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Note on contributing authors
Contributing authors are listed in alphabetical order by surname.

Sample selection
Contributing authors: Evan E. Eichler, Pille Hallast, Charles Lee, Katherine M. Munson,
Tobias Rausch, Arvis Sulovari

Methods
A total of 65 samples were included in the current study. The majority (63/65) of the samples
originate from the 1000 Genomes Project (1kGP) Diversity Panel1 and 1/65 (NA21487) from
the International HapMap Project2. In addition, NA24385 (HG002), commonly used for
benchmarking by the Genome in a Bottle (GIAB) consortium3, was included in all analyses
with publicly available data from other efforts (Supplementary Tables 1-4,6,7).

Samples were selected for inclusion according to four criteria: (i) Samples (n=32) for which
data had previously been generated4 were updated with additional PacBio HiFi and
ultra-long Oxford Nanopore Technologies (ONT) coverage. (ii) Additional samples were
chosen from the Reference Genome Improvement project
(https://genome.wustl.edu/items/reference-genome-improvement/) (n=8), representing the
1kGP populations ASW, YRI, GWD, MSL, ESN, and ACB, for which deep Illumina coverage
exists5 (n=7). (iii) We calculated population-specific k-mers6 for each 1kGP individual with
deep-coverage Illumina data available5 to quantify the distance of each individual relative to
its respective population cluster’s centroid (Code Availability). Briefly, we conducted a
principal components analysis using all of the autosomal variants from all samples using the
SNPrelate R package7 (v1.26.0). The ideal number of clusters (k value) was determined
using the gap statistic implemented within the factoextra R package
(github.com/kassambara/factoextra; v1.0.7). The optimal number of clusters for EUR, AFR,
EAS, SAS, and AMR samples was found to be 3, 7, 1, 4 and 6, respectively using PC1 and
PC2 eigenvalues; this allowed us to compute the distance to the nearest centroid for each
sample (Code Availability). We then chose additional samples (n=13) either closest or
farthest from the centroid of their population cluster. Samples previously chosen for other
long-read sequencing efforts (e.g., by the Human Pangenome Reference Consortium,
HPRC) were not considered. (iv) Lastly, three samples (NA18989, HG01890, HG00358)
were included to represent specific Y-chromosomal haplotypes8.

Data production and organization
Contributing authors: Peter A. Audano, Olanrewaju Austine-Orimoloye, Scott E. Devine,
Peter Ebert, Pille Hallast, Patrick Hasenfeld, Kendra Hoekzema, Sarah E. Hunt, Youngjun
Kwon, Katherine M. Munson, Likhitha Surapaneni, Feyza Yilmaz, Qihui Zhu
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Methods
Data generated as part of this project were derived from lymphoblast lines available from the
Coriell Institute for Medical Research for research purposes (https://www.coriell.org/).
Regular checks for mycoplasma contamination are performed at the Coriell Institute. Data
file and project accession numbers are listed in Supplementary Tables 2-4,6,7.

PacBio HiFi sequence production.

University of Washington.
Data were generated as described previously8. For additional coverage, samples HG00514,
HG00731, HG00732, NA19238, NA19239, NA19240, and NA18939 were also processed
with the same shearing and size selection parameters but using the SMRTbell Prep Kit v3.0
(PacBio P/N 102-182-700) and SMRTbell Barcoded Adapter Plate 3.0 (PacBio P/N
102-009-200) according to manufacturer’s recommendations. Additional sequencing was
performed on either the PacBio Sequel II platform using chemistry v3.2 (PacBio P/N
102-333-300) with 30-hour movie and 2-hr pre-extension times, or the PacBio Revio platform
with chemistry v1 (PacBio P/N 102-817-900) on collection software SMRT Link v12.0 and
v13.0, using 30-hour movies and 2- or 1.417-hr pre-extension times. Revio datasets were
post-processed onboard through ccs analysis and DeepConsensus v1.0 or v2.0.

The Jackson Laboratory
Data were generated as described previously8. To generate additional coverage for three
samples (NA19238, NA19240 and HG03732), the high-molecular-weight (HMW) DNA was
extracted using the Monarch HMW DNA Extraction Kit for cells (NEB), libraries were
prepared using SMRTBell Express Template Prep Kit 3.0 (PacBio) with 5 µg of DNA was
sheared using Megaruptor 3.0 (Diagenode) and sequenced on either PacBio’s Sequel II (all
but one) or Revio (HG03732).

University of Maryland Institute for Genome Sciences (UMIGS).
Data were generated essentially as described8. HMW genomic DNA was isolated using the
Circulomics9 DNA preparation kit following the manufacturer’s protocols. Four samples were
sequenced (NA19434, NA19836, HG03520, and HG02282) by shearing the HMW gDNA
and isolating an average fragment size of 18 kbp. PacBio libraries were prepared from the
sheared 18 kbp fragments and sequenced using PacBio’s Sequel II platform with a target
coverage of 30X coverage (actual coverages = 27.8X, 32.4X, 47.1X,43X, respectively for
NA19434, NA19836, HG03520, and HG02282).

ONT-UL sequence production.

University of Washington.

Data were generated as described previously8. HMW DNA was extracted from 2 aliquots of
30 million frozen pelleted cells using the phenol–chloroform approach as described
previously10. Libraries were prepared using the Ultra-Long DNA Sequencing Kit
(SQK-ULK001, ONT) according to the manufacturer’s recommendations. In brief, DNA from
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around 10 million cells was incubated with 6 μl of fragmentation mix at room temperature for
5 min and 75 °C for 5 min. This was followed by an addition of 5 μl of adapter (RAP-F) to the
reaction mix and incubated for 30 min at room temperature. The libraries were cleaned up
using Nanobind disks (Circulomics) and long fragment buffer (SQK-ULK001, ONT) and
eluted in elution buffer. Libraries were sequenced on the flow cell R9.4.1 (FLO-PRO002,
ONT) on a PromethION (ONT) for 96 h. A library was split into 3 loads, with each load going
24 h followed by a nuclease wash (EXP-WSH004, ONT) and subsequent reload.

The Jackson Laboratory.

Data were generated as described previously8. HMW DNA was extracted from 60 million
frozen pelleted cells using the phenol–chloroform approach as previously described 11.
Libraries were prepared using the Ultra-Long DNA Sequencing Kit (SQK-ULK001, ONT)
according to the manufacturer’s recommendations. In brief, 50 μg of DNA was incubated
with 6 μl of fragmentation mix at room temperature for 5 min and 75 °C for 5 min. This was
followed by an addition of 5 μl of adapter (RAP-F) to the reaction mix and incubated for 30
min at room temperature. The libraries were cleaned up using Nanodisks (Circulomics) and
eluted in an elution buffer. Libraries were sequenced on the flow cell R9.4.1 (FLO-PRO002,
ONT) on a PromethION (ONT) system for 96 h. A library was generally split into 3 loads with
each loaded at an interval of about 24 h or when pore activity dropped to 20%. A nuclease
wash was performed using the Flow Cell Wash Kit (EXP-WSH004) between each
subsequent load.

ONT Basecalling
For genome analysis including genome assembly, ONT reads were basecalled with Guppy
5.0.11 with configuration “dna_r9.4.1_450bps_sup_prom.cfg” distributed with the Guppy
software.

For ONT-based methylation analyses, reads were basecalled a second time with Guppy
6.5.7 with configuration “dna_r9.4.1_450bps_modbases_5mc_cg_sup_prom.cfg” distributed
with the Guppy software.

Bionano Genomics optical genome maps production.
Optical genome mapping data for 17 individuals were generated at Bionano Genomics as
described previously8 (Supplementary Table 3, PRJEB77842). We complemented our
analysis set with data from previously published HGSVC efforts (n=13, PRJEB583768; n=32,
PRJEB410774) and using publicly available data for HG02818 (PRJNA339722) and
NA24385/HG002 (Supplementary Table 3). Optical genome maps of the seventeen
samples were de novo assembled using the Bionano Solve v3.5
(https://bionanogenomics.com/support/software-downloads/) assembly pipeline, with default
settings as described previously4.

python2.7 Solve3.5.1_01142020/Pipeline/1.0/pipelineCL.py -T 64
-U -j 64 -jp 64 -N 6 -f 0.25 -i 5 -w -c 3 -y -b ${bionano_bnx}
-l ${output_dir} -t Solve3.5.1_01142020/RefAligner/1.0/ -a
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Solve3.5.1_01142020/RefAligner/1.0/optArguments_haplotype_DLE1
_saphyr_human.xml -r ${reference_genome}

A pairwise comparison of DNA molecules (min. 250 kbp) was generated to produce the
initial consensus genome maps. During an extension step, molecules were aligned to
genome maps, and maps were extended based on the molecules aligning past the map
ends. Overlapping genome maps were then merged. Extension and merge steps were
repeated five times before a final refinement of the genome maps. Clusters of molecules
aligned to genome maps with unaligned ends >30 kbp in the extension step were
re-assembled to identify all alleles. To identify alternate alleles with smaller size differences
from the assembled allele, clusters of molecules aligned to genome maps with internal
alignment gaps of size <50 kbp were detected, and the genome maps were converted into
two haplotype maps. The final genome maps were aligned to the reference genome,
GRCh38.p12.

Strand-seq data generation and data processing.
Data for nine samples were generated as described previously8. We complemented our
analysis set with previously published data from HGSVC efforts (n=9, PRJEB1284912; n=344,
n=38, and n=913, PRJEB39750) and publicly available data for NA24385/HG002
(AWS:S3:s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=NHGRI_U
CSC_panel/HG002/hpp_HG002_NA24385_son_v1/Strand_seq/2019-12-16-HWVTJAFXY/)

Hi-C data production.
In total, Hi-C data for 63 individuals were collected for analysis (Supplementary Tables 4,5).
Specifically, Hi-C data for 20 individuals (PRJEB75193) were generated in this study using
Proximo Hi-C kits v4.0 (Phase Genomics), followed by sequencing at the Jackson
Laboratory for Genomic Medicine as described previously8. We complemented our analysis
set by adding data from previous HGSVC efforts (n=30 using Proximo Hi-C kits v3.0,
PRJEB396844; n=10, PRJEB583768) and from one external source for the three individuals
NA19238, HG00513 and HG00732 (PRJNA52858414).

RNA-seq data production.
RNA-seq data were generated at The Jackson Laboratory for 21 individuals (PRJEB75192)
as described previously8, with the exception that 1 million cells were used as a starting
material, and paired-end 150 bp reads were sequenced on an Illumina NovaSeq 6000
platform. We complemented our analysis set with previously published data from HGSVC
efforts (n=33, PRJEB396844; n=10, PRJEB583768; Supplementary Table 7).

Iso-Seq data production
Iso-Seq data were generated at The Jackson Laboratory for 12 (PRJEB75191) individuals
as described previously8 (Supplementary Table 6).
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Unset

Unset

Assembly production and quality control
Contributing authors: Haoyu Cheng, Zechen Chong, Peter Ebert, Evan E. Eichler, William T.
Harvey, Mir Henglin, Sergey Koren, Youngjun Kwon, Tobias Marschall, Adam M. Phillippy,
Mikko Rautiainen, Yuwei Song

Methods

Verkko hybrid genome assembly
All samples were uniformly processed with a Snakemake v7.19.115 workflow implementing
the hybrid genome assembly using Verkko16 (v1.4.1; see Code Availability). Verkko was
first executed with all PacBio HiFi and ONT data per sample to generate an unphased
whole-genome assembly. The resulting assembly graph in GFA format was then forwarded
into the previously published Graphasing17 (v0.3.1-alpha) phasing pipeline that used all
available Strand-seq data per sample to generate phasing paths through the assembly
graph. The phase information was further processed by the Verkko companion tool Rukki16

to generate a Verkko-compatible input file. This input file was then used in addition to the
read input data for the second Verkko run resulting in fully phased assemblies for each
sample. The Verkko pipeline itself executed the following tools as part of the assembly
process: MBG18 (v1.0.15), GraphAligner19 (v1.0.17), and MashMap20 (v3.0.6) for all samples
except NA19240, HG00514, HG00732, HG00096 and NA19239. For this last set of samples,
the Verkko pipeline tools were necessarily updated to MBG18 (v1.0.16) and GraphAligner19

(v1.0.18) to solve a bug originally discovered in the HG00096 assembly process, which is
documented in the Verkko GitHub issue #189. The dataset for the sample HG00512
contained one ONT file that was later discovered to be a contaminant (library id
23-lee-007_PCA100115_3F-run15, Supplementary Table 2). We examined the issue with
the Verkko developers (personal communication) and decided not to rerun the assembly
because Verkko’s process of aligning the ONT reads against an initial HiFi-based assembly
graph is inherently robust against such contamination.

Verkko command to produce unphased assemblies:

verkko --hifi ALL-HIFI-READS.fastq --nano ALL-ONT-READS.fastq
--screen human -d WORK-DIR-UNPHASED

Verkko command to produce phased assemblies:

verkko --hifi ALL-HIFI-READS.fastq --nano ALL-ONT-READS.fastq
--screen human -d WORK-DIR-PHASED --assembly WORK-DIR-UNPHASED
--paths STRANDSEQ-PHASING-PATHS.gaf

The phased assembly output of Verkko consisted of the following assembly units:
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Unset

Unset

1. haplotypes 1 and 2: the main haploid assemblies for each sample
2. unassigned: a set of unphased contigs, i.e., contigs that are not assigned to a

specific haplotype.
3. disconnected: a set of usually short assembled sequences that could not be

connected to any other component in the assembly graph.
4. rDNA: the set of sequences identified by Verkko as rDNA sequences (see option

“--screen”)
5. EBV: the set of sequences identified by Verkko as Epstein-Barr viral sequences
6. mito: the set of sequences identified by Verkko as mitochondrial sequences (see

option “--screen”)

If not explicitly stated otherwise, the unassigned, disconnected, rDNA, EBV and
mitochondrial sequences were omitted from any downstream analysis.
We emphasize here that, due to the characteristics of the Strand-seq technology, it is not
possible to a priori determine the parent of origin for a given assembled haplotype of a
sample. Hence, the common denominations haplotype 1 (hap1/H1) and haplotype 2
(hap2/H2) are in principle interchangeable and, in particular, have not been harmonized - in
terms of the parent of origin - across samples.

Hifiasm hybrid genome assembly
Hifiasm (UL)21 (v0.19.6) assemblies were generated in three steps. First, a pseudo-phased
assembly was generated using both the HiFi and ONT reads:

hifiasm -o {output.prefix} -t {threads} --ul {input.ont_fastq}
{input.hifi_fastq}

The resulting assembly graph in GFA format was then forwarded into the previously
published Graphasing phasing pipeline17 as for Verkko above. The resulting phasing paths
and sequences were then used to generate the yak (github.com/lh3/yak) databases for
phasing the assemblies. With these yak databases, the command was as follows:

hifiasm -o {output.prefix} -t {threads} -1 {input.yak_h1} -2
{input.yak_h2} --ul /dev/null /dev/null

This process uses the same error corrected reads as the initial run but applies the phasing
information to the resulting assembly graph.

Standardized evaluation of genome assemblies
All phased assemblies were subjected to the same evaluation pipeline implemented in a
Snakemake15 (v7.19.1) workflow (Code Availability). The input to the evaluation pipeline
consisted of FASTA files representing the different assembly units, e.g., haplotypes 1 and 2
or the unphased (“unassigned”) sequences for Verkko assemblies (see “Verkko hybrid
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Unset

Unset

Unset

genome assembly” above), plus the same HiFi and ONT reads that were used for the
assembly.

Identification of contaminants
We employed NCBI’s Foreign Contamination Screening (FCS) tool22 (v0.4.0) with database
release 2023-01-24 to screen all assembly units for remaining sequencing adapters or
common contaminants such as mycoplasma. Sequences flagged as contaminants of any
type were removed from the assembly sequence files - with the exception of Verkko’s “EBV”
output - and the cleaned-up assemblies were then further characterized as explained in the
following steps.

