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Reagents and Resources 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Rabbit monoclonal anti-TYMS 
(D26G11) Cell Signaling Technology Cat #: 5449 

RRID: AB_10694549 

Rabbit monoclonal anti-SHMT2 
(E7F4Q) Cell Signaling Technology Cat #: 33443 

RRID: N/A 

Mouse monoclonal anti-MTHFD1 
(A-8) Santa Cruz Biotechnology Cat #: sc-271412 

RRID: AB_10611082 

Rabbit polyclonal anti-RAPTOR EMD Millipore Cat #: 09-217 
RRID: AB_612103 

Mouse monoclonal anti-GAPDH 
(0411) Santa Cruz Biotechnology Cat #: sc-47724 

RRID: AB_627678 

Rabbit polyclonal anti-TK2 Sigma-Aldrich Cat #: HPA041162 
RRID: AB_10961178 

Mouse monoclonal anti-β-Actin Cell Signaling Technology Cat #: 3700 
RRID: AB_2242334 

Horse anti-Mouse IgG HRP Cell Signaling Technology Cat #: 7076 
RRID: AB_330924 

Goat anti-Rabbit IgG HRP Cell Signaling Technology Cat #: 7074 
RRID: AB_2099233 

Bacterial and Virus Strains 

Endura ElectroCompetent Cells Lucigen Cat #: 60242 

XL10-Gold Ultracompetent Cells Agilent Cat #: 200315 

Chemicals, Peptides, and Recombinant Proteins 

3X FLAG Peptide Sigma-Aldrich Cat #: F4799 

Anti-FLAG M2 Affinity Gel Sigma-Aldrich Cat #: A2220 

Mixture of amino acid standards for metabolomics Cambridge Isotope 
Laboratories Cat #: MSK-A2-1.2 

