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I. DEFINITION OF THE SPIN-ORBIT COUPLING

The form of the spin-orbit coupling (SOC) used in Eq. (1) of the main text

HSOC = iλ
N−2∑
i=1

∑
σσ′

c†i,συi · σ ci+2,σ′ + h.c. (S1)

is a short-hand notation (see, e.g., Ref. [S1]) for

HSOC = iλ
[
υix

(
c†i,↑ci+2,↓ + c†i,↓ci+2,↑

)
−iυiy

(
c†i,↑ci+2,↓ − c†i,↓ci+2,↑

)
+υiz

(
c†i,↑ci+2,↑ − c†i,↓ci+2,↓

) ]
+ h.c. (S2)

υi is defined referring to a helix shape of the molecule with a single turn, with radius a,

pitch c and positions of the sites

ri = [a cos{(i− 1)2π/(N − 1)}, a sin{(i− 1)2π/(N − 1)}, (i− 1)c/(N − 1)]. (S3)

Then, υi = di+1 × di+2 and di+s = (ri − ri+s)/|ri − ri+s| as in [S2]. With these definitions,

changing the enantiomer corresponds to the transformation (υxi, υyi, υzi) → (−υxi, υyi,−υzi).

The next-to-nearest neighbor SOC [S2–S4] is a minimal choice which ensures in Hamilto-

nian (1) of the main text the presence of two channels for electron transfer and hence opens

the possibility of a spin polarization. Indeed, we have checked that no polarization arises in

presence of only nearest-neighbor interactions both in the hopping and SOC terms of Eq.

(1), consistent with reports for transport in a two-terminal setup [S5–S7].

We stress that the mechanism we present for spin polarization does not depend on this

choice. For instance, analogous results are obtained by using a nearest-neighbor spin-orbit

coupling in presence of nearest and next-to-nearest neighbor spin-independent hopping. As

an example, a spin polarization larger than 0.2 is obtained by setting a next-to-nearest

neighbor hopping and a nearest-neighbor spin-orbit coupling of 6.25×10−4 U (z component

only, for simplicity), with Γ = 6.25× 10−5 U and t = 0.0125 U .
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II. SIMULATIONS STARTING FROM A SINGLET PAIR ON THE DONOR
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Figure S1: Electron transfer dynamics starting from a singlet on D. Time evolution

of charge (black) and of 2⟨Sz⟩ (blue) for an initial pure state consisting of a photo-excited

spin singlet on the donor and a singlet on χ. Results perfectly match those reported in Fig.

1-(c,d) of the main text, after tracing out the electron sitting in the donor ground state.

Parameters of the simulations: t/U = 0.0125, λ/U = 6.25× 10−4, Γ/U = 2.5× 10−4.
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III. REDFIELD EQUATION FOR ELECTRON TRANSFER

To describe the electron-transfer (ET) dynamics, we consider an interaction between the

system and the bath of the form

HSB =
∑
r

∑
ν=D,A

κr,ν(Xν +X†ν) (ar,ν + a†r,ν) (S4)

with the operators XD =
∑

σ c
†
1σcDσ and XA =

∑
σ c
†
Aσci=4,σ inducing electron hopping from

the donor excited orbital onto the bridge or from the bridge to the acceptor, respectively.

Here ar,ν is the bosonic annihilation operator for the r-th mode of the bath coupled with

a strength κr,ν to either XD or XA. Xν are rank-0 fermionic operators which do not affect

the spin of the transferred electron. For simplicity, we do not include further coupling terms

between the system and the bath.

We consider temperatures much smaller than the energy gaps driving ET and we describe

the time evolution of the system density matrix ρ by the Redfield Eq. (2) of the main text

[S8]. This correctly accounts for both population and coherences to order Γ [S8], and we

have checked that that positivity of ρ is granted in our simulations within ∼ 10−5.

A. Redfield equation at finite temperature

We recall the Redfield equation used in the main text:

ℏ
dρ

dτ
= −i[H, ρ] + Γ

∑
ξ=D,A

(
YξρX

†
ξ −X†ξYξρ+ h.c.

)
. (S5)

Note that we have not to applied the secular approximation [S8], given the comparable

magnitude of the incoherent rates and of the smallest energy gaps in the molecular spectrum.