FCS-GX command line to screen for foreign organism contamination:

python3 fcs.py screen genome --fasta ASSEMBLY.fasta --out-dir OUT_DIR
--gx-db r2023-01-24/all --tax-id 9606

FCS-adaptor command line to screen for adaptor and vector contamination:

run_fcsadaptor.sh --fasta-input ASSEMBLY.fasta --output-dir OUT_DIR
--euk --container-engine singularity --image fcs-adaptor.sif

Assembly contig-to-reference alignment
All assembled contigs were aligned against two human reference assemblies: a variant of
GRCh38 excluding the ALT sequences (GRCh38-NoAlt described in Ref. 4) and the
T2T-CHM13v2.0 assembly (T2T-CHM13, UCSC hs1)23, which includes a complete Y
chromosome of the individual HG002/NA24385. Assemblies of female samples were aligned
against a T2T-CHM13 reference with N-masked PAR regions of the Y chromosome. All
alignments were performed with minimap224,25 (v2.26) and filtered to exclude unmapped
sequences (flag 1540) with SAMtools26 (v1.17). The contig-to-reference alignments were
used to derive a reference chromosome assignment for the assembled contigs by selecting
the chromosome with the highest number of matches to the assembled contig as reported by
minimap2. The sex (male/female) for each assembled haplotype of the male samples was
determined in the same way.

minimap2 -a -x asm20 --cs --eqx -t THREADS -R READGROUP REF-ASSEMBLY.fasta
INPUT-ASSEMBLY.fasta
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Unset

Unset

Read-to-assembly alignment
All HiFi and ONT reads used for the assembly were aligned against the complete assembly
for the purpose of quality control. All alignments were performed with minimap224,25 (v2.26)
and not filtered by default. The minimap2 parameter presets “map-hifi” and “map-ont” were
used to align the HiFi and the ONT reads, respectively.

minimap2 -a -x READ-PRESET --MD --eqx --cs -t THREADS -R READGROUP
INPUT-ASSEMBLY.fasta ALL-READS.fastq

Flagging regions of putative assembly collapses with NucFreq
We used an adapted variant of the tool NucFreq27 (fork NucFreqTwo / branch
“split-two-phases” / commit bd080aa) to identify positions where the HiFi read-to-assembly
alignments (see section “Read-to-assembly alignment” above, filtered here with flag 3844)
showed an elevated count of the second most common base in the alignments for the
respective position in the assembly. We applied the following filtering criteria to identify those
positions: (1) the second most common base must be observed in at least two alignments at
that position; (2) the second most common base must be observed in at least 10% of all
alignments at that position. Next, regions with an increased density of such discordant
alignment positions were flagged if at least five discordant positions occurred in a window of
at most 500 bp. A common interpretation of NucFreq flagged regions is that they represent
potential assembly collapses if they coincide with regions that exhibit an elevated read
depth. We hence annotated all NucFreq regions with the median HiFi read depth normalized
to a percentage value relative to the global median HiFi depth for the respective sample for
comparability using custom scripts. In the integrative QC analysis (see section “Integrative
analysis of QC annotations” below), all regions flagged by NucFreq were labeled
“NUCFRQ”.

The adapted version of NucFreq we used (termed “NucFreqTwo”) is quasi-identical to the
original NucFreq code but separates the computations for identifying the flagged regions
from the plotting output of said regions. These minor changes were necessary because the
original NucFreq code broke for more fragmented assemblies, i.e., in cases where a lot of
flagged regions were plotted automatically. The following command was executed to identify
the regions flagged for potential assembly collapses:

NucFreqTwo.py --infile HIFI-READ-TO-ASSEMBLY.bam --flag-discordant-pct 10
--flag-discordant-abs 2 --flag-min-interval 500 --flag-num-hets 5
--min-region-size 500000
# last parameter was introduced to run NucFreq[Two] genome-wide as opposed
# to the original NucFreq which is commonly executed with a list
# of regions (BED file) selected for flagging/plotting. The above filter
# skips over regions smaller than 500000 in the BAM file
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Flagging regions of putative assembly errors with Flagger
We used Flagger28 (v0.3.3), a read-alignment-based pipeline, to detect putative assembly
errors in the diploid assemblies. HiFi reads were aligned to the phased assemblies, i.e.,
combining haplotype 1 and 2, in a haplotype-aware manner. For improved mapping in repeat
regions, Meryl29 (v1.0) and Winnowmap230,31 (v2.03) were used to generate repeat-aware
read alignments:

meryl count k=15 output MERYL_DIR ASSEMBLY.fasta
meryl print greater-than distinct=0.9998 MERYL_DIR > REP_K15.txt
winnowmap -W REP_K15.txt -t THREADS -I 10G -Y -ax --MD --cs -L --eqx
ASSEMBLY.fasta HIFI_READS.fastq.gz

Flagger was executed using a WDL pipeline. The command line used for execution is as
follows:

java -jar cromwell.jar run flagger_end_to_end.wdl --inputs INPUT.json
--metadata-output OUTPUT.json

The configuration options in the INPUT.json file were set as follows:

{
"FlaggerEndToEnd.refSDBed": REF_SD.bed,
"FlaggerEndToEnd.preprocess.variantCallingMemory": 48,
"FlaggerEndToEnd.sampleName": SAMPLE_NAME,
"FlaggerEndToEnd.fai": CONCAT_ASSEMBLY.fasta.gz.fai,
"FlaggerEndToEnd.stats.threadCount": 4,
"FlaggerEndToEnd.refBiasedRegionFactorArray": [1.25, 0.75],
"FlaggerEndToEnd.flagger_alt_removed.isDiploid": true,
"FlaggerEndToEnd.stats_alt_removed.threadCount": 4,
"FlaggerEndToEnd.flagger.isDiploid": true,
"FlaggerEndToEnd.stats_alt_removed.memSize": 4,
"FlaggerEndToEnd.maxReadDivergence": 0.02,
"FlaggerEndToEnd.refCntrCtBed": REF_CENTROMERE_TRANSITION.bed,
"FlaggerEndToEnd.refSexBed": REF_SEX_CHROMS.bed,
"FlaggerEndToEnd.variantCaller": "dv",
"FlaggerEndToEnd.stats.memSize": 4,
"FlaggerEndToEnd.secphaseOptions": "--hifi",
"FlaggerEndToEnd.project.isAssemblySplit": false,
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Unset

Unset

"FlaggerEndToEnd.assemblyFastaGz": CONCAT_ASSEMBLY.fasta.gz,
"FlaggerEndToEnd.suffix": "",

"FlaggerEndToEnd.refBiasedBlocksBedArray":[REF_HIFI_R1_BIASED.bed,REF_HIFI_R
2_BIASED.bed],
"FlaggerEndToEnd.refCntrBed": REF_CENTROMERIC_SATELLITES.bed,
"FlaggerEndToEnd.refBiasedRegionNameArray": ["hifi_biased_high",

"hifi_biased_low"],
"FlaggerEndToEnd.refName": "hs1",
"FlaggerEndToEnd.readAlignmentBam": HIFI_READS_TO_ASSEMBLY.bam,
"FlaggerEndToEnd.hap1ToRefBam": HAP1_ASSEMBLY_TO_REF.bam,
"FlaggerEndToEnd.hap2ToRefBam": HAP2_ASSEMBLY_TO_REF.bam

}

In cases where the primary alignment is deemed inaccurate due to assembly errors,
Secphase (github.com/mobinasri/secphase; v0.4.3; integrated in Flagger) identifies the
correct haplotype among the secondary alignments, ensuring more accurate read
assignment to each haplotype.

For the integrative QC analysis (see section "Integrative analysis of QC annotations" below),
all non-haploid Flagger labels were used. The Flagger labels are all prefixed with “FLG” and
were shortened as follows: error (-ERR), unknown (-UNK), collapsed (-COL), duplicated
(-DUP).

Variant-based QV estimation with DeepVariant
We used DeepVariant32 (v1.6.0) to call short variants in the HiFi read-to-assembly
alignments (see section “Read-to-assembly alignment” above, filtered here with flag 3844)
that could indicate small assembly errors. The resulting callset was quality-filtered with
bcftools26 (v1.17) and all remaining variants were counted as putative assembly errors:

/opt/deepvariant/bin/run_deepvariant --model_type PACBIO --ref
INPUT-ASSEMBLY.fasta --reads HIFI_READS.bam --num_shards THREADS
--output_vcf DV_CALLS.vcf --noruntime_report --novcf_stats_report
--sample_name SAMPLE

--intermediate_results_dir TMP_RUN

bcftools view -f PASS -i 'QUAL>=10 && FORMAT/DP>=5' DV_CALLS.vcf

All variant calls remaining after filtering were counted in base pairs as putative assembly
errors and a sequence QV estimate was derived as described previously4 after adjusting the
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number of error-free base pairs by subtracting the total length of all gaps (stretches of Ns) in
the respective sequence. In the integrative QC analysis (see section "Integrative analysis of
QC annotations" below), all regions flagged by DeepVariant were labeled as “DEEPVR”.

K-mer based analysis of assemblies with Merqury
We used Meryl29 (v1.0) and Merqury29 (v1.0) to estimate the QV values of the assemblies.
The QV values were calculated as phred-scaled scores33, based on the error rates
determined by comparing the k-mer databases generated from the sample sequencing
datasets with the assembled sequences. Illumina sequencing data, which has high base
accuracy, was used to construct the k-mer databases.

To generate the k-mer database from the sequencing dataset, the following command was
executed:

meryl k=21 count ILLUMINA_READS.fastq.gz output READS_DB.meryl

To compute the QV value for the entire diploid assembly, as well as the QV values for each
haplotype (hap1 and hap2), the following command was executed:

merqury.sh READS_DB.meryl HAP1_ASSEMBLY.fa.gz HAP2_ASSEMBLY.fa.gz
MERQURY_OUTPUT

Assessing gene completeness of the assemblies with compleasm
We used compleasm34 (v0.2.5) to assess the gene completeness of the assembled
haplotypes in terms of the presence/absence of known single-copy orthologs in the
OrthoDB35 (v10) primate database.

compleasm run --mode busco -L DB_DIR/ -l primates_odb10 --threads THREADS

-o OUT_DIR/ -a INPUT-ASSEMBLY.fasta

The results of compleasm includes the information of single-copy genes that exhibit a
fragmented alignment to the respective assembly or that show additional copies. That
information was incorporated into the integrative QC analysis (see section "Integrative
analysis of QC annotations" below) by labeling the respective regions as “BSCFRG”
(fragmented) and “BSCDUP” (duplicated), respectively.

Identifying complete chromosome assemblies
We labeled chromosomes as T2T by applying the following set of criteria:

14

https://paperpile.com/c/ELVyBO/VtN9
https://paperpile.com/c/ELVyBO/VtN9
https://paperpile.com/c/ELVyBO/P3Ab
https://paperpile.com/c/ELVyBO/dFID
https://paperpile.com/c/ELVyBO/T4tF


Unset

Unset

1. Telomeres were assembled on both arms of the chromosome.
2. The chromosome spans the respective T2T-CHM13 reference chromosome

approximately from end to end.
3. The QV estimate for the assembled sequence is above 50 (see sections

“Variant-based QV estimation with DeepVariant” and “K-mer based analysis of
assemblies with Merqury” above).

The required input data to check criteria 1 and 2 were computed as follows:

(1-telomere): seqtk telo INPUT-ASSEMBLY.fasta > ASSEMBLY.telo.tsv

(2-ref span): mashmap -f one-to-one --pi 99 --seqLength 100000 --dense

-r REF-ASSEMBLY.fasta -q INPUT-ASSEMBLY.fasta --output APPROX-ALIGN.paf

The adapted contig-to-reference alignment strategy using MashMap20 (v3.1.3) resulted from
the observation that base-level alignments occasionally could not traverse complex regions,
e.g., on chromosome 16. This resulted in fragmented alignments of contiguously assembled
chromosomes, which was avoided by resorting to the approximate, i.e., not base-level
accurate alignment strategy of mashmap. Mashmap was executed with a stringent setting
for reporting alignments only above a threshold of 99% sequence identity to then identify a
high-confidence anchor region, i.e., the largest reported alignment. The span of the
assembled chromosome relative to the reference was then computed relative to this anchor
region. An assembled sequence was considered reference spanning if it covered more than
95% of the reference sequence length. This threshold was lowered to 60% for the Y
chromosome due to the recently reported high variation in total length8, and to 90% for the
T2T-CHM13 chromosome 9 to account for the multi-megabase HSat3 duplication in the
CHM13 cell line23.

We note here that for the sample HG00732, the X chromosome assembly in one haplotype
was deteriorated to a degree that we labeled it as missing (Fig. 1e). Based on the
progressive loss of read depth on the X chromosome across the three HiFi sequencing
batches for that sample (Supplementary Fig. 5), we assume that this is an artifact caused
by the cell line.

Detection of phasing inconsistencies (Mir/Peter E.)
The Graphasing pipeline17 assumes that all unitigs in the input assembly graph are specific
to a single haplotype. Consequently, haplotype switches present in the input assembly graph
will be propagated into the final assembly. We developed the following method to localize
these events (referred to as “breakpoints” for brevity) and applied it to the Verkko
assemblies.
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Strand-seq based (phasing/switch-error) breakpoints were detected using a method similar
to that used in the breakpointR R package36. The method leverages the
haplotype-informative signal inferred from the alignment orientation of the Strand-seq reads,
i.e., either in ‘Crick’ (C) or in ‘Watson’ (W) direction relative to the assembly sequence.
Consequently, a change in the predominant alignment orientation, e.g., from mostly Crick at
the beginning of an assembled contig to mostly Watson at its end, indicates a putative
phasing error introduced by the assembler that is not supported by the Strand-seq signal.

Our method scans each unitig in windows of varying size by fixing the number of read
alignments per window. For each window, the following two-sample binomial proportion test
statistic is calculated:𝑍
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front half of the sliding window respectively. P-values were calculated from the Z statistics,
after which a Bonferroni correction is applied at the unitig level to account for the multiple
testing problem in this setting. Finally, breakpoints can be identified as locations with
p-values lower than a given threshold, with adjacent locations merged into “peaks”. The
starting and ending coordinate of each peak is reported, giving a high-confidence window in
which the breakpoint exists. For breakpoint calling, we used a window size of 300, and a

p-value threshold of . To filter out small noise peaks, peaks were further filtered to those10−8

wider than 75 continuous locations below the p-value threshold. Breakpoints are calculated
during the Graphasing pipeline if calc_breakpoints: True is set in the configuration
file. Besides the Strand-seq reads, the input for Verkko assemblies are the homopolymer
compressed assembly graph (“assembly.homopolymer-compressed.gfa”) and the assembly
HiFi coverage (“assembly.hifi-coverage.csv”), while for hifiasm only the unitigs graph
(“*p_utg.gfa”) is needed. In both cases, the paths to these files, as well as the “assembler”
flag need to be specified in the sample sheet listed in the configuration file.

snakemake -d ../wd/ --configfiles config/config.yaml
// see text above for exec details Verkko vs hifiasm
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Assembly Analysis with Inspector
Inspector37 (v1.2) was used to evaluate the assembly errors of 65 assemblies, which were
recorded as BED files. Assembly completeness was also checked using inspector reference
mode aligned against the T2T-CHM13 genome.

inspector.py -c INPUT-ASSEMBLY.fasta -r HiFi_RAWREADS.fastq.gz --ref
REF-Genome.fasta -o OUTPUT_DIRECTORY/ -t8 --datatype hifi

inspector.py -c INPUT-ASSEMBLY.fasta -r ONT_RAWREADS.fastq.gz --ref
REF-Genome.fasta -o OUTPUT_DIRECTORY/ -t8 --datatype nanopore

For each sample, 28 metrics were evaluated using a reference-based approach for both
Verkko and Hifiasm assemblies, employing either HiFi raw reads or ONT raw reads with the
T2T-CHM13 reference (Supplementary Tables 12,13,21,22). Basic contig and alignment
statistics were calculated, and assembly errors were classified into structural assembly
errors (>50 bp) and small-scale errors (≤50 bp). The types of assembly errors considered
included base substitution, collapse, expansion, inversion, and haplotype switch. Overall
assembly quality (QV) was measured as the ratio of the total bases affected by errors plus
the number of inversion errors to the total assembly length. All evaluated parameters are
depicted in (Supplementary Figs. 3,4,6,7). In the integrative QC analysis (see below), the
Inspector flagged regions were labeled “ISPC” plus the suffix “HF” or “ON” to indicate the
input read type, i.e., PacBio HiFi or ONT, respectively.