Defined synthetic medium components Multiple See table S2 

RPMI 1640 100X Vitamins Sigma-Aldrich Cat #: R7256 



Dacarbazine Sigma-Aldrich Cat #: D2390 

6-Thioguanine Sigma-Aldrich Cat #: A4882 

Hypoxanthine Sigma-Aldrich Cat #: H9377 

Uridine Sigma-Aldrich Cat #: U3003 

Thymidine Sigma-Aldrich Cat #: T1895 

Cytidine Sigma-Aldrich Cat #: C4654 

Deoxycytidine Sigma-Aldrich Cat #: D3897 

Deoxyuridine Sigma-Aldrich Cat #: D5412 

Fluorodeoxycytidine (FCdR) Sigma-Aldrich Cat #: F5307 

Methotrexate (MTX) Sigma-Aldrich Cat #: M8407 

5-Fluorouracil (5-FU) Sigma-Aldrich Cat #: F6627 

Brivudine (BVDU) Santa Cruz Biotechnology Cat #: sc-205607 

Biotin Sigma-Aldrich Cat #: B4501 

Folic acid Sigma-Aldrich Cat #: F8758 

5-methyl-tetrahydrofolate (5-mTHF) Schircks Laboratories Cat #: 16.236 

Adenosine triphosphate (ATP) Sigma-Aldrich Cat #: A0752 

Adenosine diphosphate (ADP) Sigma-Aldrich Cat #: A2754 

Ammonium formate Sigma-Aldrich Cat #: 70221 

Brivudine monophosphate (BVDU-MP) This paper N/A 

Dihydrofolate (DHF) Sigma-Aldrich Cat #: D7006 

NADPH Sigma-Aldrich Cat #: N7505 

NADP+ Sigma-Aldrich Cat #: N5755 

5,10-methynyl-tetrahydrofolate (5,10-me+THF) Schircks Laboratories Cat #: 16.230 

10-formyl-tetrahydrofolate (10-formyl-THF) This paper N/A 



Tetrahydrofolate (THF) Schircks Laboratories Cat #: 16.208 

LY-345899 Sigma-Aldrich Cat #: SML3497 

Ammonium formate Sigma-Aldrich Cat #: 70221 

SCH-79797 Santa Cruz Biotechnology Cat #: sc-203693 

TG100-115 Advanced ChemBlocks Cat #: Q65794 

CB-839 Sigma-Aldrich Cat #: 5337170001 

Deguelin Selleck Cat #: S8132 

Apilimod Advanced ChemBlocks Cat #: O33822 

SB-612111 Sigma-Aldrich Cat #: SML0571 

JTC-801 Selleck Cat #: S2722 

Sodium ascorbate Sigma-Aldrich Cat #: PHR1279 

Aminopterin Sigma-Aldrich Cat #: A3411 

Ascorbic acid Sigma-Aldrich Cat #: A4544 

Rat Serum Sigma-Aldrich Cat #: R9759 

Activated charcoal Sigma-Aldrich Cat #: C9157 

5-formyl-tetrahydrofolate (5-formyl-THF) Schircks Laboratories Cat #: 16.220 

RPMI 1640, no glucose Thermo Fisher Cat #: 11879020 

RPMI 1640 Thermo Fisher Cat #: 11875093 

DMEM, high glucose, GlutaMAX Thermo Fisher Cat #: 10566024 

Glucose Thermo Fisher Cat #: 15023021 

Penicillin-Streptomycin Thermo Fisher Cat #: 15140122 

Fetal Bovine Serum (FBS), Heat Inactivated Thermo Fisher Cat #: 16140071 

X-tremeGENE 9 DNA Transfection Reagent Sigma-Aldrich Cat #: 6365779001 

TaKaRa Ex Taq DNA Polymerase TaKaRa Cat #: RR001A 



Puromycin dihydrochloride Sigma-Aldrich Cat #: P7255 

G 418 disulfate salt solution Sigma-Aldrich Cat #: G8168 

TokeOni (AkaLumine-HCl) Sigma-Aldrich Cat #: 808350 

Critical Commercial Assays 

QIAamp DNA Blood Maxi Kit QIAGEN Cat #: 51194 

EndoFree Plasmid Maxi Kit QIAGEN Cat #: 12362 

Deposited Data 

DepMap chemical screens, 
Culture conditions (18) https://depmap.org/repurposing/ 

GDSC chemical screens, 
Culture conditions (14, 15) Basal: (15) Table S1 

Serum: (14) Methods 

CTD2 chemical screens, 
Culture conditions (17) (17) Supplemental Data Set 1

Conditional gene essentiality data 
in K562 cells (27) (27) Tables S1 and S3

Probability of dependency data 
from genome-wide CRISPR 
screens in K562 cells 

(27) (27) Table S1

PIKFYVE dependency data 
DepMap, Broad 2023 
DepMap 23Q2 Public 

https://depmap.org/portal/gene/PIK
FYVE?tab=overview 

OPRL1 dependency data 
DepMap, Broad 2023 
DepMap 23Q2 Public 

https://depmap.org/portal/gene/OPR
L1?tab=overview 

OPRL1 expression data 
DepMap, Broad 2023 
DepMap 23Q4 Public 

https://depmap.org/portal/gene/OPR
L1?tab=characterization&characteriz
ation=expression 