In the main text we have considered the low-temperature and wide-band limits to Eq. (S5).

Here we take the more general expression for Dµν [S8], namely

Dµν ∝

n(Eµ − Eν) I(Eµ − Eν) for Eν < Eµ

[n(Eν − Eµ) + 1] I(Eν − Eµ) for Eν > Eµ

(S6)

accounting for both absorption and emission processes in the transition |ψν⟩ → |ψµ⟩. Here

n(ω) = 1/
(
eω/kBT − 1

)
is the Bose-Einstein factor and I(ω) is the bath spectral density.

In Fig. S2 we report simulations of the electron transfer process performed using a typical
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Figure S2: (a) Charge on D, A and χ (having subtracted its initial value, 4) and (b) cor-

responding spin polarization on the donor (red), acceptor (black) and on the bridge (blue)

obtained by numerically integrating the Redfield equation at 85 K and with a Debye spectral

density function of the bath, with t/U = 0.0125, λ/U = 6.25× 10−4.

Debye spectral density function I(ω) ∝ ω ωc/(ω
2 + ω2

c ) [S9, S10] at 85 K, as in recent

experimental observations [S11]. Results are equivalent to those reported in the main text

using the low-temperature and wide-band approximations [i.e. Dµν = Θ(Eν − Eµ)], apart

from a renormalization of the incoherent rates. This is reasonable, since different blocks of

states involved in the electron transfer are rather close in energy compared to the cutoff

energy ωc ∼ 0.1 eV and gaps between different blocks (Fig. 2a of the main text) are large

compared to kBT .
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IV. ELECTRON TRANSFER DYNAMICS ON DIFFERENT SITES
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Figure S3: Oscillation of local observables during the ET. (a) Charge ni = ni↑ + ni↓

and (b) polarization pi = (ni↑−ni↓)/(ni↑+ni↓) obtained by numercally solving the Redfield

Eq. (2) of the main text. (c) 2⟨Szi⟩ = (ni↑−ni↓) in presence of only the coherent Hamiltonian

evolution on the (N + 1)−electron subspace for an initial state prepared into XDρ(0)X
†
D

(with population only in the lowest energy block of Fig. 1-(a), i.e. |ψN+1
j ⟩, j = 1, ..., 8),

analogously to Fig. 2(d) of the main text. Parameters of the simulations: t/U = 0.0125,

λ/U = 6.25× 10−4, Γ/U = 2.5× 10−4.
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V. ELECTRON TRANSFER INCLUDING INCOHERENT DYNAMICS ON THE

BRIDGE

(a) (b)

Figure S4: ET including incoherent hopping within the bridge. (a) Charge on D,

A and χ (having subtracted its initial value, 4). (b) Corresponding spin polarization on

the acceptor pA = (nA,↑ − nA,↓)/(nA,↑ + nA,↓) (black), the donor (red), and on the bridge

(blue). Simulation parameters: t/U = 0.0125, λ/U = 6.25× 10−4, Γ/U = 2.5× 10−4 for all

incoherent hopping rates (in-, outward and intra-bridge).
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VI. DERIVATION OF THE SPIN POLARIZATION ACCUMULATED ON A

To derive the expression reported in Eq. (3) of the main text, we can expand XA on the

basis of the system eigenvectors as follows:

XA =

(N)∑
k

(N+1)∑
j

∑
σ

|ψN
k σA⟩ ⟨ψN

k σA| c
†
Aσci=4,σ |ψN+1

j ⟩ ⟨ψN+1
j | . (S7)

where we have omitted c†i=4,σcAσ terms, assuming the energy is always decreasing when

moving an electron from the bridge to the acceptor. Therefore, XA = YA in Eq. (2) of

the main text. Then, we evaluate d⟨nAσ⟩ by separately considering the three terms of the

Redfield equation 2XAρX
†
A (i), X†AXAρ (ii) and ρX†AXA (iii). The first one gives