Determining the status of previously reported assembly gaps

The evaluation of the status of a set of n=592 previously reported assembly gaps observed
in PacBio HiFi-only assemblies38 was implemented by combining the base-level alignments
generated with minimap2 (see section “Assembly contig-to-reference alignment” above) with
the approximate alignments generated with mashmap (see section “Identifying complete
chromosome assemblies” above) in custom code (see Code availability). The output of
both aligners was combined to better handle the substantial size variation of the reported
assembly gaps (1 bp min, ~30 Mbp max, ~3.6 kbp median). As an example, the largest gaps
are located on chromosome Y (q12 region, ~30 Mbp) and on the short arms of the
acrocentric chromosomes (up to ~3.8 Mbp on chromosome 13), which are regions that
notoriously break alignments due to their repetitive nature. Briefly, a gap was considered
covered if any of the two aligners produced a spanning alignment. Next, we annotated the
respective spanning contig with Flagger and NucFreq (see respective sections on Flagger
and NucFreq above) in analogy to the curation process applied for the centromeres and the
chromosome Y analysis (see main text). For this analysis, we decided not to consider any
potential errors identified by Flagger or NucFreq only in the actual gap interval, which can be
as small as a single base pair, but to limit the overall error rate of the entire assembled
sequence for both tools to <1%.

We emphasize here one special case that resulted from our sample and data selection that
included NA24385/HG002, which is the sample that was used to produce the first complete
Chromosome Y as part of the T2T-CHM13v2 reference39. Consequently, our assembly of
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NA24385 is extremely biased towards the reference we use as alignment target. We assume
that this bias in conjunction with the substantial size variation reported for the chromosome
Yq12 region8 explains why only our NA24385 assembly appears to have closed the ~30 Mbp
gap in Yq12 despite other complete Y chromosomes in our dataset (see main text).

Results

Inspector
The Inspector analysis using both PacBio HiFi and ONT reads for the Verkko and the hifiasm
assemblies resulted in QV estimates ranging from 43.7 to 56.0, with a median of 48.8 for
Verkko. Similarly, Hifiasm assemblies exhibited QV values ranging from 45.8 to 57.1, with a
median of 49.6. Verkko assemblies assessed using ONT raw reads had QV values ranging
from 31.2 to 34.2, with a median of 23.8, whereas Hifiasm assemblies had QV values
ranging from 31.3 to 36.1, with a median of 33.0 (Supplementary Tables 12,13,21,22).

Structural errors, defined as the sum of structural assembly errors including collapse,
expansion, inversion, and haplotype switch, were also calculated. Verkko assemblies
evaluated with HiFi raw reads had structural error counts ranging from 4 to 51, with a median
of 51. In comparison, Hifiasm assemblies evaluated with HiFi raw reads had structural error
counts ranging from 13 to 127, with a median of 28.

Genome completeness was assessed using the T2T-CHM13 as the reference. Verkko
assemblies evaluated with HiFi raw reads demonstrated completeness ranging from 85.73%
to 94.15%, with a median of 93.38%. Hifiasm assemblies evaluated with HiFi raw reads
exhibited completeness ranging from 88.83% to 96.43%, with a median of 93.77%.

Integrative analysis of QC annotations
The merged QC labels (Methods, section “Genome assembly and quality control”) revealed
a strong bias for certain tools to flag singleton regions, i.e., regions that were not supported
by another tool. This observation was most pronounced for the Inspector analysis using ONT
reads, which uniquely flagged >99% of all the flagged regions per Verkko assembly on
average (Supplementary Table 14). We thus decided to exclude the ONT-based Inspector
results, assuming that the inherently higher error-rate in ONT reads makes this data type
unsuitable for discovering in particular small-scale errors in the Verkko assemblies
(Supplementary Table 15).

Next, we computed the overlap and preferential association among all QC labels and
regions that are prone to give rise to spurious alignments due to their repetitive nature
(telomeres, segmental duplications >98% identity and centromeres), which may affect the
performance of all QC tools that rely on read-to-assembly alignments (Supplementary
Table 16). Limiting to the statistically significant associations (Supplementary Table 17;
Fisher’s exact test, two-sided, from Python’s scipy.stats; p-values multiple-testing corrected
with Benjamini-Yekutieli procedure40), we found a depletion of the Flagger-related labels
(FLG*) and of NucFreq in centromeres, which is consistent with the manual curation of those
regions before accepting them as correctly assembled (see main text). Other enrichments
suggest that high-identity segmental duplications may either still pose a challenge for hybrid
assemblers or are prone to give rise to false positives as many QC flags exhibit a
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pronounced positive odds ratio in that region type (BUSCO duplicated genes; Flagger false
duplications; Strand-seq breakpoints). Almost all tools show an enrichment in assembled
telomeres (DeepVariant, Flagger errors and unknowns, Merqury and NucFreq) except for
Inspector, which may suggest that Inspector lacks sufficient sensitivity in these areas of the
assemblies.

Finally, we created a merged region set for all QC-related annotations and counted only
those regions as true positives, i.e., presumably genuine assembly errors, where two distinct
tools flagged overlapping intervals (Supplementary Table 18). Regions that were not
flagged by at least two tools (in the following: “clean” regions) represent 99.6% (median) of
the phased sequence in the Verkko assemblies. The minimal (“size min”, Supplementary
Table 18) region size for both flagged and clean regions (median 1 bp) suggests, though,
that a slightly altered merging strategy, i.e., merging based on a distance criterion instead of
requiring overlap, would immediately result in a different estimate of the remaining errors in
the assemblies. Moreover, we emphasize here that the above estimate refers only to the
phased sequences of the assemblies and that sequences such as the rDNA (as identified by
Verkko) are excluded from these considerations; the median assembly size (~5.98 Gbp,
Supplementary Table 15) falls clearly short of a pseudo-diploid T2T-CHM13 reference
assembly (~6.02 Gbp). However, restricting the view on the phased sequences is partly a
technical necessity because Flagger’s inference of the “haploid” label or NucFreq’s approach
of scanning the read-to-assembly alignments for a locally increased abundance of
mismatching nucleotides are not applicable if the underlying assembled sequence has an
unclear phasing status.

Variant discovery and callset development
Contributing authors: Peter A. Audano, Christine R. Beck, Carolyn A. Paisie

Methods

Genome references
Callsets were constructed against two references, GRCh38 (GRCh38-NoALT) and
T2T-CHM13 (T2T-CHM13v2.0)23. The GRCh38 reference was previously constructed4 by
obtaining the hg38 reference assembly from the UCSC Genome Browser41 and removing
ALT sequences leaving just the primary assembly (includes chromosome scaffolds as well
as unplaced and unlocalized scaffolds). The T2T-CHM13 reference is the hs1 reference
assembly obtained from the UCSC Genome Browser and was not modified.

Variant discovery

PAV
We ran PAV4, a development version now released under v2.4.1 (Code Availability). All
default parameters were used specifying only “reference”, “aligner”, and “assembly_table” in
the PAV configuration JSON. Both Verkko and hifiasm assemblies were run with PAV. From
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Verkko, we input haplotypes 1 and 2 and the unassigned contigs as three distinct
haplotypes. From hifiasm, we input haplotypes 1 and 2. Each PAV callset was replicated
using minimap224 (v2.26) and LRA42 (v1.3.7.2) alignments resulting in two independent
callsets for each aligner. In total, eight PAV callsets were produced (two assemblies × two
aligners × two references).

Genotypes reported in the original PAV VCF files follow the order “h1|h2|un” (haplotype 1,
haplotype 2, unassigned).

DipCall
We ran DipCall43 (v0.3) on Verkko and hifiasm assemblies using default parameters for both
GRCh38 and T2T-CHM13 references. From both Verkko and hifiasm we input haplotypes 1
and 2.

SVIM-asm
We ran SVIM-asm44 (v1.0.3) on Verkko and hifiasm assemblies using svim-asm haploid
using the following parameters: “--tandem_duplications_as_insertions
--interspersed_duplications_as_insertions” for both GRCh38 and T2T-CHM references.
SVIM-asm uses the same alignments as PAV, which was generated with PAV’s CRAM target
to create input files for SVIM-asm. From both Verkko and hifiasm we input haplotypes 1 and
2.

Read alignments and simple repeat annotations
PacBio HiFi reads were aligned to both GRCh38 and T2T-CHM13 references using pbmm2
(https://github.com/PacificBiosciences/pbmm2; v1.12.0) with "--sort --preset CCS -L 0.1 -c
0". ONT reads were aligned to both GRCh38 and T2T-CHM references using minimap2
(v2.26) with “-ax map-ont --eqx -R”.

Tandem repeat annotations were generated by retrieving “Simple Repeats” tracks from
UCSC for both references. Records were merged to long non-overlapping regions where
any records intersecting or within 200 bp were condensed to a single record. These
annotations were input into PBSV and other variant callers using tandem repeat annotations
on the reference.

PBSV
CCS reads were aligned as described above for both GRCh38 and T2T-CHM references
and variants were called using PBSV (https://github.com/PacificBiosciences/pbsv; v2.9.0).
The PBSV workflow was executed separately for each sample and for each chromosome.
First SV signatures were discovered with "pbsv discover --tandem-repeats <TR.bed>
--region <CHROM>" where TR.bed is the simple repeat table described above. Variants
were called with "pbsv call" with "--ccs -A 2 -O 2 -P 20 -m 20" for CCS. For each sample, the
per-chromosome calls were concatenated, sorted, and compressed with BCFtools45 (v1.17).

Sniffles
Variants were called using Sniffles246 (v2.0.7) using the following parameters:
“--tandem-repeats TR.bed --minsvlen 5” for both GRCh38 and T2T-CHM13 references for
both CCS and ONT reads. “TR.bed” is the simple repeats table described above (PBSV).
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Delly
Variants were called using Delly47 (v1.1.6) using default parameters for both GRCh38 and
T2T-CHM13 references for both CCS and ONT reads.

cuteSV
Variants were called using cuteSV48 (v2.0.3) using the suggested
parameters(https://github.com/tjiangHIT/cuteSV) for both GRCh38 and T2T-CHM13
references for both CCS and ONT reads.

DeBreak
Variants were called using DeBreak49 (v1.0.2) using the following parameters: “debreak
--bam merged.sort.bam --outpath debreak_out/ ” for both GRCh38 and T2T-CHM13
references for both CCS and ONT reads. Parameter “--rescue_dup” was added for
T2T-CHM13.

SVIM
Variants were called using SVIM50 (v2.0.0) using default parameters for “svim alignment” for
both GRCh38 and T2T-CHM13 references for both CCS and ONT reads.

DeepVariant
For HiFi reads, variants were called using DeepVariant32 (v1.5.0) using default parameters
with the model “--model_type=PACBIO” for both references. For ONT reads, variants were
called using PEPPER-Margin-DeepVariant51 r0.8 using default parameters with the model
“--ont_r9_guppy5_sup” for both references.

Clair3
Variants were called using Clair352 (v1.0.4) using default parameters with “--platform="hifi"
--model_path=hifi_sequel2” for CCS reads and with “--platform="ont"
--model_path=r941_prom_sup_g5014” for ONT reads.

Callset annotation, merging, and QC

Merging and support intersects
Variants were compared by SV-Pop4 (v3.4.4) with parameters tuned for each variant type.
These comparisons were used to construct a merged callset as well as compare the merged
callset to output from other callers to identify support (i.e., determine if another caller makes
the same variant call).

Insertions and deletions

A multi-stage merging criterion was used to merge insertions and deletions. All variants are
compared by the first criteria and matches are set aside. The remaining variants are
compared by the second set of criteria, and so on. Pairs of variants that pass any of the
stages are merged together. The staged system allows for the merging process to try
different sets of criteria designed to intersect large and small variants and account for
breakpoint differences we have previously observed. For example, 50% reciprocal overlap
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works well for very large SVs, but small breakpoint differences for smaller SVs have a much
larger impact on overlap. The fourth stage was added to better intersect SVs in tandemly
repeated loci53.

Parameters: “nr::exact:ro(0.5):szro(0.8,200):szro(0.8,unlimited,3):match(0.8)”

1. exact: Exact match by size and position
a. Best matches first

2. ro(0.5): 50% reciprocal overlap
a. For large SVs

3. szro(0.8,200): Within 200 bp and 80% size overlap
a. For smaller SVs and indels, less sensitive to small breakpoint differences

4. szro(0.8,unlimited,3): Within 3× SV size and 80% size overlap
a. For tandemly repeated variants that may span large regions

All stages require SV sequences to match by 80% identity using a circular alignment in the
case of variants shifted through breakpoint repeats. Only variants of the same type are
intersected. Some variant callers did not make SV sequences readily available, so we
dropped this sequence match requirement when intersecting with those callsets.

To reduce merging artifacts around the SV size cutoff (50 bp), SVs and indels were
intersected as a single callset, and we separated SVs and indels after merging. Support
intersects were done the same way with SVs and indels together from the PAV and
supporting callers.

Inversions

Inversions were intersected by 20% reciprocal overlap to allow for a range of variant sizes
that often results from calling inversions from different methods.

SNVs

SNVs were intersected only if they exactly matched by both reference position and alternate
base.

Linking variants across references

A complete callset was produced on both T2T-CHM13 and GRCh38, although it is not
possible to identify which variants are in both references from these callsets alone. Using
assembly coordinates for each variant call reported by PAV, we translated all variants in both
references to assembly coordinates and intersected using the same parameters outlined
above for intersecting variants in reference space. This was performed independently for
each assembled haplotype.

For each variant in the merged callset, we examined the results of linking in all haplotypes it
was identified in. If all haplotypes supporting the call pointed to the same merged sample in
the other reference, we linked the merged variants. For example, if a variant in T2T-CHM13
is derived from three haplotypes, then all three haplotype variants should be assigned to the
same merged variant in GRCh38 to link the merged variant in T2T-CHM13 to the variant in
GRCh38.
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Annotations for T2T-CHM13

Centromere and satellite annotation for T2T-CHM13
We obtained the “CenSat” track from the UCSC browser for the T2T-CHM13 reference
genome on 2024-03-13 (https://hgdownload.soe.ucsc.edu/gbdb/hs1/censat/censat.bb). We
extracted the type from each record using the “name” column by using the column value up
to the first “_” (e.g. “bsat_16_8” becomes “bsat”). Annotation column “REF_CENSAT” was
created by intersecting variants with this table and creating a sorted nonredundant list of
cen/sat types each variant intersected.

For quality control, filtered regions were obtained by taking all records that were not type
“mon” (Monomeric αSat). We created a nonredundant merge with BEDTools54 (v2.31.1),
intersecting the remaining (non-mon) records within 50 bp, resulting in 227 Mbp of filtered
reference loci. Variants intersecting these regions by 50 bp were excluded from all callsets.
We found excessive numbers of variants from these regions, specifically in large α-satellite
HORs and Human Satellite III (HSat3) repeats.

Simple repeats
For T2T-CHM13, we obtained the “Simple Repeats” track from the UCSC genome browser
for hs1 on 2024-03-13 (https://hgdownload.soe.ucsc.edu/gbdb/hs1/bbi/simpleRepeat.bb).
For GRCh38, we obtained the “Simple Repeats” track from the UCSC genome browser for
hg38 on 2023-11-27
(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz).

Telomere repeats
For T2T-CHM13, we extracted a set of regions from the simple repeats track (see section
“Simple repeats” above) where the consensus sequence was any rotation of “TTAGGG” or
its reverse complement and excluded all regions that were not within 10 kbp of either end of
the chromosome (142 kbp of reference sequence).