Experimental Models: Cell Lines 

K562 J.D. Griffin
ACC-10, 
RRID_CVCL_0004 

NOMO1 J.D. Griffin ACC-542, 
RRID_CVCL_1609 



P12-Ichikawa A.T. Look ACC-34, 
RRID_CVCL_1630 

SEM CCLE ACC-546, 
RRID_CVCL_0095 

Oligonucleotides 

Primers for Illumina sequencing Whitehead Institute FGP table S5 

Primers for sgRNA quantification Whitehead Institute FGP table S5 

Primers for construction of expression plasmids This paper table S5 

Individual sgRNA target sequences This paper table S5 

DHFR gBlock This paper table S5 

TK2 gBlock This paper table S5 

Recombinant DNA 

pLJC2-Rap2A-3xFLAG (13) Addgene 87974 

pLJC2-TK2-3xFLAG This paper Addgene 217427 

pLJC2-DHFR-3xFLAG This paper Addgene 217428 

pcDNA3_N-DYK_MTHFD1-NES (104) Addgene 133022 

pLenti-PGK-Venus-AkaLuc (neo) (105) Addgene 124701 

pLJC2-MTHFD1-3xFLAG This paper Addgene 217429 

pLentiCRISPR-v1 Addgene Addgene 49535 

Genome-wide human sgRNA library Whitehead Institute FGP N/A 

pLentiCRISPR-v1-sgAAVS1 (106) Addgene 70661 

pLentiCRISPR-v1-sgTYMS This paper Addgene 217430 

pLentiCRISPR-v1-sgTK2_4 This paper Addgene 217431 

pLentiCRISPR-v1-sgTK2_5 This paper Addgene 217432 

pLentiCRISPR-v1-sgABCC4_1 This paper Addgene 217433 



pLentiCRISPR-v1-sgABCC4_3 This paper Addgene 217434 

pLentiCRISPR-v1-sgSHMT2 This paper Addgene 217435 

pLentiCRISPR-v1-sgMTHFD1 This paper Addgene 217436 

Software and Algorithms 

XCalibur version 4.1 Thermo Fisher https://www.thermofisher.com/us/en/home.html 

R studio version 2022.12.0 The R Project https://www.r-project.org/ 

Prism version 9 GraphPad https://www.graphpad.com/ 

Other 

SnakeSkin dialysis tubing, 3.5K MWCO, 35 mm Thermo Fisher Cat #: PI88244 

Z2 Coulter Counter Beckman Cat #: 6605700 

Multisizer 4e Coulter Counter Beckman Cat #: B23005 



Supplementary Methods 

Mouse studies 
Pilot experiment for plasma brivudine detection 
Mice were divided into three experimental groups: vehicle (n = 2), low-dose BVDU (n = 3), and 
high-dose BVDU (n = 3). Six hours after intraperitoneal (IP) injection of 200 µL vehicle (8.4% 
DMSO), low-dose BVDU (10 mg/kg; 1.7% DMSO), or high-dose BVDU (50 mg/kg; 8.4% DMSO), 
blood was collected into heparinized tubes from the facial vein, and in turn, plasma fractions were 
collected following centrifugation at 1,500 g for 5 min. at 4°C, snap-frozen with liquid nitrogen, 
and stored at -80°C. 

Xenograft treatments 
Mice were sublethally irradiated (2 Gy) on day -8 and then injected via tail vein with 2 ´ 106 
Akaluciferase-expressing K562 cells (in 200 µL PBS) on day -7. Tumor burden was measured on 
day -1 via bioluminescent imaging (BLI) after IP injection of 100 µL TokeOni (25 mM in PBS) per 
mouse using the IVIS Spectrum in vivo imaging system and Living Image Software (Perkin Elmer). 
Mice were then divided into two experimental groups based on equivalent average total flux: 
treatment with vehicle (n = 5) or BVDU (n = 6). Starting on day 0, mice received twelve daily 
treatments over two weeks via IP injection of 200 µL vehicle (8.4% DMSO) or BVDU (50 mg/kg; 
8.4% DMSO). Treatment was not administered on day 7 (concurrent BLI) or day 11 (unexpected 
issue with facility access). Tumor burden was assessed on days 7 and 13 using BLI. Eight hours 
after treatment was administered on day 6, blood was collected into heparinized tubes from the 
facial vein, and in turn, plasma fractions were collected following centrifugation at 1,500 g for 5 
min. at 4°C, snap-frozen with liquid nitrogen, and stored at -80°C. Plasma samples were similarly 
collected and stored on day 14, approximately twenty-four hours after the final treatments were 
administered. Injections and imaging were done by P.V.V. and R.M.R. and were not done blindly. 
Mice were monitored daily for health status and euthanized if symptoms of low health status 
appeared: hunched posture, impaired mobility, rough coat, paralysis, or significant weight loss.   

Quantification and Statistical Analysis 

High-throughput chemical screens 
Normalized viability data from the NCATS screening platform were fit to a 4-parameter log-
logistic model using the drc package in R to generate dose-response curves (102). For two 
compounds duplicated in the MiPE 4.1 library (NCGC00160391 and NCGC00179501), viability 
values at each concentration were averaged prior to similarly fitting the data, resulting in 17,784 
cell line-medium-compound combinations. A subset of 654 curves (3.6% of the total dataset) failed 
to converge when fit to the logistic model. These were largely associated with compounds that had 
minimal effects on viability but also showed high data variability that prevented model 
convergence. To obtain metrics for further downstream analysis, this subset was instead fit using 
linear regression.  

