812	16.13	199.148127	$[C_{15}H_{19}]^+$	Even	C ₁₄ H ₂₇ and H ₂ O losses	Y (10.54)
227.17941	13.88	227.179427	$[C_{17}H_{23}]^+$	Even		Y (8.54)
271.20562	13.53	271.205642	[C ₁₉ H ₂₇ O] ⁺	Even	C ₁₀ H ₂₁ loss	Y (37.65)
213.16377	13.26	213.163777	$[C_{16}H_{21}]^+$	Even	H ₂ O and C ₁₃ H ₂₅ losses	Y (15.20)
183.11683	13.11	183.116827	$[C_{14}H_{15}]^+$	Even		Y (5.91)
229.15868	12.50	229.158692	$[C_{16}H_{21}O]^+$	Even		Y (10.27)
171.11683	11.41	171.116827	$[C_{13}H_{15}]^+$	Even		Y (9.32)
244.18215	10.21	244.182167	$[C_{17}H_{24}O]^+$	Odd		Ν
394.35942	9.44	394.359402	$[C_{29}H_{46}]^+$	Odd	H ₂ O loss	Y (13.63)
397.34651	8.68	397.346492	$[C_{28}H_{45}O]^+$	Even	CH ₃ loss	Y (32.25)
198.14030	8.60	198.140302	$[C_{15}H_{18}]^+$	Odd		N
186.14030	8.47	186.140302	$[C_{14}H_{18}]^+$	Odd		Y (5.80)
245.18997	6.36	245.189992	$[C_{17}H_{25}O]^+$	Even		Y (6.37)
212.15594	6.01	212.155952	$[C_{16}H_{20}]^+$	Odd		N
295.24200	5.79	295.242027	$[C_{22}H_{31}]^+$	Even		Ν
184.12465	5.69	184.124652	$[C_{14}H_{16}]^+$	Odd		N
281.22636	5.07	281.226377	$[C_{21}H_{29}]^+$	Even		N
412.36998	4.94	412.369968	$[C_{29}H_{48}O]^+$	Odd	[M] ^{•+}	Y (89.44)
243.17432	4.80	243.174342	[C ₁₇ H ₂₃ O] ⁺	Even		N
272.21342	3.76	272.213467	$[C_{19}H_{28}O]^+$	Odd		N
173.13249	3.61	173.132477	$[C_{13}H_{17}]^+$	Even		Y (6.82)
157.10119	3.37	157.101177	$[C_{12}H_{13}]^+$	Even		Ν
155.08554	3.25	155.085527	$[C_{12}H_{11}]^+$	Even		Ν
161.13249	3.09	161.132477	$[C_{12}H_{17}]^+$	Even		Y (8.54)
187.14813	3.04	187.148127	$[C_{14}H_{19}]^+$	Even		Y (6.74)
255.21071	3.04	255.210727	$[C_{19}H_{27}]^+$	Even	H ₂ O and C ₁₀ H ₁₉ losses	Y (5.63)

Table S.13: Ion formula assignments for the stigmasterol CID spectrum.

(Table S.13 continued...)

		/				
257.18999	3.01	257.189992	$[C_{18}H_{25}O]^+$	Even		Y (6.62)
159.11683	2.92	159.116827	$[C_{12}H_{15}]^+$	Even		Y (5.73)
231.17433	2.76	231.174342	$[C_{16}H_{23}O]^+$	Even	C ₁₃ H ₂₅ loss	Y (8.42)
258.19780	2.62	258.197817	$[C_{18}H_{26}O]^+$	Odd		Ν
214.17160	2.44	214.171602	$[C_{16}H_{22}]^+$	Odd		Ν
172.12465	2.30	172.124652	$[C_{13}H_{16}]^+$	Odd		Ν
217.15870	2.26	217.158692	$[C_{15}H_{21}O]^+$	Even	C ₁₄ H ₂₇ loss	Ν
215.14304	2.20	215.143042	$[C_{15}H_{19}O]^+$	Even		Ν
201.16377	2.16	201.163777	$[C_{15}H_{21}]^+$	Even	C ₁₄ H ₂₅ and H ₂ O losses	Y (11.08)
170.10901	2.14	170.109002	$[C_{13}H_{14}]^+$	Odd		Ν
241.19505	2.02	241.195077	$[C_{18}H_{25}]^+$	Even		Ν
326.29664	1.97	326.296802	$[C_{24}H_{38}]^+$	Odd		Ν
240.18723	1.92	240.187252	$[C_{18}H_{24}]^+$	Odd		Ν
174.14031	1.81	174.140302	$[C_{13}H_{18}]^+$	Odd		Ν
327.30460	1.75	327.304627	$[C_{24}H_{39}]^+$	Even	C₅H ₉ O loss	Ν
158.10903	1.66	158.109002	$[C_{12}H_{14}]^+$	Odd		Ν
349.28902	1.65	349.288978	$[C_{26}H_{37}]^+$	Even		Ν
201.12741	1.59	201.127392	$[C_{14}H_{17}O]^+$	Even		Ν
229.19508	1.47	229.195077	$[C_{17}H_{25}]^+$	Even		Ν
187.11174	1.46	187.111742	$[C_{13}H_{15}O]^+$	Even		Ν
353.32029	1.43	353.320278	$[C_{26}H_{41}]^+$	Even		Ν
200.15595	1.42	200.155952	$[C_{15}H_{20}]^+$	Odd		Ν