Modeled centromeres
For GRCh38, we obtained the “Centromeres” track from the UCSC Genome Browser for
hg38 on 2024-03-21

(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/centromeres.txt.gz).

Merged callset quality filters

Filters applied to all variant types
Any merged variant that was identified in only unphased assemblies (i.e., no h1 or h2
assemblies) was removed from the T2T-CHM13 and GRCh38 callsets.

For T2T-CHM13, variants were dropped that were composed of 50% or more of excluded
centromere and satellite sequence (see section “Annotations for T2T-CHM13” above) or that
contained 50% or more of telomeric repeats located at chromosome ends (see section
“Annotations for T2T-CHM13” above). For GRCh38, variants that were composed of 50% or
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more of modeled centromeres were dropped (see section “Annotations for T2T-CHM13”
above).

Support by callset concordance
To determine if a variant in the merged callset is supported by another caller, we intersect
the merge across all samples (unphased diploid callsets) or haplotypes (phased callsets)
with the other callset. We chose a strategy that was designed to mitigate placing too much
emphasis on a single sample, such as the lead sample for a variant in a merge, or that
allowed random matches to arbitrarily support a variant call.

For each caller, we intersect the full merged callset with each individual haplotype (for
phased callers) or sample (for unphased callers) using the same parameters as described
above to perform the intersect. For each variant, we compare the pattern of samples or
haplotypes in the merge with the pattern of samples or haplotypes from the caller with two
metrics, Jaccard similarity (sample intersection / union) and Fisher’s exact test (two-sided)
using SciPy55 (v1.11.4) (scipy.stats.fisher_exact). We determine the variant is supported by
the caller if the FET p-value is 0.01 or less or if the Jaccard similarity is 0.90 or greater,
which mostly rescues FET p-values in the case that the variant is found in all samples (p =
1.0 if the variant was identified and supported in 100% of the samples or haplotypes).

Insertions, deletions, and SNVs
All SNVs, insertions and deletions (including SVs and indels) were accepted into the final
callset if they had support from at least three callers. Since SVIM-asm was run using PAV’s
alignments, we found that the callsets for all but the largest variants were very similar. For
orthogonality, we required that variants be supported by a caller other than PAV and
SVIM-asm. Because PAV is able to detect large variants that all other assembly-based
callers are unable to detect, we allowed PAV-only calls if they were also supported by PAV
with hifiasm assemblies.

Inversions
Inversions were accepted into the final callset if they had support from PAV with hifiasm
assemblies or were supported by at least three callers.

Callset growth estimates
Estimates for callset growth by the addition of a sample was performed by averaging the
number of new variants each sample would add in a leave-one-out experiment and counting
the number of new variants we would obtain from adding the left-out sample. This was
simulated using the existing merge all samples with trio children removed (n = 62 samples)
without re-merging. Averages reported in the paper were also computed without trio children
and were obtained by running this experiment on all samples (n = 63), all AFR samples (n =
29), and all non-AFR samples (n = 33).
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Results

Mendelian inheritance error (MIE)
When HG00514 is excluded from MIE analysis, which has a high HiFi indel error rate
compared to other samples (Supplementary Table 28), indel MIE falls to 2.1% (-43%),
although the indel enrichment was removed during the QC process and is not apparent in
per-sample variant calls (Supplementary Table 29). When we filter these MIE calls for
candidate de novo variants and cell line artifacts (Methods), we find 7–40 SV insertions, no
inversions, 277–1,690 indels, and 1,027–3,319 SNVs per trio sample.

Mobile elements
Contributing authors: Parithi Balachandran, Christine R. Beck, Jonathan Crabtree, Scott E.
Devine, Miriam K. Konkel, Mark Loftus, Ryan Mills, Weichen Zhou

Methods
Mobile element insertions (MEIs) were identified within the 130 sample haplotypes
assemblies using two separate pipelines and human references (T2T-CHM13 and GRCh38):

One pipeline utilized a custom calling algorithm, L1ME-AID (v1.0.0-beta) (L1 Mediated
Annotation and Insertion Detector) (https://github.com/Markloftus/L1ME-AID), that leveraged
RepeatMasker56 (v4.1.6), with the Dfam (v3.8) library57, annotation of the PAV merged SV
insertion callsets (T2T-CHM13 and GRCh38). PAV SV sequences were designated as MEIs
by L1ME-AID if they were annotated by Repeatmasker as containing non-LTR retroposon
sequence (Alu, L1, SVA) or snRNA, had a poly-A tail, and were semi-low divergence (Alu:
<6%, L1/SVA: <15%) against the Dfam element consensus sequence. Additionally, elements
are selected for younger/active subfamilies (e.g., AluY, L1HS, L1PA2, etc.). All candidate
sequences were then further selected for minimum mobile element sequence percentage
(Alu: 70%, L1/SVA: 20% - to allow for transduced sequence).

The second pipeline called MEIs directly from the sample HIFI raw sequence reads with
PALMER2 (https://github.com/WeichenZhou/PALMER). PALMER2 represents an enhanced
iteration of the PALMER algorithm, engineered to directly call non-reference TE families from
aligned, assembled contigs (with PALMER --input ${INPUT_hap.bam} --workdir
${path_to_workingspace} --output ${output_prefix} --ref_ver ${reference_version} --ref_fa
${reference.fa} --type ${TE_type} --chr ${chr} --mode asm). This updated version is crafted
to bypass the "masking" phase commonly required in the original workflow58,59, thereby
expediting the process by extracting insertion signals straight from the ultra-long contig
sequences. By inheriting the comprehensive feature set of its predecessor, PALMER2
retains the capability of meticulously resolving the structure of TE insertions, characterizing
signature retrotransposition hallmarks, and identifying customized non-reference insertion
sequences. PALMER2 incorporates a merging utility to streamline the consolidation of
individual sample callsets into an integrated, unified callset from diverse genomes.

MEIs identified by either caller were then integrated by comparing the MEI coordinate
(chromosome and position), element family (Alu, L1, SVA), and sequence composition. If
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PALMER2 called an MEI within 1 kbp of a PAV called MEI site, and the two sequences were
identified as belonging to the same mobile element family, a pairwise global alignment of
their sequences would be performed using Biopython60 (v1.82; Bio.pairwise2 module). After
alignment, the hamming distance (i.e., the proportion of disagreeing components) between
the two aligned sequences would be calculated using SciPy (v1.11.1;
scipy.spatial.distance.hamming)55. If the sequence alignment hamming distance was <0.1,
the two MEI calls would be considered identical and merged.

Following merging, the combined MEI callsets underwent additional refinement/quality
control by checking if each MEI was a potential deletion from the human reference genome
(T2T-CHM13 or GRCh38 depending on callset), duplication, or potential artifact from errors
in genome assembly. For each MEI 500 bases of flanking sequence (500 up-stream and 500
down-stream) of the insertion site within the human reference was retrieved and given to
BLAT61 (Standalone BLAT v36x2, -minScore=850) to query for homologous sites within the
human reference, and within an ancestral reference (Chimpanzee
(NHGRI_mPanTro3-v2.0_pri/GCA_028858775.2), genome. All resulting BLAT hits
containing a gap +/-20% difference in size compared to the query MEI insertion call
sequence length were further investigated. RepeatMasker56 (v4.1.6), using the Dfam (v3.8)
library57, was utilized to annotate any elements within the homologous BLAT hits. MEI calls
were filtered from the final merged dataset if any secondary sites within the human and/or
chimpanzee reference genome were discovered that contain the same mobile element
(based on family, orientation, and percent divergence). Finally, any MEIs still remaining and
called by a single pipeline were manually curated. An F-test was performed
(statistic=1.563603, p-value=0.105) to test for equal variances between sample
superpopulation total MEI counts (AFR/non-AFR total MEIs from T2T-CHM13 callset). Since
the F-test p-value was ≥0.01 (i.e., variances were equal), and the Shapiro-Wilk test p-values
for each population were non-significant (AFR P-value=0.787, statistic=0.97859; non-AFR
p-value=0.736, statistic=0.979299; i.e., the data was normally distributed), a Student’s t-test
was performed to test for a significant difference between African and non-African sample
MEI counts (mean=1968 (AFR) and 1423 (non-AFR), statistic=49.7971,
p-value=2.6181e-52, degrees of freedom=63.0). All statistical tests were two-tailed.

Callsets were then compared against an orthogonal MEI callset produced by MELT-LRA
(see following section, Supplementary Tables 33,34).

Mobile Element Locator Tool-Long Read Assembly (MELT-LRA). MELT-LRA
(https://github.com/Scott-Devine/MELT-LRA), uses PAV calls derived from whole genome
assemblies to identify insertions ranging from 50 bp to 20 kbp that are caused by MEIs.
Insertions in the 50 bp to 20 kbp range are first identified from the raw PAV calls, and these
insertions are then individually compared to consensus sequences for Alu, L1, and SVA
elements (the three currently active mobile elements in humans) using Smith Waterman
alignments between the PAV calls and MEI consensus sequences. Once candidate MEIs are
identified from these alignments, they are further annotated using previously developed
MELT tools that have been extensively validated with short-read whole genome sequencing
and PCR62,63. Features annotated include flanking target site duplications (TSDs), poly (A)
tails, MEI subfamilies, ORFs (for full-length L1 elements), and genotypes. The MELT-LRA
package also includes new visualization tools developed to facilitate this analysis. A total of
12362 MEIs were identified from PAV calls generated through GRCh38 alignments and
12434 MEIs from T2T (CHM13) alignments. This includes: 10352 and 10428 Alu insertions
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from the GRCh38 and T2T alignments, respectively; 1381 and 1367 L1 insertions from the
GRCh38 and T2T alignments, respectively; and 629 and 639 SVA insertions from the
GRCh38 and T2T alignments, respectively. All but 160 of these MEIs were found in at least
one other MEI callset generated with the three independent MEI pipelines (see “Results”
below). These 160 were removed from the final callset.

Results
Within the resulting merged and refined T2T-CHM13 and GRCh38 MEI callsets there were
an average of 13,109 unique MEI calls (T2T-CHM13: n=13216; GRCh38: n=13001) with one
or more caller support [average of 11,960 unique MEI calls with the support of both callers
(T2T-CHM13: n=11979 (90.6%); GRCh38: n=11941 (91.8%))] (Supplementary Tables
31,32). The callsets containing only MEIs with the support of two or more callers showed a
comparable amount of element family representation (T2T-CHM13: Alu: 9948, L1: 1416,
SVA: 615; GRCh38: Alu: 9932, L1: 1404, SVA: 605). As expected, we identify a significantly
greater number of MEIs within samples of African descent (Mean 1968 AFR, 1423 non-AFR,
statistic=49.7971, p-value=2.6181e-52, degrees of freedom=63.0, Student's T-test,
two-tailed, T2T-CHM13 reference) (Supplementary Fig. 10).

Across the 1426 centromeres analyzed 383 (30.74%) were found to contain at least one MEI
in the active alpha-satellite HOR array. In total we identified 806 mobile elements. Though
most of these elements (88.95%) were the same element/duplication of a single MEI event
across the sample haplotypes (89 unique insertion events; 52 L1, 36 Alu element, and 1
SVA insertion). We then selected two unique chromosomes to analyze further
(chromosomes 2 and 20). The Chromosome 2 centromere was completely and accurately
assembled in 70 haplotypes. Within the HOR array of these 70 centromeres, 56 contained at
least one MEI. There were three unique L1 insertions (all L1HS) as well as three unique Alu
element insertions (two AluYb8 and one AluYa5) identified. Chromosome 20 was completely
and accurately assembled in 42 haplotypes, 22 which contained at least one MEI in the HOR
array. Across these 22 HOR arrays there were 3 unique insertions identified, two L1
insertions (both L1HS) and 1 Alu (AluY) element insertion.

Inversions
Contributing authors: Hufsah Ashraf, Jan O. Korbel, Tobias Marschall, David Porubsky,
Tobias Rausch, Vasiliki Tsapalou

Methods
Genotyping

We identify in total 276 T2T-CHM13 based and 298 GRCh38 based inversions as part of the
filtered PAV callset. We performed cell selection prior to genotyping using ASHLEYS, an
automated Strand-seq cell quality assessment approach64. Strand-seq based regenotyping
was performed using ArbiGent, a Bayesian probability framework based regenotyper that
determines inversion genotype likelihoods for inversions and copy number changes, using
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Strand-seq reads as an input13. ArbiGent is available as a module in MosaiCatcher v265 and
was executed using default parameters (--config arbigent=True).

Manual Evaluation

To manually evaluate the False Discovery Rate (FDR) of inversions in the candidate PAV
callset, we used NAHRwhals (Höps et al. 2023), a tool for visualizing and detecting complex
rearrangements in genome assemblies via dotplot analysis. The analysis utilized the
T2T-CHM13 assembly and focused on candidate inversions larger than 5 kbp, a threshold
that enables confident characterization and classification through manual dotplot inspection.

Results
For T2T-CHM13 based PAV callset, ArbiGent was able to provide an assessment for 252 out
of 276 inversion calls, while marking 218 as inversions, 26 as inverted duplications and 2 as
potential misorients (Supplementary Fig. 12, Supplementary Table 37). To assess the
genotyping performance, we tested the genotypes for Hardy-Weinberg equilibrium. 197
inversions belonging to autosomal chromosomes with no missing sample genotype were
tested and 169 (~86%) of them were found to be in Hardy-Weinberg equilibrium. For
GRCh38 based PAV callset, 230 out of 298 inversions were confidently assessed by
ArbiGent, marking 187 as inversions, 21 as inverted duplications, and 16 as potential
misorients (Supplementary Table 38). 177 inversions belonging to autosomal
chromosomes with no missing sample genotype were tested for Hardy-Weinberg
equilibrium, 153 (~86%) of which passed. Additionally, we re-genotyped previously
developed T2T-CHM13 and GRCh38 based inversion callsets that have been based on a
subset of samples13,66 (Supplementary Tables 39,40). ArbiGent genotypes showed a
Hardy-Weinberg equilibrium statistic of 89% and 93% for balanced inversions reported in the
T2T-CHM13 and GRCh38 callsets, respectively.

By manual inspection, 195 inversions were confirmed as true positives, resulting in an FDR
of 12.33%. The most prevalent inversion class was homology-mediated inversions,
comprising 67.3% of the identified inversions (132 instances). Simple inversions followed,
accounting for approximately 14.8% (29 instances). More complex cases, -such as
homology-mediated inversions accompanied by deletions-, constituted ~13% of the true
positive inversions (26 instances). Inversions with deletions made up 5% (10 instances). The
least abundant category was inversions paired with two deletions, which were observed in
only 2 cases (1%). Finally, false positives were detected in 28 instances.

Segmental duplications
Contributing authors: Mark J.P. Chaisson, Evan E. Eichler, Keon Rabbani, DongAhn Yoo
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Methods

Annotations
Segmental duplications (SDs) were identified using SEDEF67 (v1.1) with the default
parameters, on soft-masked genome assemblies, employing TRF68 v.4.1.0 (“trf [asm.fa] 2 7 7
80 10 50 2000 -l 30 -h -ngs”), RepeatMasker69 v.4.1.5 (“RepeatMasker -s -e ncbi -xsmall
-species human [asm.fa]”), and Windowmasker70 (v2.2.22) (windowmasker -mk_counts
-mem 16384 -smem 2048 -infmt fasta -sformat obinary -in [asm.fa] -out [asm.count] &&

windowmasker -infmt fasta -ustat [asm.count] -dust T -outfmt interval -in [asm.fa] -out
[asm.interval]); the softmasking was performed using BEDTools-merged regions of the
overall repeatmasking results, via seqtk (v1.3) (“seq -l 50 -M”). SDs with sequence identity
>90%, length > 1 kbp, and satellite content <70% were retained. The putative false SDs
were filtered out via intersecting with erroneous regions (lower or higher read depth) from
NucFreq or Flagger. Additionally, the highly confident segmental duplication calls validated
by fastCN previously generated using T2T-CHM13v1.1 (excluding chrY) genome were used
for the consequent comparative analyses
(https://www.biorxiv.org/content/10.1101/2024.06.04.597452v1.full). SDs in different
genomes were compared by mapping them onto T2T-CHM13. Mapping of the assemblies
were done by 1) linking SDs within 10 kbp distance, 2) identifying those SD chains that are
located in mappable regions; retaining overlap with at least 100 kbp long alignment block,
and 3) projecting the chained SDs onto putative homologous SD loci containing at least one
10 kbp unique flank. Accumulation curve of the SDs was generated based on the number of
bases of SDs projected onto T2T-CHM13 reference space; note that the data excludes
NA19650, NA19434 and NA21487 samples with significantly different SD content.
Additionally, homologous SDs by location were further assessed for content using pairwise
alignment (minimap 2.26) of the SD bases to identify novel SDs; SDs meeting the criteria of
1) lacking homologous SDs in other T2T-CHM13 SDs by position, 2) having changed
sequence content (less than 80% of the sequence conserved), and 3) exhibiting expanded
size (at least 2-fold) were considered to be candidates of new SDs. Homozygous and
heterozygous genotypes among SDs were determined by comparing SD calls in the
haplotype assemblies.