Areas under the dose-response curve (AUC) were calculated using the trapezoidal rule at 
the eleven log10-transformed dosing concentrations. Most fitted curves showed maximum values 
greater than the untreated controls used for normalization. Therefore, to reduce potential false 



positives in calculating differential AUC values between screens, curves with a maximum viability 
greater than 100% – and the corresponding curve metrics (AUC, minimum viability, and residual 
standard error) – were scaled by the maximum curve value. Moreover, a small subset of curves also 
exhibited a sharp decrease in viability over the two lowest dosing concentrations, in turn likely 
generating artifacts with this scaling method. Therefore, a subset of 73 curves that exhibited a 
maximum value greater than 100% and a 30% decrease in viability over the two lowest doses were 
refit to a linear model as well.  

Residual standard error (RSE) distributions varied by cell line, with the SEM line exhibiting 
the largest median RSE. Thus, to again minimize potential false positives, curves with RSE values 
that were above cell line-dependent 98th percentiles following viability scaling were removed from 
further downstream analysis. Next, to minimize potential false positives due to variance in initial 
viability measurements rather than to compound activity, cell line-specific curves with greater than 
15% differences in maximum viability between two or more conditions for a given compound were 
also removed from further downstream analysis. At this point, filtered compounds not represented 
over all three conditions across cell lines were removed as well. Our collective curve fitting and 
filtering strategies established cell line-specific sets of compounds remaining for all three media: 
NOMO1 (1,871), SEM (1,761), and P12-Ichikawa (1,894). From these cell line-specific sets, 1,638 
total compounds were common across cell line-medium combinations. Lastly, a set of 500 pan-
inactive compounds were defined on the basis of exhibiting minimum scaled values greater than 
respective median scaled values in each of the nine screen datasets. Response scores for the 1,138 
filtered compounds were defined as corresponding AUCs. For each compound, differential 
response scores in each cell line were calculated between each pairwise set of conditions and then 
standardized (Z-score) relative to the entire set of 1,138 active compounds to assess differential 
sensitivity. For each compound, the differential sensitivity scores were then averaged across cell 
lines for each pairwise set of conditions.  

Sets of RPMI-sensitive and HPLM-sensitive hits from the averaged HPLM+dS – RPMI+dS 
profile were defined by setting a Z-score cutoff of 1. Sets of dS-sensitive and S-sensitive based on 
shared conditional phenotypes in the averaged HPLM+dS – RPMI+S and RPMI+dS – RPMI+S profiles 
were defined by setting a Z-score cutoff of 0.9. After removing dS- and S-sensitive hits from 
consideration, sets of RPMI-sensitive and HPLM-sensitive hits based on shared conditional 
phenotypes in the averaged HPLM+dS – RPMI+dS and HPLM+dS – RPMI+S profiles were defined by 
setting a Z-score cutoff of 0.9. 

Genome-wide CRISPR screens 
CRISPR screen analysis was performed as previously described (27). Sequencing reads were 
aligned to the sgRNA library to generate read counts and only exact matches were allowed. sgRNAs 
with less than 50 counts in the initial population were removed from further downstream analysis. 
Genes targeted by less than four distinct sgRNAs following this filtering process were also 
removed. The relative abundances of all remaining sgRNAs were determined by adding a 
pseudocount of one and then normalizing to the total reads in the sample. Depletion scores were 
calculated as the log2 fold-change in sgRNA abundance between the initial population and each 
final population. Gene scores were defined as the average log2 fold-change in depletion scores of 
all sgRNAs targeting the gene. 

Screens performed in different conditions may introduce discrepancies in aggregate gene 
selection that affect the dynamic range of gene scores (103). Therefore, to reduce potential bias in 



calculating differential scores based on assuming that such distributions are equivalent between 
screens, we scaled all gene scores instead based on the assumption that the sets of nontargeting 
(NT) sgRNAs and core essential genes (CEGs) would exhibit the same selection across different 
screens. Gene scores were scaled such that the medians of post-filtering NT sgRNAs (449) and 
reference CEGs (682 genes) (65) included in the library were defined as 0 and -1, respectively (27). 
For each gene, a differential score was calculated between the two screening conditions and then 
standardized (Z-score) relative to the entire set of differential scores.  