Table S.14: Ion formula assignments for the coprostanol CID spectrum.

Coprostanol standard fragmentation mass spectrum					Interpretation	Detected in
Peak m/z	Rel. inten., %	Assigned m/z	lon formula (simplified)	Electron species		Kawangware CID spectrum, for isolation at m/z 388.37? (rel. inten., %)
373.34647	54.13	373.346492	[C ₂₆ H ₄₅ O] ⁺	Even	CH ₃ loss	Y (100.00)
233.18998	29.99	233.189992	$[C_{16}H_{25}O]^+$	Even	C ₁₁ H ₂₃ loss	Y (53.25)
388.36999	15.01	388.369968	[C ₂₇ H ₄₈ O] ⁺	Odd	[M]•+	Y (21.81)
355.33591	8.89	355.335928	[C ₂₆ H ₄₃] ⁺	Even	H₂O and CH₃ losses	Y (23.80)
215.17943	8.68	215.179427	[C ₁₆ H ₂₃] ⁺	Even	H ₂ O and C ₁₁ H ₂₃ losses	Y (30.44)
262.26545	6.65	262.265503	[C ₁₉ H ₃₄] ⁺	Odd	C ₈ H ₁₄ O loss	Y (9.51)
288.28112	3.08	288.281153	[C ₂₁ H ₃₆] ⁺	Odd	C ₆ H ₁₂ O loss	Y (5.87)
370.35951	2.84	370.359403	$[C_{27}H_{46}]^+$	Odd	$[M-H_2O]^{\bullet+}$	Y (8.69)
201.16376	1.69	201.163777	$[C_{15}H_{21}]^+$	Even	C ₁₂ H ₂₇ O loss	Y (2.77)

Cholestanol standard fragmentation mass spectrum Interpretation Detected in Kawangware Peak m/z Rel. Assigned lon Electron CID spectrum, formula inten., m/z species for isolation at % (simplified) m/z 388.37? (rel. inten., %) 373.34649 100.00 373.346492* $[C_{26}H_{45}O]^+$ Even CH₃ loss Y (100.00) 84.37 233.19000 233.189992* $[C_{16}H_{25}O]^+$ Even C11H23 loss Y (53.25) H_2O and $C_{11}H_{23}$ 59.50 Y (30.44) 215.17944 215.179427* $[C_{16}H_{23}]^+$ Even losses 262.26548 32.67 262.265503* $[C_{19}H_{34}]^+$ Odd C₈H₁₄O loss Y (9.51) 388.36999 27.24 [C₂₇H₄₈O]⁺ Odd [M]^{•+} Y(21.81) 388.369968* H_2O and CH_3 355.33592 15.79 355.335928* Even Y (23.80) $[C_{26}H_{43}]^+$ losses $C_{11}H_{22}$ and H_2O 216.18726 4.65 216.187252 $[C_{16}H_{24}]^+$ Odd Y (4.69) losses 234.19782 4.54 234.197817 $[C_{16}H_{26}O]^+$ Odd $C_{11}H_{22}$ loss Y (2.34) Y (5.87) 288.28114 4.36 288.281153* $[C_{21}H_{36}]^+$ Odd C₆H₁₂O loss 219.17435 3.74 219.174342 Even $C_{12}H_{25}$ loss Y(1.40) $[C_{15}H_{23}O]^+$ 370.35941 $[M-H_2O]^{\bullet+}$ 3.61 370.359403* Odd Y (8.69) $[C_{27}H_{46}]^+$ C₁₂H₂₅ and H₂O 201.16378 2.52 201.163777* $[C_{15}H_{21}]^+$ Even Y (2.77) losses 232.18217 2.52 232.182167 $[C_{16}H_{24}O]^+$ Odd Y (0.87) 202.17161 1.85 202.171602 $[C_{15}H_{22}]^+$ Odd Y (0.61) 178.13524 1.73 178.135217 [C₁₂H₁₈O]⁺ Odd Y(1.14) 331.29953 1.19 331.299542 [C₂₃H₃₈O]⁺ Even Y (1.60) 247.24203 0.81 247.242027 [C₁₈H₃₁]⁺ Even Ν 276.28111 0.79 276.281153 Odd Y (0.74) $[C_{20}H_{36}]^+$ 260.24985 0.73 260.249852 $[C_{19}H_{32}]^+$ Odd Y (0.51) 359.33081 0.72 359.330842 [C₂₅H₄₃O]⁺ Even Ν 229.19507 0.61 229.195077 $[C_{17}H_{25}]^+$ Even Y (0.64) 341.32018 0.49 341.320278 $[C_{25}H_{41}]^+$ Even Ν 230.20287 0.47 230.202902 Odd Y (0.70) $[C_{17}H_{26}]^+$ 187.14814 0.37 187.148127 $[C_{14}H_{19}]^+$ Even Ν 205.15873 0.34 205.158692 $[C_{14}H_{21}O]^+$ Even Ν