Tr
[
XAρ(τ)X

†
AnAσ

]
= (S8)∑

k′′σ′′

⟨ψN
k′′σ

′′
A|

(∑
k,k′

∑
j,j′

∑
σ′′′ ,σ′

|ψN
k σ

′′′

A ⟩ ⟨ψN
k σ

′′′

A | c
†
Aσ′′′ci=4,σ′′′ |ψN+1

j ⟩ ⟨ψN+1
j | ρ |ψN+1

j′ ⟩

⟨ψN+1
j′ | c†i=4,σ′cAσ′ |ψN

k′σ
′
A⟩ ⟨ψN

k′σ
′
A|

)
nAσ |ψN

k′′σ
′′
A⟩

=
∑
kσ

∑
j,j′

⟨ψN
k σA| c

†
Aσci=4,σ |ψN+1

j ⟩ ⟨ψN+1
j | ρ |ψN+1

j′ ⟩ ⟨ψN+1
j′ | c†i=4,σcAσ |ψN

k σA⟩ .

We now note that cAσ |ψN
k σA⟩ = |ψN

k ⟩ and hence we can reduce the above expression to

operators acting only on the bridge:

Tr
[
XAρ(τ)X

†
A

]
=
∑
k

∑
j,j′

⟨ψN
k | ci=4,σ |ψN+1

j ⟩ ⟨ψN+1
j | ρ |ψN+1

j′ ⟩ ⟨ψN+1
j′ | c†i=4,σ |ψN

k ⟩ (S9)

Exploiting completeness relations in the (N + 1)−electron subspace
∑

j |ψ
N+1
j ⟩ ⟨ψN+1

j | = I

and defining ρN+1 ≡
∑

jj′ |ψ
N+1
j ⟩ ⟨ψN+1

j | ρ |ψN+1
j′ ⟩ ⟨ψN+1

j′ |, we get

Tr
[
XAρ(τ)X

†
A

]
=
∑
k

⟨ψN
k | ci=4,σ ρ

N+1 c†i=4,σ |ψN
k ⟩

= Tr
[
ci=4,σ ρ

N+1 c†i=4,σ

]
≡ Tr

[
ρN+1 c†i=4,σci=4,σ

]
= ⟨ni=4,σ⟩N+1. (S10)

The other two terms (ii,iii) of the Redfield equation do not contribute to d⟨nAσ⟩. Indeed,

X†AXA =
∑
j,j′

∑
k

∑
σ

|ψN+1
j ⟩ ⟨ψN+1

j | c†i=4,σ |ψN
k ⟩ ⟨ψN

k | ci=4,σ |ψN+1
j′ ⟩ ⟨ψN+1

j′ | (S11)
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only operates within the (N + 1)−electron subspace. Conversely, nAσ is non-zero only on

states belonging to the N−electron subspace. Hence

Tr
[
X†AXAρ nAσ

]
=
∑
k

⟨ψN
k |X†AXAρ |ψN

k ⟩ = 0 (S12)

for orthogonality of the two groups of states |ψN+1
j ⟩ and |ψN

k ⟩. An analogous reasoning holds

for the last term ρX†AXA. Therefore, the only contribution to d⟨nAσ⟩ is from Eq. (S10), and

we obtain d⟨nAσ⟩ ∝ ⟨ni=4,σ⟩N+1.

VII. COUPLING WITH VIBRATIONS AND DERIVATION OF THE EFFEC-

TIVE HAMILTONIAN

We consider the toy model sketched in Fig. 4 of the main text, which extends the bridge

Hamiltonian Hχ [Eq. (1)] as follows:

Hχ,v = Hχ + ε
∑
σ

c†iσciσ + ℏω0

(
b†b+

1

2

)
+H1, (S13)

with ni =
∑

σ c
†
iσciσ, and b

†(b) bosonic creation (annihilation) operators of a mode of energy

ℏω0, locally coupled to site i. We recall that

Hχ = −t
N−1∑
i=1

∑
σ

c†i,σci+1,σ + U
∑
i

ni↑ni↓ + iλ
N−2∑
i=1

∑
σσ′

c†i,σ υi · σ ci+2,σ′ + h.c., (S14)

and the local coupling term is given by

H1 = g
(
b+ b†

)
ni. (S15)

To derive an effective Hamiltonian in which H1 is removed, we apply the Schrieffer-Wolff

transformation with the following ansatz [S12, S13]:

S = γ g
∑
σ=↑,↓

c†i,σci,σ(b
† − b), (S16)

where γ is a real coefficient to be determined. We immediately observe that S† = −S and

hence eS =
(
e−S
)†
.