Probability of dependency for genome-wide CRISPR screens 
For each genome-wide screen, probabilities of dependency (PODs) were calculated for all library 
targets (27). Briefly, the gene score dataset from each screen was treated as a mixture model 
comprised of two normal distributions – distinct sets of non-essential and essential genes, with the 
latter having the lower mean. Densities were generated using a standard E-M optimization 
procedure initialized with parameters (mean, standard deviation, proportional value) of (-1, 0.3, 
0.1) and (-0.2, 0.15, 0.9) for the reference sets of essential and non-essential genes, respectively. 
These initial values were based on empirical observations of score distributions for CEGs and 
nonessential genes from previous screens (27, 65). The POD for a given gene was then calculated 
as the ratio of CEG density to the sum of the two densities at the gene score of interest. Given that 
standard deviations of the two distributions differ, their estimated densities converge to zero at 
different rates in tail regions, which can cause erroneous inflation of estimated probabilities at large 
enough gene score values. Thus, we identified the minimum POD and its corresponding gene score 
in each screen, and in turn, assigned the minimum probability to all targets with a gene score 
greater than that value.  

Receiver-operator analysis 
For each CRISPR screen dataset, receiver-operator characteristic (ROC) curves were generated 
from relatively balanced reference sets of 682 CEG and 879 nonessential genes (65). Area under 
the ROC curve was used as the performance metric to assess how well gene scores in each dataset 
could discriminate for CEGs.  



Fig. S1. Chemical screen analysis 
(A) Manually curated drug class or indication for MiPE 4.1 library compounds either approved
for use in humans or that have entered clinical trials. CVD, cardiovascular disease; COPD, chronic
obstructive pulmonary disease; BPH, benign prostatic hyperplasia.
(B) Data processing workflow. See Quantification and Statistical analyses for additional detail.
(1) Normalized viability data for 17,784 total dose-response curves were fit to a 4-parameter log-
logistic model. 654 curves failed to converge and were fit using linear regression. (2) Curves with
a maximum viability greater than 100% were scaled by the maximum fitted value. (3) Curves with
residual standard error (RSE) values above cell line-dependent 98th percentiles were removed (left);



Cell line-specific curves with greater than a 15% difference in maximum viability between two or 
more conditions for a given compound were removed (right). (4) Compounds with minimum 
values greater than the respective median values in each of the datasets were removed. Ultimately, 
1,138 filtered compounds were shared across all screens. AUC, area under the curve. 
(C) Highest global development phase and indication for pan-inactive compounds.
(D) Response score correlations between nine chemical screens. H, HPLM+dS; RD, RPMI+dS; RS,
RPMI+S.



Fig. S2. Additional data related to conditional phenotypes for purine analogs are linked to 
hypoxanthine   
(A) Cellular conversion of RPMI-sensitive purine analogs to effector metabolites. The canonical
mechanism of dacarbazine (DTIC) activity involves an activation step catalyzed by liver-specific
P450. 6-MP, 6-Mercaptopurine; 6-TG, 6-Thioguanine.
(B–C) Dose-responses of K562 cells to 6-TG (B) and DTIC (C) (mean ± SD, n = 3). Concentration
range spanned for two dose-responses tested across the remaining three cell lines (yellow box).
(D) Schematic for the de novo purine synthesis pathway. Enzymes encoded by genes that were
identified as RPMI-essential hits from previous genome-wide CRISPR screens in K562 cells
(shaded blue) (27). Hypoxanthine is a salvage pathway substrate that can be used to generate IMP.
(E) Compounds ranked by average HPLM+dS – RPMI+dS phenotypes. 5AzaC, 5-Azacytidine.
(F) Conditional phenotypes for 5AzaC from averaged HPLM+dS – RPMI+dS and HPLM+dS – RPMI+S

profiles.
(G) Cellular conversion of 5AzaC to metabolites to effector metabolites.
(H) Defined uridine levels in HPLM and RPMI. Uridine levels in 10% FBS (dS, dialyzed; S,
untreated) (mean ± SD, n = 3). Schematic of reaction catalyzed by UCK, uridine-cytidine kinase.