*Table S.15: Ion formula assignments for the cholestanol CID spectrum. The m/z values marked * were also detected in the coprostanol CID spectrum.*

5α-sitostanol standard fragmentation mass spectrum					Interpretation	Detected in
Peak m/z	Rel.	Assigned	lon	Electron		Kawangware
	inten.,	m/z	formula	species		CID spectrum,
	%		(simplified)			for isolation at
						m/z 416.40?
						(rel. inten., %)
401.37780	100.00	401.377793	[C ₂₈ H ₄₉ O] ⁺	Even	CH ₃ loss	Y (78.27)
233.18999	98.83	233.189992	$[C_{16}H_{25}O]^+$	Even	C ₁₃ H ₂₇ loss	Y (60.89)
215.17943	56.86	215.179427	$[C_{16}H_{23}]^+$	Even	H_2O and $C_{13}H_{27}$	Y (100.00)
					losses	
290.29677	44.84	290.296803	$[C_{21}H_{38}]^+$	Odd	C ₈ H ₁₄ O loss	Y (11.11)
416.40129	43.54	416.401268	$[C_{29}H_{52}O]^+$	Odd	[M] ^{•+}	Y (6.16)
383.36723	11.51	383.367228	$[C_{28}H_{47}]^+$	Even	H_2O and CH_3	Y (76.84)
					losses	
234.19782	10.42	234.197817	$[C_{16}H_{26}O]^+$	Odd	$C_{13}H_{26} loss$	Y (2.97)
216.18725	8.31	216.187252	$[C_{16}H_{24}]^+$	Odd	H_2O and $C_{13}H_{26}$	Y (6.83)
					losses	
398.39071	5.04	398.390703	$[C_{29}H_{50}]^+$	Odd	H ₂ O loss	Y (4.33)
316.31243	4.90	316.312453	$[C_{23}H_{40}]^+$	Odd	C ₆ H ₁₂ O loss	Y (5.59)
219.17436	4.90	219.174342	$[C_{15}H_{23}O]^+$	Even	C ₁₄ H ₂₉ loss	Y (2.07)
232.18217	4.10	232.182167	$[C_{16}H_{24}O]^+$	Odd	C ₁₃ H ₂₈ loss	Y (1.16)
201.16378	2.64	201.163777	$[C_{15}H_{21}]^+$	Even	$C_{14}H_{29} \text{ and } H_2O$	Y (11.26)
					losses	
178.13521	2.35	178.135217	$[C_{12}H_{18}O]^+$	Odd		Y (1.14)
202.17161	2.26	202.171602	$[C_{15}H_{22}]^+$	Odd		Y (0.88)
359.33086	1.79	359.330842	$[C_{25}H_{43}O]^+$	Even		Y (2.56)
304.31245	1.17	304.312453	[C ₂₂ H ₄₀] ⁺	Odd		Y (1.03)
387.36238	1.14	387.362143	$[C_{27}H_{47}O]^+$	Even		Ν
229.19510	0.78	229.195077	$[C_{17}H_{25}]^+$	Even		Y (2.69)

Table S.16: Ion formula assignments for the 5α -sitostanol CID spectrum.