Duplicated genes

Protein-coding transcripts (n=20,026) from GENCODE v44 (Liftoff to T2T-CHM13) were
mapped to each assembly to identify genes on each assembly; this excludes the NA19650,
NA19434 and NA21487 samples unused by the SD analysis. The mapping was performed
via minimap2 (“-cx asm20 -f 5000 -k15 -w10 -p 0.05 -N 200 -m200 -s200 -z10000
--secondary=yes --eqx”). The mapped genes were further filtered to exclude repeat-only
mappings, minimum length of 2 kbp, percent identity of >90% and coverage of >80%.
Multi-copy genes were determined by finding the genes greater than count of one and
variable copy number genes were defined as those genes containing different copy number
in at least one of the genome assemblies.

Gene bodies identified from the transcript alignments (“minimap2 -x slice -a”) were
remapped back to each assembly (“minimap2 -x asm20 -p 0.2 -N 100 -m 10 -E2,0 -s 10”),
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filtering out alignments containing less than 95% of the coding sequences, or that had
greater than 5% divergence. Because there are multiple overlapping alignments, partially
mapped reads, and different isoforms, the alignments were grouped by exon overlap using
Leiden community detection to avoid marking the same region in the same haplotype as
multiple separate duplications (Supplementary Fig. 51). Final gene annotations were
filtered out if they were marked as erroneous by Flagger28. To summarize duplications across
all samples, we took the union of the isoform community generated for each haplotype, and
considered the isoform with the most alignments as the ‘representative’ isoform. Duplications
were defined as separate alignments of the same community. This is implemented in a
pipeline called SegDupAnnotation2 (SDA2)
(https://github.com/ChaissonLab/SegDupAnnotation2).

Comparison of SDA2 annotations versus HPRC annotations of gene
duplications

In the draft human pangenome of 94 haplotypes28, a combination of liftoff and an earlier
version of SDA2 annotations were used to detect multicopy genes. We compared duplicated
genes detected by SDA2 versus HPRC to annotate discrepancies. Of the 1,115 genes
annotated as duplicated in HPRC, we find that 31 are not listed as protein coding in our
database, 104 have one of the copies annotated in flagger regions, 412 have different
annotations of gene names from multicopy-gene families. The remaining discrepancies are
largely due to community detection in SDA2 and different thresholds of completeness of the
gene model.

Comparison of gene duplications using SEDEF versus SDA2
annotations.

The genes in novel segmental duplications annotated by SEDEF should largely be
duplicated genes. We compared the gene lists from SDA2 annotations to those in novel
SDs. We considered 900 full genes in novel SDs which reflect a superset of the final list of
genes because they are not filtered by fastCN71,72. Of these 244 or 27% were excluded by
the SDA2 identity filter (<90% identity), 55 or 6% dropped out by length, 85 or 9% dropped
out by low gene model alignment (<50% alignment). The remaining 189 genes were not
considered by the SDA2 pipeline. Among these, 116 were single-exon genes, 132 were
shorter than 5 kbp, and 77 were missing from the original set of genes used to annotate
assemblies using SDA2.

Results
Examining genomes by superpopulation, number of new segmental duplications added per
sample (diploid) is highest in AFR of 3.97 Mbp/individual, compared to other populations,
2.81, 3.37, 2.76, 2.57 Mbp/individual in EUR, AMR, EAS, SAS, respectively.

In addition to the segmental duplications that are found novel by their location/synteny, we
also examined the sequence content of the syntenic ones, by directly aligning the sequences
(Supplementary Fig. 18a). Among the segmental duplications that are homologous by
position, we find that 14.6 Mbp show less than 80% of sequence identity compared to T2T
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genome, 4.4 Mbp that are at least two-fold expanded length in the HGSVC3 genomes
compared with T2T, and 29.0 Mbp with sequence changed (<80% identity) at the same time
expanded (>2-fold), suggesting at least 48 Mbp of the segmental duplications that share
positional homology, are not necessarily conserved (Supplementary Fig. 18a-b).
Quantifying the number of genes that are located in the novel or more variable segmental
duplications, we find on average 26 complete overlap of protein-coding genes per
chromosome (598 genome-wide) and 5 partial overlap (at least 50% coverage) per
chromosome (118 genome-wide).

Compared to the previously known human segmental duplications across 170 haplotypes
(Jeong et al. 2024), we observed 23.6 Mbp of new SDs (including 7.3 Mbp that are found in
more than one sample, and 16.3 Mbp of that are singleton). This represents complete
overlap with 124 protein-coding genes, and partial overlap with 43 protein-coding genes,
genome-wide (Supplementary Fig. 18c).

We separately used an alignment-based pipeline to annotate full-length multi-copy genes in
each assembly using multi-mapped alignments of GENCODE genes (release 44). The
analysis was limited to multi-exon genes at least 5 kbp to distinguish from processed
pseudogenes.

STR and VNTR annotation
Contributing authors: Bida Gu, Mark J.P. Chaisson

Methods
Annotation of tandem repeats

We used vamos73 (v1.3.2) and the corresponding motif catalog (v2.1)
(https://www.biorxiv.org/content/10.1101/2024.08.07.607105v1) to annotate TRs in 94 HPRC
and 130 HGSVC3 haplotype assemblies. A unified diploid VCF file was generated from
these annotations, encompassing 112 samples. For each TR locus, distinct alleles were
represented in the ”ALTANNO” field as strings of annotated motifs. Diploid genotypes were
denoted by allele indices as ordered in the ”ALTANNO” field. Homopolymers were also
annotated, but given their limited capacity to reflect complex TR patterns, we excluded them
from most analyses to focus on more informative TR structures.

Results
TR Allele Diversity

To assess the variability of TRs, we calculated the average number of alleles per annotated
haplotype for TR loci with more than 20 annotated haplotypes, using two measurement
methods: annotation length and motif composition (Supplementary Fig. 52a). As
anticipated, locus variability decreased when alleles were measured solely by length
compared to motif composition. Despite these differences, the majority of TRs were found to
be constant across genomes, suggesting that most TRs are evolutionarily highly conserved.
Interestingly, although the HGSVC3 genomes were derived from a more balanced
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population selection and displayed a similar TR compositional variability to the HPRC
genomes, they showed reduced length variability. Our analysis identified 114,817 loci with
decreased length variability in the HGSVC3 genomes, with 3,659 (3.2%) located in coding
regions. Given that coding TRs account for 5.0% of the total TRs, this suggests that the
reduced TR length variability observed in the HGSVC3 genomes is predominantly enriched
in noncoding regions. Because the population diversity is high in both datasets, this likely
reflects an indication of higher quality assembly. Principal Component Analysis (PCA) and
genome wide statistical tests were performed as described previously
(https://www.biorxiv.org/content/10.1101/2024.08.07.607105v1), revealing clear clustering of
major populations (Supplementary Fig. 52b) and 9,297 population informative loci
(corrected p-value < 0.05; p < 10−8) among the 112 samples.

Intersection of tandem repeats in HGSVC2, HGSVC3, and HPRC genomes

Since the motif database was built using HPRC genomes, unique TRs from the HGSVC3
genomes might not be detected within the original framework. To address this gap, we
compared the raw outputs from the Tandem Repeats Finder with only centromere regions
masked for the HPRC, HGSVC2, and HGSVC3 genomes. As shown in Supplementary Fig.
52c, the majority of loci (732,035, 89.0%) were found to be shared among all three datasets,
while unique TRs in each dataset largely reflected population-specific differences. Given the
relatively higher quality of the HPRC and HGSVC3 assemblies, we conducted a separate
comparison between these two datasets. This comparison revealed 30,030 unique TR loci in
the HGSVC3 genomes (as shown in Supplementary Fig. 53), whereas 21,516 unique TR
loci were identified in the HPRC genomes. Importantly, none of these unique loci were found
in regions completely unsequenced in the other dataset, indicating comprehensive coverage
of both datasets on the CHM13 reference genome. This finding demonstrates the
consistency between the two datasets and underscores the robustness of our TR
identification approach. As expected, the unique TR loci were primarily concentrated in
ribosomal DNA (rDNA) regions, where the CHM13 reference genome is represented by a
perfectly repeated model sequence. This outcome suggests that areas with less robust
reference data, such as rDNA, tend to contain unique TR loci, emphasizing the need for
continued refinement of reference genomes for more accurate TR analysis.

Comparing tandem repeats calls to SV calls

We annotated tandem repeat motif composition for 1,243,719 TR loci on GRCh38, and
compared against the integrated SV callset. Among these, 46,314 showed a discrepancy of
at least 50 bases between any allele and the reference, indicating a net structural variant.
The majority of structural variant calls are accounted for by tandem repeat loci. Of the
176,438 SV loci in the combined variant callset, 113,412 overlap TRs (TR-SV), defined by
either insertion variants that are inside of a tandem repeat (N=76,094), or are deletion loci
contained entirely within a TR locus (N=37,318). The TR-SV are contained within 31,418 TR
loci, indicating clustering of SV calls in TR sequences. Nearly all (31327/31418) TR-SV
overlap multiallelic TRs, and roughly 50% (15,944/31,418) have at least 10% of samples
with a different length allele.
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Y chromosome
Contributing authors: Peter Ebert, Pille Hallast, Miriam K. Konkel, Mark Loftus, Charles Lee

Methods

Construction and dating of Y phylogeny
The construction and dating of Y-chromosomal phylogeny combining the 30 males from the
current study plus two males (HG01106 and HG01952 from the Human Pangenome
Reference Consortium (HPRC) year 1 dataset for which contiguous Yq12 assemblies were
used from Ref. 8) was done as described in detail in Ref. 8. Please note that the male sample
HG03456 appears to have a XYY karyotype as reported in Ref. 5.

All sites were called from the Illumina high-coverage data5 using the approx. 10.4 Mbp of
Y-chromosomal sequence previously defined as accessible to short-read sequencing74.
BCFtools45,75 (v1.16) was used with minimum base quality 20, mapping quality 20 and ploidy
1. SNVs within 5 bp of an indel call (SnpGap) and indels were removed, followed by filtering
all calls for a minimum read depth of 3 and a requirement of ≥85% of reads covering the
position to support the called genotype, followed by removal of sites with ≥5% of missing
calls, that is, missing in more than 2 out of 32 samples, were removed using VCFtools76

(v.0.1.16). After filtering, a total of 10,405,284 sites remained, including 11,129 variant sites.

The Y haplogroups of each sample were predicted as previously described77 and correspond
to the International Society of Genetic Genealogy nomenclature (ISOGG, https://isogg.org,
v.15.73). A coalescence-based method implemented in BEAST78 (v.1.10.4) was used to
estimate the ages of internal nodes. RAxML79 (v.8.2.10) with the GTRGAMMA substitution
model was used to construct a starting maximum-likelihood phylogenetic tree for BEAST.
Markov chain Monte Carlo samples were based on 200 million iterations, logging every
1,000 iterations, with the first 10% of iterations discarded as burn-in. A constant-sized
coalescent tree prior, the GTR substitution model, accounting for site heterogeneity (gamma)
and a strict clock with a substitution rate of 0.76 × 10−9 (95% CI = 0.67 × 10−9 – 0.86 ×
10−9) single-nucleotide mutations per bp per year was used80. A prior with a normal
distribution based on the 95% CI of the substitution rate was applied. A summary tree was
produced using Tree-Annotator (v.1.10.4) and visualized using the FigTree software (v.1.4.4,
Supplementary Fig. 21). For figures showing the Y phylogeny subsets of relevant samples
were extracted and visualized.

SVs disrupting genes
Contributing authors: Miriam K. Konkel, Mark Loftus, Gianni V. Martino, Mike E. Talkowski,
Xuefang Zhao

Methods

Annotate the genes overlapped by long-read SVs
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To analyze the impact of MEIs on genes, the merged GRCh38 MEI callset was intersected
with the findings from Ensembl81 (release 111) Variant Effect Predictor (VEP)82 (see section
“Transcriptional effect of SVs and functional analysis” below). The MEIs were categorized by
insertion location (e.g., protein-coding exons, UTRs of protein-coding transcripts, and
noncoding exons) and within each category the number of MEIs present, genes disrupted,
and transcripts affected were quantified per category. Using the Ensembl VEP nonsense
mediated decay (NMD) plugin
[https://github.com/Ensembl/VEP_plugins/blob/release/112/NMD.pm], we predicted which
protein-coding transcripts with MEI-induced premature stop codons would escape NMD. The
transcripts were further scrutinized by manually comparing the MEI location within the
transcript sequence using the UCSC Genome Browser83. To ensure that the premature stop
codon met one of the four requirements for NMD escape according to the exon-junction
complex model84. Allele frequencies in the 124 haplotypes (children of trios excluded) were
then calculated for the exon-disrupting MEIs. In the event of a “.” (indicating misassembly) in
the genotyping information, the haplotype was excluded from the calculation.

Comparison of Short-read and Long-read SVs that affect genes
Contributing authors: Xuefang Zhao, Michael E. Talkowski

Methods:
We benchmarked long-read SVs against SVs generated from matched short-read WGS
data. Two SVs are considered to be the same event if they meet the following criteria:

1. Deletions and Duplications that are under 5 kbp should have the same SV types, and
share a reciprocal overlap of 10% or more.

2. Deletions and Duplications that are over 5 kbp should have the same SV types, and
share a reciprocal overlap of 50% or more.

3. The breakpoints of insertions must be within 100 bp of each other.
4. Insertions can match duplications if the insertion point is within 100 bp of the first

breakpoint of the duplication.

Results
Out of the 65 samples, 63 had matched short-read SV calls from the 1000 Genomes Project
(1kGP). Of the 176,531 SV sites identified from long-read data, 98.9% (N=174,641) are
present in at least one of these 63 samples. Consistent with our previous study, long-read
sequencing demonstrates superior sensitivity in detecting SVs within highly repetitive
regions, such as segmental duplications and simple repeats. Specifically, 82.4% of deletions
and 92.1% of insertions in these regions from long-read data do not overlap with short-read
SVs. In contrast, a more substantial overlap between the two technologies is observed in the
remaining 90% of the genome, which is less repetitive. Here, 11.4% of deletions and 32.1%
of deletions and insertions are not overlapped by short-read SVs.

In the 63 samples, an average of 10,918 deletions and 19,541 insertions were observed per
individual genome. Consistent with the site-level results, there is a notable overlap between
sequencing technologies for SVs in less repetitive regions. Specifically, 89.4% of deletions
and 64.5% of insertions in these less repetitive sequences were detected by short-read SV
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calls in the matched genomes. In contrast, 19.7% of deletions and 9.0% of insertions in the
more repetitive regions were detected by short-read SVs.