Fig. S3. Additional data related to serum-derived thymidine alters cellular sensitivity to TYMS 
inhibitors 
(A) dS-sensitive pyrimidine nucleoside analogs (top) and antifolates (bottom).
(B) Pyrimidine nucleoside analogs are converted to effector metabolites (top). Antifolates act
against targets in 1C metabolism (bottom). Fluorodeoxyuridine monophosphate (FdUMP) and
trifluoromethyl deoxyuridine monophosphate (TFdTMP) can also each inhibit TYMS.



(C–D) Dose-responses of K562 cells to FCdR (C) and MTX (D) (mean ± SD, n = 3). Concentration 
range spanned for two dose-responses tested across the remaining three cell lines (yellow box).  
(E) Conditional CRISPR phenotypes for TYMS from reported focused sgRNA library screens in
K562 cells (27).
(F) Mass-to-charge ratios (m/z) for various products of cellular FCdR metabolism based on either
addition (+H) or removal (-H) of a proton adduct. Only peaks corresponding to FdUMP in
negative ionization mode (-H) could be detected in FCdR-treated K562 cells.
(G) Schematic of 5-fluorouracil (5-FU) metabolism. Floxuridine (FdUrd) was a dS-sensitive hit.
(H) Defined uric acid levels in HPLM and RPMI. Uric acid levels in 10% FBS (dS, dialyzed; S,
untreated) (mean ± SD, n = 3). Uric acid is an endogenous inhibitor of UMP synthase (UMPS).
Therefore, uric acid availability impacts cellular levels of orotate, which competes with 5-FU as a
substrate for UMPS activity (13).
(I) Relative growth of cells treated with 5-FU versus DMSO (mean ± SD, n = 3, **P < 0.005, *P <
0.01).
(J) Dose-responses of K562 cells to 5-FU (mean ± SD, n = 3). Concentration range spanned for
two dose-responses tested across the remaining three cell lines (yellow box).



Fig. S4. Additional data related to conditional brivudine sensitivity is linked to folic acid 
availability 
(A) Compounds ranked by average RPMI+dS – RPMI+S phenotypes. BVDU, brivudine.
(B and D) Dose-responses of K562 cells to BVDU (mean ± SD, n = 3). Concentration range
spanned for two dose-responses tested across the remaining three cell lines (yellow box).
(C) Reported concentration ranges for folic acid and 5-methyl-THF (5-mTHF) in human plasma
(60–62).
(E) Extracellular abundances of folic acid in HPLM+dS following 96-hour treatment with BVDU
versus those at inoculation (mean ± SEM, n = 3).



Fig. S5. Additional data related to TK2 expression is an intrinsic determinant of BVDU 
sensitivity  
(A and B) Cellular abundances of BVDU (A) and BVDU-MP (B) following BVDU treatment in 
HPLM+dS (mean ± SEM, n = 3). H, HPLM-defined concentration (0.45 µM). R, RPMI-defined 
concentration (2.27 µM). 





Fig. S6. Additional data related to BVDU-MP interferes with folate-dependent nucleotide 
synthesis and DHFR is not the molecular target of BVDU-MP 
(A) Relative growth of cells treated with BVDU versus DMSO (mean ± SD, n = 3, **P < 0.005). H,
HPLM-defined concentration (0.45 µM).
(B) Immunoblot for expression of TYMS. M.W. standards are annotated. RAPTOR served as the
loading control. TYMS band intensities differ by ~5-fold between the two samples.
(C) Relative abundances of CTP and UTP in BVDU-treated versus control cells in HPLM+dS (mean
± SEM, n = 3, **P < 0.005).
(D) Heatmap of cellular metabolite abundances in cells treated with BVDU in HPLM+dS containing
HPLM- (top) or RPMI-defined (bottom) folic acid versus control cells in HPLM+dS. Metabolite
clusters are sorted by log2-transformed fold change of the top row (n = 3). Metabolite abbreviations
can be found in table S3.
(E) Relative growth of cells treated with FCdR or MTX versus DMSO (mean ± SD, n = 3, **P <
0.005).
(F–G) Relative abundances of CTP and UTP in FCdR- (F) and MTX-treated (G) versus control
cells in HPLM+dS (mean ± SEM, n = 3, **P < 0.005).
(H) Pseudocolor Coomassie-stained gel imaged using a LICOR Odyssey FC. 1: M.W. standards, 2:
TK2-3xFLAG.
(I) Schematic for a method to isolate BVDU-MP from reactions catalyzed by human TK2.
(J) Extracted ion chromatograms at mass-to-charge (m/z) ratios, in negative ionization mode, for
ATP, BVDU, and BVDU monophosphate (BVDU-MP) at indicated retention times for samples
extracted from reactions containing purified recombinant TK2 with ATP and BVDU (top) and the
isolated BVDU-MP (bottom). See Methods.
(K) Normalized peak areas across a panel of NMP chemical standards and in vitro synthesized
BVDU-MP. A concentration for the stock BVDU-MP was estimated based on the average of these
standard areas – with little effect on this average if considering only the pyrimidine NMPs.
(L) Pseudocolor Coomassie-stained gel imaged using a LICOR Odyssey FC. 1: M.W. standards, 2:
DHFR-3xFLAG.
(M) Schematic for a method to evaluate DHFR activity based on measuring NADP+ production
from reactions containing recombinant DHFR.
(N–O) Relative abundances of indicated folate species in BVDU- and MTX-treated versus control
cells in HPLM+dS containing RPMI-defined folic acid (mean ± SEM, n = 3).