Table S.17: The main sterol standard CID fragments, and whether they were present (P) or absent (A) in the corresponding mid-Kawangware CID spectra. NIS = not in standard compound CID spectrum.

Fragmentm/z 386.35m/z 414.39m/z 412.37'Cholesterol'' β -sitosterol''Stigmasterol'CH3 lossPPPH2O lossPPPCH3 and H2O lossesPPPC3H7O loss (Fig. S.13(a))PPA
$\begin{tabular}{ c c c c c } \hline \mbox{'Cholesterol'} & \mbox{'\beta-sitosterol'} & \mbox{'Stigmasterol'} \\ \hline \mbox{'CH}_3 \mbox{ loss } & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} \\ \hline \mbox{H}_2 \mbox{O loss } & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} \\ \hline \mbox{CH}_3 \mbox{ and } \mbox{H}_2 \mbox{O loss } & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} \\ \hline \mbox{CH}_3 \mbox{ and } \mbox{H}_2 \mbox{O loss } & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} \\ \hline \mbox{CH}_3 \mbox{and } \mbox{H}_2 \mbox{O loss } & \mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} \\ \hline \mbox{C}_3 \mbox{H}_7 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{H}_2 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{H}_2 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{H}_2 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{H}_2 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{H}_2 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{C}_4 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{C}_4 \mbox{O loss } (\mbox{Fig.} & \mbox{P} & \mbox{A} \\ \hline \mbox{C}_4 \mbox{C}_4 \mbox{O loss } (\mbox{Fig.} & \mbox{C}_4 C$
$CH_3 loss$ PPP $H_2O loss$ PPP $CH_3 and H_2O$ lossesPPP $C_3H_7O loss (Fig.S.13(a))PPA$
$H_2O loss$ PPP $CH_3 and H_2O$ lossesPPP $C_3H_7O loss (Fig.S.13(a))PPA$
$CH_3 \text{ and } H_2O$ lossesPPP $C_3H_7O \log (Fig.$ $S.13(a))PPPC_rH_2O \log (Fig.PPA$
lossesPPP C_3H_7O loss (Fig. S.13(a))PPA
C_3H_7O loss (Fig.PPA $S.13(a)$)PPA
S.13(a)
C-H ₂ O loss (Fig
S.13 (b))
Side chain loss
(Fig. S.13 <i>(e)</i>)
Side chain and
H ₂ O losses (Fig. P P P
S.13 (f))
Side chain (plus
H ₂) loss (Fig. A (NIS) A (NIS) P
S.13 (g))
Side chain (plus
H ₂) and H ₂ O A (NIS) A (NIS) P
losses (Fig. S.13
(<i>h</i>))
Side chain plus
C_3H_6 loss (Fig. P P P
$C_3 H_6 dH H_2 U$ P P P
(i)
(//) Side chain plus
$C_{\rm He} \log (Fig = \Delta (NIS))$ P Δ
Side chain plus
C ₄ H ₈ and H ₂ O
losses (Fig. S.14
(q))

Table S.18. The main stanol standard CID fragments, and whether they were present (P) or absent (A) in the corresponding mid-Kawangware CID spectra. NIS = not in standard compound CID spectrum.

CID Fragment	Kawangware sample peak isolations with CID					
	m/z 388.37	m/z 388.37	m/z 416.40			
	'Coprostanol'	'Cholestanol'	'5α-sitostanol'			
CH ₃ loss	Р	Р	Р			
H ₂ O loss	Р	Р	Р			
CH_3 and H_2O	D	D	D			
losses	F	Г	Г			
C ₈ H ₁₄ O loss (Fig.	D	D	D			
S.13 (c))	F	F	F			
C ₆ H ₁₂ O loss (Fig.	P	P	D			
S.13 (d))	1	1	1			
Side chain plus						
C_3H_6 loss (Fig.	Р	Р	Р			
S.14 (k))						
Side chain plus						
C_3H_5 loss (Fig.	P (NIS)	Р	Р			
S.14 (I))						
Side chain plus						
C_3H_6 and H_2O	Р	Р	Р			
losses (Fig. S.14	-					
(m))						
Side chain plus						
C_3H_5 and H_2O	P (NIS)	Р	Р			
losses (Fig. S.14						
(n))						
Side chain plus						
C ₄ H ₈ loss (Fig.	P (NIS)	Р	Р			
S.14 (q))						
Side chain plus						
C_4H_8 and H_2O	Р	Р	Р			
losses (Fig. S.14						
(r))						

Supplementary Figures

Figure S.1. Cholesterol ion species detected via broadband (+)APPI-FTICR MS, with the source vaporizer set to different temperatures. (i) Scaled signal contributions for the main ion species. (ii) Absolute signal intensity for the main ion species.