Coding exons from 818 unique genes were found to overlap with 1,300 unique SV sites
across the 63 samples. For long-read SVs that overlap coding sequences and are located
outside highly repetitive genomic regions, 84% of the deletions and 63% of the insertions are
also detected by short-read SVs. In contrast, only 25.1% of these deletions and 7.3% of
these insertions in repetitive regions are overlapped by short-read SVs.

By contrast, from short-read sequencing data we find 206 genes altered in these 65 samples
by SV not captured in the long-read assemblies, most of which (83.2%) were disrupted by
large CNVs. We leveraged VaPoR to evaluate these SVs by directly comparing raw PacBio
alignments against the GRCh38 reference genome. Among the SV sites that are assessable
by VaPoR, 27.8% have support from at least one PacBio alignment, indicating potential false
negatives in the long-read assembly methods. Interestingly, manual review of these variants
in one sample, HG00171 (11 SVs), indicates 1 (8%) was a true deletion between reference
assembly gaps that missed by PAV, 2 (17%) are involved in complex SVs that were not fully
resolved, 4 (33%) were in contiguously assembled loci with no sign of the deletion, 1 (8%)
was present but shifted between the callsets and did not intersect, 2 (17%) were overlapping
at the same locus and likely represent two distinct events that may have been lost to
merging in the long-read callset, and 1 (8%) was in an uncallable locus.

Phased transcripts, isoforms, and effects of SVs
Contributing authors: Miriam K. Konkel, Mark Loftus, Gianni V. Martino

Methods
RNA-seq pre-processing
Initial quality control of the Illumina RNA-seq reads for the 12 samples with corresponding
Iso-Seq data was performed using Trimmomatic85 (v0.39). The trimmed paired-end reads
were then aligned to the indexed T2T-CHM13 (NCBI RefSeq
GCF_009914755.1-RS_2023_03) using STAR86 (v2.7.10b). Splice-junction results from all
samples were compiled and provided to STAR for a realignment to optimally identify
transcript diversity. Cufflinks87 (v2.2.1) was then utilized to annotate and quantify the
RNA-seq expression data

Phasing Iso-Seq
For preparation of the 12 PacBio Iso-Seq samples, primers and poly(A) tails were first
removed using Lima (v2.1.0) [https://github.com/pacificbiosciences/barcoding/] and isoseq3
refine [https://github.com/PacificBiosciences/IsoSeq], respectively. Iso-Seq reads were then
aligned to both haplotype assemblies of the matching sample using pbmm2 (v1.5.0)
[https://github.com/PacificBiosciences/pbmm2]. Next, reads were phased through
comparison of alignment quality (CIGAR [compact idiosyncratic gapped alignment report]
approach) and sequence similarity (k-mer approach). Sequence matches and variations (i.e.,
mismatches and indels) were isometrically rewarded and penalized, respectively, utilizing the
CIGAR strings produced by read alignment to each haplotype. The CIGAR-based approach
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subsequently phased reads to the sample haplotype assembly that produced the alignment
with the greater score. The k-mer approach compared the 15-mers present in each read to
the 15-mers in the corresponding aligned sequence from both haplotypes. The best
alignment was identified as the haplotype that shared the most unique k-mers with the
respective read. Final read-phasing designations utilized an ensemble approach where
reads were phased to a sample haplotype if both phasing approaches were in agreement.
Disagreement between approaches was settled through determination of which alignment
produced a greater quantity of matches. In the absence of measurable differences,
according to their scoring premises, an “UnableToBePhased” designation was assigned.

Phased Iso-Seq Annotation
Only Iso-Seq with a mapping quality >= 99% were utilized for downstream analyses. These
reads were first divided into sample haplotype-specific bins based on their phasing
designations (i.e., Hap1, Hap2, or Unphasable). Next, reads within each bin were clustered
using isoseq3 (v3.8.2) [https://github.com/PacificBiosciences/IsoSeq] cluster, which removes
singleton reads and combines similar reads to form transcripts. These transcripts were
aligned to the T2T-CHM13 (NCBI RefSeq GCF_009914755.1-RS_2023_03) reference
genome using pbmm2 (v1.5.0) [https://github.com/PacificBiosciences/pbmm2]. Finally,
isoforms were generated by running isoseq3 collapse on the mapped transcripts. Isoforms
were then annotated and filtered using SQANTI388 (v5.1.2) QC and rule-based filter. For
each sample, the isoforms formed from the separate haplotype phasing bins were merged,
and unique identifiers for each isoform were generated using sample-agnostic
characteristics to facilitate cross-sample tracking of similar isoforms.

Short- and Long-Read Comparison
We selected all isoforms shared across at least two out of twelve samples present in the
PacBio Iso-Seq and/or Illumina RNA-seq, identified all unique protein-coding and noncoding
genes represented in either dataset, and compared the gene distribution between both
datasets. To achieve this, we filtered the isoforms assembled from Illumina RNA-seq short
reads (Cufflinks v2.2.1) 87 retaining only isoforms with non-zero abundance (FPKM). Unique
isoforms from the short-read RNA-seq were then identified based upon isoform
characteristics (e.g., chromosome, locus, isoform length, gene annotation, and biotype) per
sample, as well as across the whole 12 sample set. For Iso-Seq, we used the filtered
isoforms generated by the isoseq3 (v3.8.2) pipeline (see Methods: Phased PacBio Iso-Seq
Work-up), which removed singleton reads. Furthermore, isoforms predicted to undergo
nonsense-mediated decay by SQANTI388 (v5.1.2) were also excluded. Isoforms were given
unique identifiers based upon sample-agnostic features (gene annotation, splice sites,
isoform length, etc.) to compare the total unique genes across all 12 samples. Lastly, we
compared the average number of unique isoforms per unique gene represented for each
sample for both sequencing approaches.
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Results

Isoform Phasing
The availability of long-read Iso-Seq data and haplotype-resolved sample-specific genome
assemblies allows the detailed investigation of allele-specific transcription. To ensure
haplotype-resolved read alignment quality, we required agreement between a CIGAR and a
k-mer-based approach (see Methods section “Phasing Iso-Seq” above). Congruence
between both approaches was observed 98.3% of the time across the 12 samples. On
average, 58.44% of the reads could be phased (read phasing range 43.98-71.98%) for a
given sample (Supplementary Fig. 54), permitting the determination of allele-specific
expression (Supplementary Fig. 55).

Imprinted Loci
Our allele-specific Iso-Seq analysis uncovered ten genes whose isoforms were transcribed
from a single haplotype. As imprinted genes show a similar pattern, we reviewed the
literature, which confirmed that the ten genes (ZDBF2, NAP1L5, FAM50B, PEG10, IPW,
MKRN3, SNRPN, PEG3, L3MBTL1, LPAR6) are paternally imprinted in in EBV-transformed
B-lymphocyte cell lines89–91 (Supplementary Fig. 55). Furthermore in concordance with the
literature, isoforms of the IPW, MKRN3, and SNRPN genes, which are located in the
Prader-Willi Syndrome imprinting control region92, displayed monoallelic expression from the
same haplotype within a given sample. The detection of known imprinted genes through
phasing allows distinction of paternal from maternal chromosomes. This information can be
utilized to determine the origin of a genetic variant in a proband if a parental genome is
unavailable. Furthermore, the full agreement of our findings with published imprinted genes
provides strong evidence for both our phasing approach and haplotype assembly accuracy.

Comparison of Alignments to Phased Assemblies and Reference
While a reference genome serves as a useful baseline for transcriptomic data comparison,
the lack of sample specificity can introduce errors into read alignments when the reference
genome is discordant from a transcript. Therefore, we quantified the improvement in
alignment afforded by mapping long-read Iso-Seq data (12 samples from EBV-transformed
B-lymphocytes) to phased sample-specific assemblies versus the T2T-CHM13 reference
genome. Out of 26,533,152 total reads, 26,352,868 reads aligned to the personal
assemblies and 26,367,272 aligned to the T2T reference. Following comparison of read
alignment qualities between the genomes, we observed a set of 105,317 reads that aligned
poorly to the assemblies (<50% accuracy) but well to the T2T reference. Interestingly, we
found that 93,408 (89.0%) of these poorly aligned reads belonged to just three samples and
99,043 (94.2%) mapped to immunoglobulin genes. These results indicate that most of these
poor read alignments can be attributed to somatic rearrangements of immunoglobulin genes
in EBV-transformed B-lymphocytes. One possible explanation for the poorly aligned reads
being overrepresented in three samples could be that these samples are less clonal than
others, leading to increased difficulty for accurate alignments. We further scrutinized the
remaining poorly aligned reads (0.02% of total reads) checking for possible misassembly at
the read alignment coordinates in the sample-specific assemblies. In total we identified 15
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gene loci containing misassembly (4 premature contig ends, 11 incompletely assembled)
and 37 loci within 5 kbp of an unassembled region.

To reduce sequencing artifacts, we identified and filtered singleton reads that failed to cluster
into transcripts. After removal of singleton reads, we found an equal number of reads
(22,432,063) aligned to both the T2T reference and the phased assemblies. However, the
phased reads aligned to the assemblies resulted in 21,682,216 reads with at least 99%
alignment quality while alignment to T2T produced 21,470,225 reads at the same threshold.
This improved alignment of 211,991 reads afforded by phase-specific alignment of Iso-Seq
reads to sample-specific haplotype-resolved assemblies marks a 22% reduction in the
number of suboptimal alignments (<99% alignment accuracy) resulting from mapping to the
T2T-CHM13 reference genome.

Comparison of Short- and Long-read RNA-seq
Long-read RNA sequencing, which generates reads that span the full length of transcripts,
captures a wider breadth of gene isoforms compared to short-read sequencing methods93.
However, short-read RNA-seq allows for the quantification of transcript abundances. To
better gauge the differences in our expression data, we compared isoform profiles produced
from Illumina RNA-seq versus PacBio Iso-Seq across twelve samples. The comparison of
total unique genes expressed in at least two samples revealed that short read RNA seq
identified a greater total number of genes (29,858 unique protein coding/noncoding genes)
compared to long-read Iso-Seq (11,134 unique protein coding/noncoding genes; see
Supplementary Fig. 56). The lower retrieval of unique genes by Iso-Seq is indicative of
incomplete saturation of the transcriptome (mean of 2,211,096 Iso-Seq reads per sample).
Additionally, RNA-seq identified on average more unique isoforms (51,413 isoforms) on a
per sample basis than the Iso-Seq (33,315 isoforms). However, a greater number of unique
isoforms across all twelve samples was identified by Iso-Seq (68,097 unique isoforms) than
the short-read RNA-seq (63,028 unique isoforms; Supplementary Fig. 56). This disparity
can be explained by the Iso-Seq identifying an average of 7,324 unique isoforms per sample
while the RNA-seq only identified an average of 523 unique isoforms per sample.
Furthermore, the overall average number of unique isoforms per unique gene identified by
Iso-Seq across the 12 samples was 6.72, while for short-read RNA-seq identified an overall
average of 1.99 unique isoforms per unique genes (Supplementary Fig. 57). Despite
capturing fewer genes Iso-Seq was able to resolve in excess of three times more isoforms
for those genes than the Illumina short-read approach.

Transcriptional effects of SVs and functional
analysis
Contributing authors: Marc Jan Bonder, Mark Gerstein, Matthew Jensen, Yunzhe Jiang,
Miriam K. Konkel, Jiaqi Li, Chong Li, Mark Loftus, Gianni V. Martino, Xinghua Shi
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Methods

Identification of SV Impacts
To identify SVs with evidence for impacting the transcriptome, we used the Ensembl81

(release 111) VEP82 with nonsense-mediated decay (NMD) plugin
[https://github.com/Ensembl/VEP_plugins/blob/release/112/NMD.pm] and screened the PAV
freeze 4 callset for variants that disrupt gene loci in the merged GRCh38 annotation94 (NCBI
RefSeq GCF_000001405.40-RS_2023_03, Ensembl 111, Gencode v45). Protein-coding
genes impacted by putative exon disruptions were then evaluated for evidence of Iso-Seq
expression (in >1 sample) across the 12 samples. Isoforms affected by SVs and phased to
variant haplotypes were designated as SVs with potential functional impact. Isoforms
associated with these SV-containing genes were screened for the presence of unreported
splice variants using SQANTI388 (v5.1.2). All isoforms of these candidate genes were aligned
to GRCh38p14 using pbmm2 (v1.5.0) [https://github.com/PacificBiosciences/pbmm2] and
visualized with the Integrative Genomics Viewer (IGV)95 to identify variant-specific patterns.
To determine if the isoforms were previously reported and to identify novel splice products,
we compared all isoforms phased to variant haplotypes to known transcripts represented in
Refseq94, GENCODE96, and CHESS97 gene annotation databases. MUSCLE98 (v3.8.425)
was used to perform a multiple sequence alignment (MSA) between wild-type and variant
haplotype assemblies to identify breakpoints caused by SVs. We utilized Aliview99 for
visualization of the MSA. Variant and wild-type isoforms were also compared by MSA with
the assemblies. Select loci were further screened for the presence of transposable elements
that may contribute to SV formation or splicing using Repeatmasker56 (v4.1.6).

Enrichment of SVs in genomic regions
Genes and transcripts of the human reference genome GRCh38 assembly were derived
from the GENCODE96 annotation (v45). We further assessed four classes of ENCODE v3
cis-regulatory elements (cCREs), including promoters (<200 bp from gene TSS), proximal
(between 200-2000bp from gene TSS) and distal enhancers (>2000 bp from gene TSS), and
predicted elements bound by CTCF100. Insertions and deletions were intersected with genes
and transcripts using BEDTools54 (v2.30.0) intersect with a minimum overlap of 1 bp. We
also extracted exons and introns for long noncoding RNA (lncRNA) and pseudogene
transcripts, as well as coding sequences (CDSs), exons, introns, start codons, stop codons,
and untranslated regions (UTRs) for protein-coding transcripts. For a given gene, we
counted the insertions and deletions within different genomic elements (such as CDSs,
exons, and introns) and normalized the counts by the length of the genomic element. We
also calculated the proportion of these genomic elements for different transcript types that
were affected by insertions or deletions.

We conducted a permutation test to assess the significance of the depletion or enrichment of
SVs for these genomic elements. To achieve this, we generated a catalog of shuffled SVs
using BEDTools54 (v2.30.0) shuffle. Given the heterogeneity of chromosomes, we ensured
that the shuffled SVs remained on the same chromosome (using the -chrom option) and
avoided gaps in the GRCh38 assembly (using the -excl option). Similarly, we intersected the
shuffled SVs with genomic elements and counted the number of hits to establish the null
distribution. Fold changes were determined as the ratio of observed to permuted values for
each transcript type, SV type (insertion and deletion), and genomic element (CDSs, exons,
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and introns, etc). Empirical p-values were calculated and adjusted for multiple comparisons,
with significance reported for adjusted p-values less than 0.05.

Differential gene expression and outliers
Expression matrices for the 12 individuals were obtained from short-read RNA-seq data.
Differential expression analysis was performed using DESeq2101 (v1.38.3) for each SV
carried by 2-10 individuals out of the 12. SVs were filtered into two categories: 1) direct
overlap with an annotated exon (GENCODE v45), or 2) no overlap with an exon but located
within 50 kbp of an annotated gene. For genes overlapping or near an SV, the p-values from
DESeq2 were corrected using Benjamini-Hochberg adjustment, considering the total number
of SV-gene pairs in each category (overlapping with exon or flanking). In these filtered
gene-SV pair sets, genes with an adjusted p-value less than 0.05 were reported as
differentially expressed.

Outlier expression analysis was performed for SVs carried by one or 11 individuals out of the
12. The gene expression FPKM matrix was used as input, assuming that FPKM follows a
log-normal distribution to calculate p-values. The SV-gene pairs were identified and p-values
were adjusted using the same methods as in the differential expression analysis. Genes with
an adjusted p-value less than 0.05 were considered outliers. In each case, we annotated
SVs associated with DE or outlier genes with overlapping cCREs identified using BEDTools54

(v2.30.0) intersect.