Fig. S7. Additional data related to CRISPR screens uncover genetic contributions to BVDU 
sensitivity 
(A) Relative growth of K562 cells treated with BVDU versus DMSO in T-25 flasks (mean ± SD, n
= 3). Arrow indicates the dose that elicited a ~25% growth defect.
(B) Receiver operator characteristic (ROC) curves for the prediction of core essential genes using
datasets from CRISPR screens in DMSO- and BVDU-treated K562 cells.
(C) Plots of sgRNA library targets ranked by probability of dependency from genome-wide K562
screens in HPLM+dS with DMSO vehicle (left) or BVDU treatment (right). Red box indicates
probability > 0.5. Dashed lines mark gene scores at the cutoffs for gene essentiality in each screen.



(D) Relative abundance of BVDU in ABCC4-knockout versus control cells following treatment
with BVDU in HPLM+dS (mean ± SEM, n = 3).
(E) Selectively essential BVDU-antagonizing hits.
(F) Immunoblot for expression of TYMS in cells treated with vehicle in HPLM+dS across indicated
temperatures for cellular thermal shift assay (CETSA). M.W. standard is annotated.
(G) Immunoblot for expression of TYMS in cells after treatment with DMSO, BVDU, FCdR, or
MTX in HPLM+dS with RPMI-defined folic acid at indicated CETSA temperatures.
(H) Immunoblot for expression of SHMT2. M.W. standards are annotated. RAPTOR served as the
loading control.
(I) Relative abundances of ATP, GTP, and dTTP in BVDU-treated control and SHMT2-knockout
cells versus control cells in HPLM+dS (mean ± SEM, n = 3, **P < 0.005, *P < 0.01).
(J) Heatmap of cellular abundances for indicated metabolites in BVDU-treated control and
SHMT2-knockout cells versus control cells in HPLM+dS (n = 3).



Fig. S8. Additional data related to BVDU-MP affects the 10-formyl-THF synthetase activity of 
MTHFD1 
(A) Immunoblot for expression of MTHFD1. M.W. standards are annotated. GAPDH served as
the loading control.
(B) Relative abundances of ATP, GTP, and dTTP in BVDU-treated control and MTHFD1-
knockout cells versus control cells in HPLM+dS (mean ± SD, n = 3, **P < 0.005).
(C) Heatmap of cellular abundances for indicated metabolites in BVDU-treated control and
MTHFD1-knockout cells versus control cells in HPLM+dS (n = 3).
(D) Pseudocolor Coomassie-stained gel imaged using a LICOR Odyssey FC. 1: M.W. standards, 2:
MTHFD1-3xFLAG.
(E) Schematic for a method to evaluate MTHFD1(CD) domain activity.
(F) Schematic for a method to evaluate MTHFD1(S) activity.
(G) Schematic for a method to evaluate reaction components across both MTHFD1 domains.
(H) Normalized ion counts for ADP, 10-formyl-THF, and NADP+ from reactions of recombinant
MTHFD1 with ATP, THF, and formate that either lack (top) or further contain (bottom) NADPH
(mean ± SD, n = 3). Correction for background ADP resulted in slightly negative ion counts from
reactions in the absence of NADPH, reflective of noise.
(I) Relative levels of indicated metabolites measured from multi-domain MTHFD1 activity assays
following addition of BVDU or MTX (mean ± SEM, n = 3).