Figure S.2. Broadband APPI-FTICR MS overviews of the Nairobi sediments (magnitude mode).

Figure S.3. Relative intensities of detected ions potentially representing the steroids cholesterol, β -sitosterol, and coprostanol.

Figure S.4. S₁ class DBE versus carbon number plots (monoisotopic). (i) Kawangware, (ii)-(iv) Kiambio sites.

Figure S.5. O₃S₁[H] class DBE versus carbon number plots (monoisotopic). (i)-(iii) Kawangware sites, (iv)-(vi) Kiambio sites.

Figure S.6. $N_1O_2[H]$ class DBE versus carbon number plots (monoisotopic). (i)-(iii) Kawangware sites, (iv)-(vi) Kiambio sites.

Figure S.7. APPI FTICR broadband, isolation, and CID spectra for the cholesterol standard (i) and Kawangware sample (ii). N.B. m/z values reflect independent recalibrations.

Figure S.8. APPI FTICR broadband, isolation, and CID spectra for the β-sitosterol standard (i) and Kawangware sample (ii). N.B. m/z values reflect independent recalibrations.

Figure S.9. APPI FTICR broadband, isolation, and CID spectra for the stigmasterol standard (i) and Kawangware sample (ii). N.B. m/z values reflect independent recalibrations.

Figure S.10. APPI FTICR broadband, isolation, and CID spectra for the coprostanol standard (i) and Kawangware sample (ii). N.B. m/z values reflect independent recalibrations.

Figure S.11. APPI FTICR broadband, isolation, and CID spectra for the cholestanol standard (i) and Kawangware sample (ii). N.B. m/z values reflect independent recalibrations.

Figure S.12. APPI FTICR broadband, isolation, and CID spectra for the 5α -sitostanol standard (i) and Kawangware sample (ii). N.B. m/z values reflect independent recalibrations.

Figure S.13. A selection of proposed sterol and stanol fragmentations as measured for standards by APPI-FTICR MS with CID. Fragmentation (a) proposed by Nakakuni et al.³. Fragmentation (b) and (e) proposed by van Agthoven et al.¹ and West and Reid². Fragmentation (f) proposed by Moreau et al.⁴. N.B. side chain cleavages as per (e) was not observed for stanols.

Figure S.14. A selection of proposed sterol and stanol fragmentations as measured for standards by APPI-FTICR MS with CID. Fragmentation (i) proposed by van Agthoven et al.¹ and West and Reid². Fragmentation (I) proposed by Nakakuni et al.³. N.B. a m/z 201.16278 peak was also observed for β-sitosterol and stigmasterol, and a m/z 215.17943 peak was detected for β-sitosterol.

References

1. van Agthoven, M.; Barrow, M.; Chiron, L.; Coutouly, M.; Kilgour, D.; Wootton, C.; Wei, J.; Soulby, A.; Delsuc, M.; Rolando, C.; et al. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. *J. Am. Soc. Mass Spectrom.* **2015**, *26* (12), 2105-2114. DOI: 10.1007/s13361-015-1226-7

2. West, H.; Reid, G. Hybrid 213 nm Photodissociation of Cationized Sterol Lipid Ions Yield [M]^{+•} Radical Products for Improved Structural Characterization Using Multistage Tandem Mass Spectrometry. *Anal. Chim. Acta* **2021**, *1141*, 100-109. DOI: 10.1016/j.aca.2020.10.013

3. Nakakuni, M.; Yamasaki, Y.; Yoshitake, N.; Takehara, K.; Yamamoto, S. Methyl Ether-Derivatized Sterols and Coprostanol Produced via Thermochemolysis Using Tetramethylammonium Hydroxide (TMAH). *Molecules* **2019**, *24* (22). DOI: 10.3390/molecules24224040

4. Moreau, R.; Whitaker, B.; Hicks, K. Phytosterols, Phytostanols, and their Conjugates in Foods: Structural Diversity, Quantitative Analysis, and Health-Promoting Uses. *Prog. Lipid Res.* **2002**, *41* (6), 457-500. DOI: 10.1016/S0163-7827(02)00006-1