We then consider the transformed operators b̃ = eSbe−S and c̃i,σ′ = eSci,σ′e−S. After some
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algebra [S12, S13], we get

b̃ = eS b e−S

= b+ [S, b] +
1

2!
[S, [S, b]] + ...

= b+ γg
∑
σ=↑↓

c†i,σci,σ[b
† − b, b] +

1

2!
[S, [S, b]] + ...

= b− γg
∑
σ=↑↓

c†i,σci,σ +
1

2!
[S,−γg

∑
σ=↑↓

c†i,σci,σ] + ...

= b− γg
∑
σ=↑↓

c†i,σci,σ

and

c̃i,σ′ = eSci,σ′e−S

= ci,σ′ + [S, ci,σ′ ] +
1

2!
[S, [S, ci,σ′ ]] +

1

3!
[S, [S, [S, ci,σ′ ]]] + ...

= ci,σ′ + γg
∑
σ=↑↓

[c†i,σci,σ, ci,σ′ ](b† − b) +
1

2!
[S, [S, ci,σ′ ]] +

1

3!
[S, [S, [S, ci,σ′ ]]] + ...

= ci,σ′ − γg(b† − b)ci,σ′ +
1

2!
(γg)2(b† − b)2ci,σ′ − 1

3!
(γg)3(b† − b)3ci,σ′ + ...

= ci,σ′

+∞∑
k=0

(−1)k
(γg)k

k!
(b† − b)k

= ci,σ′e−γg(b
†−b).

Conversely, for site i ̸= j we obtain:

c̃j,σ′ = eScj,σ′e−S

= cj,σ′ + [S, cj,σ′ ] +
1

2!
[S, [S, cj,σ′ ]] +

1

3!
[S, [S, [S, cj,σ′ ]]] + ...

= cj,σ′ + γ g
∑
σ=↑↓

[c†i,σci,σ, cj,σ′ ](b† − b) +
1

2!
[S, [S, cj,σ′ ]] +

1

3!
[S, [S, [S, cj,σ′ ]]] + ...

= cj,σ′

In summary, the transformed operators are

b̃ = b− γg
∑
σ=↑↓

c†i,σci,σ b̃† = b† − γg
∑
σ=↑↓

c†i,σci,σ (S17)

c̃i,σ = ci,σΛ c̃†i,σ = c†i,σΛ
† (S18)

c̃j,σ = cj,σ c̃†j,σ = c†j,σ, (S19)
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where we have introduced Λ = e−γg(b
†−b). We now need to combine these operators to get

the transformed Hamiltonian

H̃χ,v = eSHχ,ve
−S

= H̃χ + ε
∑
σ

c̃†iσ c̃iσ + ℏω0

(
b̃†b̃+

1

2

)
+ g

(
b̃+ b̃†

)
ñi.

Rewriting term by term we obtain:

ñiσ = c̃†i,σ c̃i,σ = c†i,σΛ
†ci,σΛ = c†i,σci,σ

b̃† + b̃ = b† + b− 2γ g
∑
σ

c†i,σci,σ

b̃†b̃ =
(
b† − γg

∑
σ

c†i,σci,σ

)(
b− γg

∑
σ

c†i,σci,σ

)
= b†b−

(
b† + b

)
γg
∑
σ

c†i,σci,σ + (γg)2
[∑

σ

c†i,σci,σ

]2
.

Therefore

H̃χ,v −Hχ = ni

[
ε+ g (b̃† + b̃)

]
+ ℏω0

(
b̃†b̃+

1

2

)
= ni

[
ε+ g(b† + b)− 2γg2ni

]
+ ℏω0

[
b†b+

1

2
− γg

(
b† + b

)
ni + γ2g2n2

i

]
= ε ni + ℏω0

(
b†b+

1

2

)
+ ni

(
b† + b

) (
g − γ gℏω0

)
− γ2 ℏω0 g

2n2
i .