Fig. S9. BVDU treatment reduces in vivo tumor burden 
(A) Schematic for assessing detection of BVDU in plasma samples collected from NSG mice 6
hours after intraperitoneal (IP) injection of vehicle or BVDU at one of two doses (top). Normalized
ion counts for plasma BVDU (mean ± SEM, vehicle n = 2; 10 mg kg-1 BVDU n = 3; 50 mg kg-1

BVDU n = 3) (bottom).
(B) Schematic for assessing how BVDU affects the growth of K562 xenografts in NSG mice. K562
cells expressing Akaluciferase were injected intravenously via tail vein. After 6 days, tumor burden
was measured with bioluminescence imaging (BLI). Mice were assigned to two groups: treatment
with vehicle (n = 5) or BVDU (n = 6). Starting on day 0, twelve total daily doses of vehicle (8.4%
DMSO) or 50 mg/kg BVDU (in 8.4% DMSO) were administered by IP injection. Tumor burden
was measured on days 7 and 13 using BLI. Plasma was collected on day 6 (roughly 8 hours after
treatment was administered) and on day 14.
(C) Plasma BVDU levels measured from vehicle- and BVDU-treated mice on day 6 (mean ± SEM,
vehicle n = 5; BVDU n = 6).
(D) Quantification of BLI signals (total flux) at the indicated time points for each treatment group.
In the box plots, the center line indicates the median, box limits mark the first and third quartiles,
and the whiskers represent the minimum and maximum of all data points. *P < 0.05.



(E) Changes in BLI signal (total flux) at the indicated time points for each group versus at day -1.
Box plot parameters as in panel L. *P < 0.05.
(F) BLI images depicting tumor burden of K562-engrafted mice treated with vehicle (left) or
BVDU (right) at indicated time points. Data are represented colorimetrically (photons/s/cm2/sr)
with the scale bar depicted. X, death within the group prior to time point.
(G) Normalized ion counts for creatinine and urea in plasma collected from each treatment group
at the indicated time points. Box plot parameters as in panel D.



Fig. S10. Additional data related to conditional phenotypes for additional compounds are 
linked to folic acid  
(A and B) Dose-responses of K562 cells to SCH-79797 (A) and TG100-115 (B) (mean ± SD, n = 
3). Concentration range spanned for two dose-responses tested across the remaining three cell 
lines (yellow box). 



Fig. S11. Additional data related to gene essentiality data suggest that other conditional 
phenotypes are linked to non-canonical mechanisms 
(A) Defined pyruvate levels in HPLM and RPMI. Pyruvate levels in 10% FBS (dS, dialyzed; S,
untreated) (mean ± SD, n = 3).
(B–F) Dose-responses of K562 cells to CB-839 (B), deguelin (C), apilimod (D), SB-612111 (E), or
JTC-801 (F) (mean ± SD, n = 3). Concentration range spanned for two dose-responses tested across
the remaining three cell lines (yellow box).
(G) Relative growth of cells treated with JTC-801 versus DMSO (mean ± SD, n = 3, **P < 0.005).
H, HPLM-defined concentration (0.45 µM). R, RPMI-defined concentration (2.27 µM).
(H) Human cancer cell lines ranked by OPRL1 expression from reported RNA-seq data (95).
Labeled points indicate cell lines in this study. TPM, transcripts per million.



Fig. S12. Comparative profiling analysis for a distinct lot of commercial vitamins solution 
(A) Relative working concentrations in commercial solution (Sigma R7256, Lot RNBK1269)
versus basal RPMI (Lot 2458379) (mean ± SD, n = 3, **P < 0.005).
(B) Defined and working concentrations of biotin and folic acid (mean ± SD, n = 3). RPMI also
contains 3.69 nM vitamin B12, which could not be detected by the profiling method.



Supplementary Table Captions 
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