We performed permutation tests to compare the impact of SVs on gene expression with
random effects. SVs were randomly redistributed for 1,000 permutations using BEDTools
(v2.30.0) shuffle while maintaining chromosome assignment, preventing overlaps, and
excluding GRCh38 assembly gaps54. To enable a sufficient number of shuffles while
maintaining efficiency in differential expression analysis, we developed a method to directly
extract DE results from a pre-calculated set that includes all possible individual contrasts
within our dataset. This procedure can be applied consistently to both the real SVs and the
shuffled sets. We found the number of SV-proximal DE genes in the real SV set was higher
than each of the permuted results, suggesting a nonrandom association between SVs and
expression change (empirical p<0.001). In addition to using a 50 kbp window around the
TSSs, we also varied the window size to 5 kbp, 25 kbp, and 100 kbp. We observed that
narrower windows yielded a higher proportion of expression-altering SVs, underscoring the
importance of sequence integrity near TSSs.

Hi-C analysis
We analyzed Hi-C data from 63 individuals to assess the chromatin structures across these
genomes. Particularly, we focused on the identification of boundary regions that separate the
two adjacent topologically associating domains (TADs) in these individuals. TAD boundaries
are recognized for their high conservation across mammalian species and are more
evolutionarily constrained than TADs themselves102,103. On average, we have identified
21,021 TAD boundaries per genome in these samples (Supplementary Fig. 58,
Supplementary Table 46).

To identify these TAD boundaries, raw Hi-C sequencing reads were aligned to the GRCh38
reference genome for each individual. Specifically, raw sequencing reads were
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preprocessed using Juicer software tools (v1.6) with the default BWA-MEM aligner104,105.
Unaligned reads, including abnormal split reads and duplicate reads, were removed.
Additionally, read pairs with a mapping quality (MAPQ) value of less than 30 were filtered
out. The resulting high-quality read pairs (Hi-C contacts) were used to construct chromatin
contact maps (in .hic format, a special format for highly compressed binary files to store
contact matrics at various resolutions). These Hi-C contact maps, along with TAD boundary
identifications for each sample, were generated using a pipeline following our previous
work8,106. The files are primarily supported by Juicer, JuicerTools, and Juicebox command
line tools for downstream analysis and visualization107. Data normalization was done using
SCALE matrix balancing104, which addresses the limitations of KR normalization in
unexpectedly not providing coverage for specific regions or chromosomes.
To determine the optimal resolution for calling TAD boundaries, we utilized a script from
Juicer to calculate the Hi-C map resolution104, which was directly downloaded from Rao’s
study108. The Hi-C map resolution reflects the finest scale at which local features can be
reliably detected, and the average resolutions were 9,137 (bp) for GRCh38 reference
mapping in our samples. We employed an algorithm utilizing Insulation Score (IS) to detect
the coordinates and corresponding boundary scores (BS) for each TAD boundary under 10
kbp resolution, using the FAN-C toolkit109 (v0.9.26b2) with default parameters. TAD
boundaries were detected at a 100 kbp window size with a minimum boundary score cut-off
value of 0.2, as referenced from the 4DN domain calling protocol110–112. The IS algorithm
defines a sliding window and sums contacts within this window along the Hi-C matrix
diagonal. Regions with low insulation scores represent high boundary scores and are further
identified as TAD boundaries, while regions with high insulation scores (low boundary
scores) are typically found within domains, referred to as TAD regions (Supplementary Fig.
58).

SV effects on GWAS loci
We investigated the association between variants and human phenotypes or traits by
intersecting single nucleotide variants (SNVs), insertions/deletions (INDELs), and structure
variants (SVs) with SNPs identified in genome-wide association studies (GWAS). We
downloaded the GWAS summary statistics113

(gwas_catalog_v1.0.2-associations_e111_r2024-04-16.tsv), which contains 149,081
autosomal SNPs and we observed 133,695 SNVs present in the GWAS dataset and 10,008
INDELs and 1,547 SVs are at least one bp overlap with any GWAS signal. We used Plink114

(v1.90b6.10) to examine the linkage disequilibrium (LD) between SNVs, INDELs, and SVs
with GWAS SNPs within 1 Mbp window size.

Results

Expression Impacted by SVs
Structural Variations (SVs) have the propensity to cause drastic alterations to the genomic
landscape, with the possibility of impacting transcript diversity through the disruption of
coding sequence115, altering splicing116, or by rewiring regulatory networks117. Using the
Ensembl81 (release 111) VEP82 to intersect 176,531 SVs (PAV freeze 4 callset) with merged
Ensembl GRCh38p14 gene annotations, we identified 1,505 unique SVs with evidence for
protein-coding exon disruption within 1,070 unique genes across the 130 haplotype
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assemblies. In the subset of assemblies with corresponding Iso-Seq data (12 samples; 24
haplotypes) we identified 582 unique SVs that disrupted protein-coding exons within 470
unique genes. After exclusion of 33 immunoglobulin genes, we identified 136 genes with
Iso-Seq expression. Of these 136 genes, 85 were found to contain splicing variations absent
from the GRCh38 Refseq Annotation94. Visual comparison using IGV95 of isoforms phased to
variant and wild-type haplotypes for candidate genes revealed SV-driven transcript
diversification.

Following scrutinization of the candidate genes, we found ZNF718 to best exemplify the
impact of SV-driven transcriptome diversification. Associated with immune function118,
ZNF718 was found to contain a 6,142 bp deletion on chr4:127,125-133,267 affecting 10
haplotypes (8 samples). This deletion resulted in the loss of exons 2 and 3 of the canonical
transcript, as well as the majority of an alternate first exon (Fig. 2e). We identified a total of
16 unique isoforms in the twelve samples, nine of which were expressed across the ten
variant haplotypes, and seven across the 14 wild-type haplotypes. No isoforms were found
in common between the variant and wild-type haplotypes. Of the nine unique isoforms
expressed by the variant haplotypes, seven were previously unreported in Refseq 94,
GENCODE96, and CHESS97 databases, while the remaining two were known transcripts that
lack the deleted exons. Some unreported isoforms displayed previously uncharacterized
splice sites located up and downstream of the SV (isoforms 1, 3, 4; Fig. 2e), while others
(isoform 2) displayed a loss of all splicing. In both cases, the result was the retention of an
intronic sequence that had not been observed previously. In the absence of the deleted
portion, the repetitive element landscape appeared to influence the aberrant splicing
patterns. Apparent activation of novel splice sites were localized within Alu elements.
Additionally, all previously unrecognized isoforms appeared to terminate in a transposable
element. In contrast, the wild-type haplotypes harbored three known and four unreported
isoforms, which all contained some portion of the deleted exons. All isoforms harbored by
the wild-type haplotypes contained some portion of the deleted exons, indicating the
disruptive impact of this deletion.

Enrichment of SVs in Genomic Elements
Permutation tests revealed significant depletion (empirical p<0.05, Benjamini-Hochberg
correction) of both deletions and duplications across most GENCODE-defined genomic
elements, including all biotypes within protein-coding genes and long noncoding RNAs,
mirroring our previous findings62. Depletions were also observed for SVs within
ENCODE-derived cCREs, including promoters and proximal and distal enhancers. However,
we found significant enrichments for deletions within unprocessed pseudogenes, in addition
to intronic regions of processed pseudogenes (Extended Data Fig. 3e), consistent with the
SV-mediated mechanisms that lead to pseudogene formation119.

Effects of SVs on Chromatin Conformation
Among the 128 SV-gene pairs (122 unique SVs associated with 98 genes) that exhibit
significant differential gene expression changes in the 12 samples with Iso-Seq data, we
aimed to identify SVs within these pairs that are also associated with differential insulated
regions (DIRs). DIRs represent regions with differential insulation profiles in the
presence/absence of SVs across the 12 analyzed samples. Specifically, we first filtered out
SVs with missing genotypes in more than 6/12 samples. For each remaining SV, we
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extracted the 50 kbp upstream and downstream of the annotated TSS position for each
paired gene with corresponding insulation scores under 10 kbp resolution. For those
insulated regions intersecting with more than one SV, we applied a local multi-test correction.
An FDR < 0.05 from the two-sided Wilcoxon rank-sum test was considered as being
significant. As a result, we identified 49 SV-gene pairs (29 SVs associated with 24 genes)
that were associated with 40 differential insulated regions (DIRs)8,106 (Supplementary table
46).

Effects of SVs on GWAS loci
We identified 794,097 SNVs, 138,369 INDELs, and 3,818 SVs in high LD (R2 ≥ 0.8) with
GWAS SNPs. Specifically, 468,217 SNVs, 77,821 INDELs, and 2,430 SVs were found to be
in the highest LD (R2 = 1) with GWAS SNPs (Supplementary Table 47, Supplementary
Fig. 59). Among the SVs in high LD with GWAS SNPs, we observed 3 deletions
(chr10-132173822-DEL-112, chr10-132191104-DEL-55, and chr14-67910288-DEL-152) that
were identified as SV-differentially expressed gene pairs and linked to DIRs
(Supplementary Table 46). Notably, chr14-67910288-DEL-152 (associated with the
  RAD51B gene) is in perfect LD with GWAS SNP rs10136790 (R2 = 1), an SNP reported to
be associated with the trait of balding measurement120. This deletion is also in high LD with
rs11158717 (R2 = 0.8536), a locus associated with blonde hair, compared to black and
brown hair colors121. In addition, chr10-132173822-DEL-112 (associated with the DPYSL4
gene) is in high LD with GWAS SNPs rs2814162 and   rs11146237 (R2 = 0.8235 and 0.9743,
respectively). The SNP rs2814162 is associated with vertex-wise sulcal depth for brain
measurement, a robust but underexplored measure of localized brain folding that has been
previously associated with multiple neurodevelopmental disorders. Sulcal depth is
considered a promising neuroimaging marker that could advance people’s understanding of
cortical morphology123. SNP   rs11146237, which is also in high LD with the SV
chr10-132191104-DEL-55, is associated with body mass index and body weight124.
Furthermore, we identified four INDELs (chr4-11038-INS-15, chr4-37975-DEL-1,
chr4-79676-INS-2, and chr4-82371-DEL-1) that are all in high LD with one GWAS SNP,
rs2187874, which is associated with the ZNF718 gene - a candidate gene that illustrates the
impact of SV-driven transcriptome diversification in our study. The SNP rs2187874 has been
linked to the response to tumor necrosis factor (TNF) inhibitor in rheumatoid arthritis and
joint damage measurement125.

Genotyping
Contributing authors: Jana Ebler, Glenn Hickey, Tobias Marschall, Benedict Paten, Timofey
Prodanov, Tobias Rausch, Michael C. Zody

Methods

Building a pangenome graph with Minigraph-Cactus
We built two pangenome graphs with Minigraph-Cactus126 (v2.7.2). First, we constructed a
132-genome graph composed of the 65 HGSVC samples (130 haplotypes) including
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GRCh38 and T2T-CHM13 references. Second, we constructed a 216-genome graph
including the 130 genomes along with 42 samples (84 haplotypes) from the HPRC year 1
release 28 (Supplementary Fig. 27, Step 1). The input and output data for these two graphs
are available at
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=pangenomes/
scratch/2024_02_26_minigraph_cactus_hgsvc3/ and
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=pangenomes/
scratch/2024_02_23_minigraph_cactus_hgsvc3_hprc/, respectively.

The command to build the HGSVC graph was:

cactus-pangenome ./js1 ./hgsvc3-2024-02-23-mc-chm13.seqfile.local
--outName hgsvc3-2024-02-23-mc-chm13 --outDir
hgsvc3-2024-02-23-mc-chm13 --reference CHM13 GRCh38 --vcf
--vcfReference CHM13 GRCh38 --odgi --xg --chrom-vg clip --chrom-og
--gbz clip full --xg clip full --haplo clip --giraffe clip
--logFile hgsvc3-2024-02-23-mc-chm13.log --batchSystem slurm
--mgCores 64 --mapCores 16 --consCores 64 --indexCores 64
--maxMemory 1.5TB --batchLogsDir batch-logs --coordinationDir
/data/tmp

The command to build the HGSVC+HPRC graph was:

cactus-pangenome ./js1
./hgsvc3-hprc-2024-02-23-mc-chm13.seqfile.local --outName
hgsvc3-hprc-2024-02-23-mc-chm13 --outDir
hgsvc3-hprc-2024-02-23-mc-chm13 --reference CHM13 GRCh38 --vcf
--vcfReference CHM13 GRCh38 --odgi --xg --chrom-vg clip --chrom-og
--gbz clip full --xg clip full --haplo clip --giraffe clip
--logFile hgsvc3-hprc-2024-02-23-mc-chm13.log --batchSystem slurm
--mgCores 64 --mapCores 16 --consCores 64 --indexCores 64
--maxMemory 1.5TB --batchLogsDir batch-logs --coordinationDir
/data/tmp

cactus-graphmap-join ./js1 --outName
hgsvc3-hprc-2024-02-23-mc-chm13 --outDir
hgsvc3-hprc-2024-02-23-mc-chm13 --vg
hgsvc3-hprc-2024-02-23-mc-chm13/chrom-alignments/chr*.vg --hal
hgsvc3-hprc-2024-02-23-mc-chm13/chrom-alignments/chr*.hal
--reference CHM13 GRCh38 --vcf --vcfReference CHM13 GRCh38 --odgi
--chrom-vg clip --chrom-og --gbz clip full --logFile
hgsvc3-hprc-2024-02-23-mc-chm13.join.log --indexCores 64
--maxMemory 1.5TB --batchLogsDir batch-logs --coordinationDir
/data/tmp --batchSystem slurm

Note that this second command was used to rerun the indexing step due to running out of
memory on our cluster. This issue has been fixed in recent versions of Cactus.

We produced normalized versions of the VCF output of Minigraph-Cactus using vcfwave76

for realignment, similar to as was done for the HPRC year 1 data and described here:
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https://github.com/ComparativeGenomicsToolkit/cactus/blob/hprc-v1.1/doc/mc-pangenomes/
hprc-v1.1-mc.md#vcf-postprocessing. The commands run for this were:

for i in hgsvc3-2024-02-23-mc-chm13.GRCh38
hgsvc3-hprc-2024-02-23-mc-chm13.GRCh38 hgsvc3-2024-02-23-mc-chm13
hgsvc3-hprc-2024-02-23-mc-c

hm13 ; do docker run -it --rm -v $(pwd)/:/data --user $(id
-u):$(id -g) ghcr.io/pangenome/pggb:202402032147026ffe7f bash -c
"/data/vcf-b

ubwave.sh /data/${i}.raw.vcf.gz
/data/${i}-vcfbub.a100k.wave.vcf.gz" ; done

wget -q
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/ass
emblies/analysis_set/chm13v2.0.fa.gz

wget -q
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/
technical/reference/20200513_hg38_NoALT/hg38.no_alt.fa.gz

for i in hgsvc3-2024-02-23-mc-chm13.GRCh38
hgsvc3-hprc-2024-02-23-mc-chm13.GRCh38; do bcftools norm
${i}-vcfbub.a100k.wave.vcf.gz -f hg3

8.no_alt.fa.gz | bcftools sort | bgzip --threads 2 >
${i}-vcfbub.a100k.wave.norm.vcf.gz ; tabix -fp vcf
${i}-vcfbub.a100k.wave.norm.vcf

.gz ; done

for i in hgsvc3-2024-02-23-mc-chm13
hgsvc3-hprc-2024-02-23-mc-chm13 ; do bcftools norm
${i}-vcfbub.a100k.wave.vcf.gz -f chm13v2.0.fa.gz

| bcftools sort | bgzip --threads 2 >
${i}-vcfbub.a100k.wave.norm.vcf.gz ; tabix -fp vcf
${i}-vcfbub.a100k.wave.norm.vcf.gz ; done

VCF generation and preprocessing
We used the VCF file:
https://s3-us-west-2.amazonaws.com/human-pangenomics/pangenomes/scratch/2024_02_2
3_minigraph_cactus_hgsvc3_hprc/hgsvc3-hprc-2024-02-23-mc-chm13.vcf.gz (Note: VCF
prior to the vcfwave-based decomposition) generated by the Minigraph-Cactus pipeline126

(see Methods section “Buliding a pangenome graph with Minigraph-Cactus” above) from the
216-genome containing all 65 samples as well as 42 samples previously assembled by the
HPRC28 as a basis for genotyping (Supplementary Fig. 27, Step 2). This VCF contains a
record for each top-level bubble of the graph, as well as haplotype information for all
samples contained in the graph. Prior to genotyping, we preprocessed this VCF as follows.
We converted the genotypes for male samples on chromosomes X and Y to a homozygous
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representation by duplicating the haplotype in the VCF that carries the smaller number of “.”
alleles. Next, we filtered out all records for which at least 20% of the haplotypes carry a
missing allele (“.”). This resulted in a set of 30,490,169 bubbles. These bubbles are often
huge and represent not just a single variant event, but rather accumulate many individual
variant alleles across the different samples in the corresponding genomic region. Therefore,
we ran a bubble decomposition method that we had developed earlier28 to find the actual
variant alleles nested inside of bubbles. Briefly, the decomposition approach uses the
traversals of reference and alternative sequences of the bubbles to determine variation
nested inside of the bubble structures 28. As a result, the pipeline adds annotations to the ID
tag of the INFO field of each of our VCF records. For each alternative allele in the VCF, the
ID tag contains IDs encoding all nested variant alleles it is composed of, separated by a
colon (“bubble vcf”, PanGenie input). The decomposition pipeline also outputs a second VCF
with a separate, bi-allelic record for each such nested variant ID, defining its reference and
alternative sequence28. This second VCF can be used later in order to convert genotypes
computed for the bubbles to genotypes for all individual variant alleles nested in the graph
based on the annotations (“decomposed vcf”). We distinguish the following variant types for
the decomposed alleles: SNPs, indels (1-49 bp), SV deletions, SV insertions and other SVs
(≥ 50 bp). SV deletions include all alleles for which length(REF) ≥ 50 bp and length(ALT) = 1,
SV insertions include all alleles for which length(REF) = 1 and length(ALT) ≥ 50bp. “SV
other” contains all other cases where length(REF) ≥ 50 bp or length(ALT)≥50 bp. In total, we
obtained 39,313,178 variant alleles after decomposing all 30,490,169 bubbles. In the
following, all evaluations are based on the decomposed bubbles.