From this we observe that by choosing γ = 1/ℏω0 the coupling is canceled and the trans-

formed Hamiltonian becomes

H̃χ,v −Hχ = ε ni + ℏω0

(
b†b+

1

2

)
− g2

ℏω0

n2
i

=

(
ε− g2

ℏω0

)
ni + ℏω0

(
b†b+

1

2

)
− 2

g2

ℏω0

ni↑ni↓,

where we have exploited the relationship

n2
i =

[ ∑
σ=↑↓

c†i,σci,σ

]2
=
[
ni,↑ + ni,↓

]2
= ni,↑ + ni,↓ + 2ni,↑ni,↓

S11



to obtain the effective Hamiltonian

H̃χ =

(
ε− g2

ℏω0

)
ni +

(
U − 2g2

ℏω0

)
ni↑ni↓

+

[
−t
∑
σ

c†i−1,σci,σ + iλ
∑
σσ′

c†i−2,συi−2 · σci,σ′

]
Λ

+

[
−t
∑
σ

c†i,σci+1,σ + iλ
∑
σσ′

c†i,συi · σci+2,σ′

]
Λ†

+ U
∑
j ̸=i

nj↑nj↓ − t
∑

j ̸=i,i−1

∑
σ

c†j,σcj+1,σ +

+ iλ
∑

j,̸=i,i−2

∑
σσ′

c†j,συj · σcj+2,σ′ + h.c. , (S20)

with the purely bosonic term ℏω0(b
†b + 1/2) omitted. The re-normalized energy gap and

Coulomb repulsion on site i are given on the first line of Eq. (S20). The reduction of the

hopping and SOC terms involving site i is described by the the operator Λ on the second

line. The remaining terms of the Hamiltonian (not involving site i) remain unaltered com-

pared to Eq. (S14). Note that the transformation is exact (non perturbative) and it can

be easily extended to a more general situation with different modes coupled to different sites.

From Eq. (S20) it is clear that an effective orbital degeneracy can be restored by properly

choosing ε. Let us consider the situation sketched in Fig. 4-(a), with site 4 characterized by

an energy gap ε ≫ λ and coupled to a vibrational mode. To understand how this coupling

can amplify the effect of SOC, we need to consider the many-body states |ψN+1
j ⟩ with a

double occupation either on 2 or 4. Due to the effect of vibrations both on one- and two-

body terms in the first line of Eq. (S20), the energy of states with a double occupation on

4 is reduced by an amount 3g2/ℏω0. Hence, choosing ε = 3g2/ℏω0 practically restores the

degenerate situation of Fig. 1-(a), with the maximum effect of the SOC.

A few comments are in order. First, we note that this regime is perfectly realistic. Indeed,

this condition is met by setting for instance ε = 0.3 eV and ℏω0 = 0.1 eV in the polaronic

regime with g ≈ ℏω0. Second, we do not need a perfect match between the energy gap

and the bosonic renormalization to obtain a sizable polarization. This is demonstrated by

simulations reported in Fig. 4 of the main text, where the degenerate situation is practically

restored even using parameters which are not fine-tuned to exactly satisfy the aforementioned

resonance condition. Finally, we note that, while simulations in the main text are performed

S12



with the full Hamiltonian Hχ, the above analysis did not take into account the factor Λ

which alters the effective hopping and SOC parameters in Eq. (S20) and hence changes the

molecular spectrum.
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VIII. RELAXATION

We describe thermal relaxation of the D−χ−A supramolecule after ET by considering its

interaction with a boson bath in the secular approximation [S14, S15], through modulation

of the different terms of the Hamiltonian. Here we are especially interested in the long-time

state after complete relaxation, much slower than the dynamics simulated in the main text.

In particular, we perform simulations on a coarse-grained time scale, significantly longer

than the inverse of the relevant energy gaps in the molecular spectrum, as required by the

secular approximation to hold [S16]. Since relaxation is expected to occur on a much slower

timescale than ET, we simulate it starting from the density matrix obtained after ET. To

this end, we compute (in the low-temperature limit) the rate matrix accounting for the

transition probability between the eigenstates of the whole supramolecule

Wµ←ν =

γj| ⟨ψµ|Hj |ψν⟩ |2Θ(Eν − Eµ) for µ ̸= ν

−
∑

µ̸=ν Wµ←ν for µ = ν
(S21)

where Eµ is the energy of eigenstate |ψµ⟩ and the Heaviside function Θ(Eν−Eµ) accounts for

the bath spectral density and Bose-Einstein factor in the wide-band and low temperature

limits. Hj are Hamiltonian terms modulated by the interaction between the system and

vibrations. We consider, in particular, one-body terms such as on-site orbital energiesH0 and

nearest-neighbors hopping Ht. Moreover, we include a weak isotropic exchange interaction

between the electron sitting on the ground state of the donor and that on the first site of the

bridge (HD1 = SD · S1) and an analogous coupling between an electron on the last site of

the chain and that on the acceptor (H4A = S4 ·SA). A possible modulation of the spin-orbit

coupling is also considered.

Then, we start from the density matrix obtained at the end of the ET process and we

compute the time evolution of the diagonal elements of ρ by integrating

ρ̇µµ =
∑
ν

Wµνρνν . (S22)

In the secular approximation, all coherences decay independently with rates 1
2
(Wµµ +Wνν).

Results are reported in Fig. S5, where we have included a modulation of Ht, HD1 and

H4A. Since Ht is typically much stronger than HD1 and H4A, we have assumed a factor of

S14
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Figure S5: System relaxation. (a) Time evolution of the population of the bridge singlet

ground state (left scale) and of the spin polarization (right scale) on the acceptor 2⟨Sz,A⟩

(dashed) or on the donor-acceptor pair ⟨Sz,A − Sz,D⟩ (solid), as defined in [S10, S17]. (b)

Time evolution of the expectation vale of the total (black), bridge (red) or donor-acceptor

spin. Time is in units of the slowest relaxation rate γ ≡ γD1 = γ4A.

100 also in their respective coupling with vibrations, yielding rates γj in a ratio of 104 in

the rate matrix, Eq. (S21). The slowest time-scale allows for complete relaxation onto the

ground singlet state of the bridge. Simultaneously, polarization initially on the bridge is

distributed between D and A, due to the symmetric coupling assumed for the rates γD1 and

γ4A. At the end, ∼ half of the original polarization survives on the acceptor and an opposite

one arises on the donor.

Note that here for simplicity we have included only the υz component of the SOC but the

picture is not changed by a more general choice. Inclusion of transverse terms of the SOC

both in the Hamiltonian and in the coupling with the bath would reduce the (negative)

polarization of the bridge, thus leading to a larger final net polarization on A. We have

also checked that the inclusion of a modulation of H0 or of the SOC does not significantly

affect our results. In particular, we note that a modulation of the SOC is not needed to

relax onto the bridge ground singlet, since S2 (the square of the total spin of the D−χ−A

supra-molecule) is not a conserved quantity, even though all terms modulated by the bath

are isotropic.

In Fig. S5-(b) we report the total spin of the system S2 =
(∑

D,χ,A Si

)2
, of the chiral
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bridge S2
χ =

(∑
i∈χ Si

)2
and of the DA pair S2

DA =
(∑

D,A Si

)2
. This highlights bridge

relaxation to the ground state singlet, while ⟨S2⟩ and ⟨S2
DA⟩ converge to a value intermediate

between that of a singlet (0) and of a triplet (2), as expected for a partially spin polarized

state.

We finally note that to compare with experiments we have included a weak spin-spin

dipolar coupling between the two unpaired electrons on D and A and an interaction with

an external magnetic field of ∼ 0.3 T, typical of X-band electron paramagnetic resonance

experiments. This terms are very small compared to all other energy scales and hence they

do not affect ET although they slightly modify the final D/A polarization after complete

relaxation by changing the eigenstates of the DA radical pair. In Fig. S5 we used typical

parameters of the system reported in [S11] [∆g = 0.001, dipole-dipole coupling of 4 MHz].
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IX. LENGTH DEPENDENCE

0 2 4 6 8
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ET steps

0.2

0.25

0.3

Figure S6: Length dependence of the spin polarization. Time evolution of the spin

polarization on the acceptor site pA (A, black) or on the chiral bridge χ (blue) for a chain

of N = 4 (dashed lines, as in the simulations of the main text) or N = 6 sites (solid). Inset:

spin polarization on the acceptor in a multi-step ET process, where at each step we initialize

the donor state in the previous spin state of the acceptor. Parameters of the simulations:

t/U = 0.0125, λ/U = 6.25× 10−4, Γ/U = 2.5× 10−4.
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