PanGenie input data
PanGenie was run using the VCFs described in the previous section (available here:
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC3/release/Genotyping_1k
GP/20240716_PanGenie-genotypes/:

● MC_hgsvc3-hprc_chm13_filtered_bubbles.vcf (bubble vcf)
● MC_hgsvc3-hprc_chm13_filtered_decomposed.vcf (decomposed vcf)

As a reference genome, we used T2T-CHM13 (v2.0) obtained from:
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/analysis
_set/chm13v2.0.fa.gz

Illumina reads were obtained from the locations provided below. One FASTA file per sample
was generated by concatenating individual FASTA/FASTQ files into a single file.

● 3,202 1kGP samples: http://ftp.sra.ebi.ac.uk/vol1/fastq/
● NA24385:

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son
/NIST_Illumina_2x250bps/reads/

● NA21309:
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=workin
g/HPRC_PLUS/NA21309/raw_data/Illumina/child/

● HG01123, HG02486, HG02559:
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=submis
sions/30E441F3-6820-4BF6-BCF4-E64D56C8D6A4--TRUSEQ/
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We provide PanGenie command lines in the sections below.

Leave-one-out experiments
We performed “leave-one-out” experiments to evaluate the performance of PanGenie127

(v3.1.0) on all 107 assembly samples contained in our VCF. This was done by iteratively
removing a single sample from the PanGenie input VCF (“bubble vcf”) and genotyping it with
PanGenie based on the remaining samples using 1000 Genomes high coverage Illumina
reads5. PanGenie was run with additional parameter -a 108 using the following commands
for each panel sample:

bcftools view --samples ^<sample>
MC_hgsvc3-hprc_chm13_filtered_bubbles.vcf | bcftools view --min-ac
1 > MC_hgsvc3-hprc_chm13_filtered_bubbles_<sample>.vcf

PanGenie-index -v
MC_hgsvc3-hprc_chm13_filtered_bubbles_<sample>.vcf -r chm13v2.0.fa
-o index -t 24

PanGenie -a 108 -f index -i <(gunzip -c <sample-reads>) -o
pangenie_<sample> -j 24 -t 24 -s <sample>

cat pangenie_<sample>_genotyping.vcf | python3
convert-to-biallelic.py
MC_hgsvc3-hprc_chm13_filtered_decomposed.vcf.gz >
pangenie_<sample>_genotyping_biallelic.vcf

The genotypes of the left-out sample were then used as a ground truth for evaluation.
Because PanGenie is a re-genotyping method, it can only genotype variants contained in the
input panel VCF, that is, it is not able to detect variants unique to the genotyped sample. For
this reason we removed all variant alleles (after decomposition) unique to the left-out sample
contained in the truth set for evaluation. In order to evaluate the genotype performance, we
used the weighted genotype concordance4,28. We evaluated the results within the following
regions:

● All regions
● Biallelic bubbles: include all bubbles in the graph with at most two branches
● Multiallelic bubbles include all bubbles in the graph with more than two branches
● SegDup regions: UCSC segmental duplications track (CHM13) 128

● HPRC gap regions: regions with known gaps in HPRC assemblies 38

● CMRG regions: challenging medically relevant genes 129

Results for structural variants (≥ 50bp) are shown in Supplementary Figs. 28-30. Overall,
we observed high genotype concordances across all regions. Performance is best within
biallelic regions of the graph and drops in multiallelic regions. This is expected as multiallelic
bubbles often contain a large number of different variant alleles. While genotyping
performances within CMRG regions are very similar to the overall concordances, they are
slightly worse within segmental duplications, and the worst performance was observed within
regions where the HPRC assemblies have gaps. This is expected, since our panel contains
42 HPRC samples, and locally incomplete assemblies negatively affect the genotyping.
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Genotyping the 1kGP cohort with PanGenie
We genotyped all 3,202 samples of the 1000 Genomes cohort based on high coverage
Illumina reads5 using PanGenie127 (v3.1.0). We first ran PanGenie-index once using the
command:

PanGenie-index -v MC_hgsvc3-hprc_chm13_filtered_bubbles.vcf -r
chm13v2.0.fa -o index -t 24

Then, we ran genotyping on each sample using the command:

PanGenie -a 108 -f index -i <(gunzip -c <sample-reads>) -o
pangenie_<sample> -j 24 -t 24 -s <sample>

cat pangenie_<sample>_genotyping.vcf | python3
convert-to-biallelic.py
MC_hgsvc3-hprc_chm13_filtered_decomposed.vcf.gz >
pangenie_<sample>_genotyping_biallelic.vcf

We filtered the resulting genotypes using an approach developed previously for the HPRC
and HGSVC projects4,28 that is based on a regression model. We trained the model based on
a positive and a negative set which we defined based on the following filters:

● ac0_fail: a variant allele was genotyped with a allele frequency of 0.0 across all
samples

● mendel_fail: the mendelian consistency across trios is less than 85% for a variant
allele. Here, we use a strict definition of mendelian consistency which excludes all
trios with only 0/0, only 0/1 and only 1/1 genotypes.

● gq_fail: less than 50 high quality genotypes were reported for this variant allele
● self_fail: genotyping accuracy of a variant allele across the panel samples is less

than 90%
● nonref_fail: not a single non-0/0 genotype was genotyped correctly across all panel

samples

To select for genotypable variants, we trained a machine-learning classifier to assign a pass
or fail filter value to each genotyped variant. To train the model, all variant alleles that pass
all five filters are included in the positive set. The negative set contains all variant alleles that
passed the ac0_fail filter but failed at least three of the other filters. In a similar manner as
before4,28, we used Support Vector Regression based on features including the mendelian
consistency, allele frequencies and number of alleles transmitted from parent to child
samples in order to compute scores between 1 (good) and -1 (bad) for all remaining SV
variant alleles. Our final, filtered variant set includes the positive set and all variant alleles
with a score ≥ -0.5. We show the number of variants in the unfiltered, positive and filtered
sets in Supplementary Table 48. Since our focus is on SVs, we applied our machine
learning approach only to SVs. Our filtered set contained 89%, 88% and 81% of all
deletions, insertions and other SVs that we genotyped. These percentages are much higher
than the ones we previously observed when we analyzed HPRC data 28, which is mainly
because of several improvements made to the PanGenie software (implemented in versions
> 3.0.0, version used here: v3.1.0) in the meantime that led to smaller fractions of variants
with allele frequencies of zero across all genotyped samples.
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To evaluate the PanGenie genotypes, we compared the allele frequencies of SV alleles that
we observed across all assembly samples in our input VCF to the allele frequencies of the
same variant alleles after genotyping all 1kGP samples. This was done on all 2,590
unrelated samples. We observed that allele frequencies matched quite well, with pearson
correlations of 95.2%, 94.9% and 90.8% for the unfiltered SV deletions, SV insertions and
other SV alleles; and 98.1%, 95.7% and 91.9% respectively, after filtering (Supplementary
Fig. 31). We furthermore compared heterozygosities to allele frequencies and observed a
behavior close to what is expected by Hardy-Weinberg equilibrium (Supplementary Fig.
32).

We furthermore compared our genotypes to other SV sets, like the PanGenie genotypes we
had computed previously for the HPRC data 28 as well as the Illumina-based NYGC SV
callset5. While our genotypes are based on CHM13, the other sets are both based on
GRCh38, making a one-to-one comparison more difficult. In order to account for different SV
representations between the three sets, we compared them based on the number of SV
sites per sample. We ran truvari collapse130 using parameters -r 500 -p 0.95 -P 0.95 -s 50 -S
100000 to merge similar SV alleles in our filtered genotyped set, as well as in the HPRC
genotypes, since no SV merging was performed for both sets. We show the results in
Supplementary Fig. 34. To ensure that the improvements we see for the our genotypes
were not just due to artifacts arising from the different underlying reference genomes of the
compared callsets, we additionally counted the number of heterozygous SVs per sample
(Supplementary Fig. 35), which revealed the same trends.

The pipeline used for the Leave-one-out experiments and the 1kGP genotyping, as well as
instructions to replicate the results can be found here:
https://github.com/eblerjana/hgsvc3/tree/main/experiments/genotyping/

Comparison of PAV and Minigraph-Cactus based calls
We compared CHM13-based SV calls produced by PAV to the ones obtained from the
Minigraph-Cactus graph. Four callsets were compared: the unfiltered PAV calls
(“PAV-unfiltered”), the final, filtered PAV calls (“PAV”), the Minigraph-Cactus based panel
VCF used as input to PanGenie (“MC-panel”) and the filtered PanGenie genotypes
(“PanGenie”). Variants were compared based on reciprocal overlap, breakpoint deviations
and variant length deviations. More specifically, two SVs were considered to represent the
same event if at least one of the following conditions was true:

● reciprocal overlap > 50%

● < 200 and and𝑎𝑏𝑠(𝑠
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Here, (s1, e1) and (s2, e2) are the start and end coordinates of the MC/PanGenie-filtered and
the PAV SVs, respectively (relative to the reference genome), and l1 and l2 the variant
lengths. Furthermore, the variant type must be the same, unless one of the SVs has type
“OTHER”. The latter ones are allowed to match with any other type.

We performed four pairwise comparisons: MC-panel vs. PAV-unfiltered, MC-panel vs. PAV,
PanGenie vs. PAV-unfiltered and PanGenie vs. PAV. Results are shown in Supplementary
Fig. 33. For overlapping SV calls, counts and variant types were determined relative to the
MC / PanGenie-filtered SVs.
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Unmatched calls

We found 49,868 SVs that are present in the PAV callset, but could not be matched in the
MC-panel. Of those, 14,215 SVs were overlapping with calls previously filtered out when
creating the MC-panel VCF from the Minigraph-Cactus VCFs (see section “VCF generation
and preprocessing” above), while the remaining 35,653 SVs had no overlap with any of
these filtered out calls. Furthermore, we found 85,315 SVs in the PanGenie set for which no
match was found in the PAV calls. Since PanGenie was run on the MC-panel containing
HPRC assemblies as well (in addition the the HGSVC3 samples), some of these variants
might be SVs unique to HPRC samples and thus not included in the PAV set, which was
produced based on the HGSVC3 samples only. Therefore, we checked the allele
frequencies of these variants across HPRC and HGSVC3 samples and found that for 55,095
of 85,315 SVs the allele frequency across HGSVC3 samples was non-zero.

We further analyzed the 35,653 PAV calls that could not be matched in the MC-panel and
the 55,095 SVs in the (MC-based) PanGenie filtered set that could not be matched in the
PAV calls. We found that many of these calls (i.e., 24,235 of 55,095 and 15,119 of 35,653
SVs) are located within 5mb around the start and end positions of chromosomes. Therefore,
we hypothesize that many of these unmatched are cases in which variant representations
between the callsets are too different to be picked up by our matching criteria (see section
“Comparison of PAV and Minigraph-Cactus based calls” above). Especially in repetitive
contexts, coordinates of variant calls might be shifted, or larger records might be reported as
multiple smaller calls and thus are missed by our matching script.

Generating a 1kGP reference panel with SHAPEIT
We used our final filtered PanGenie genotypes for all 3,202 1kGP samples (see section
“Genotyping the 1kGP cohort with PanGenie” above) as a basis for phasing all 3,202
short-read 1kGP samples (Supplementary Fig. 27, Step 3). Since this genotyped set is
based on variant calls obtained from 107 assembly samples, we included additional rare
SNPs and indels from an external short-read based callset for the 3,202 1kGP samples
obtained from
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=T2T/CHM13/a
ssemblies/variants/1000_Genomes_Project/chm13v2.0/all_samples_3202/. This was done
by selecting all variants from this short-read based set that reported genotype 0/0 for all
samples overlapping with our 107 assembly samples. In this way, we added 70,174,243
additional variants to our genotyped VCF, resulting in a total of 101,980,762 variants.

In a next step prior to phasing, we set all genotypes with a quality score below 10 to missing
(GQ < 10). Then, we ran SHAPEIT5131 (v5.1.1) using the phase_common command. We
provided pedigree information for all trios part of the 3,202 samples, as well as genetic maps
for CHM13 obtained from
https://github.com/JosephLalli/phasing_T2T/tree/master/t2t_lifted_chrom_maps. Phasing
was run separately on each chromosome. For the sex chromosomes, a list of haploid
samples (all males) was provided to SHAPEIT.

Evaluating phased genotypes
In order to evaluate the quality of our phased genotypes, we compared phasing results to
other phased sets on a subset of samples. Other sets included the MC-based input panel
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VCF containing the assembly haplotypes (Section “VCF generation and preprocessing”), as
well as a phased Illumina-based short variant callset for the 3,202 1kGP samples obtained
from
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/variants
/1000_Genomes_Project/chm13v2.0/. We used WhatsHap’s compare function132 to compute
switch error rates (Supplementary Fig. 36). To compute switch error rates specific to
regions provided in a BED file, we treated each BED interval as a separate phased block to
avoid penalizing switch errors that happened outside of the regions of interest. In this way,
we computed switch error rates for the following regions:

● CHM13-syntenic: all regions shared between GRCh38 and CHM13. Those were
derived from the UCSC CHM13-unique track for CHM13v2.0.

● CHM13-easy: regions outside of other difficult regions such as tandem repeats,
homopolymers, difficult to map regions, segmental duplications and high/low GC
content. Obtained from:
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratificatio
ns/v3.3/CHM13@all/Union/CHM13_notinalldifficultregions.bed.gz

● CHM13-lowmap-segdup: regions with low mappability and segmental duplication
regions. Obtained from:
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratificatio
ns/v3.3/CHM13@all/Union/CHM13_alllowmapandsegdupregions.bed.gz

● CHM13-tandem-repeat: tandem repeat regions and homopolymers, obtained from:
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratificatio
ns/v3.3/CHM13@all/LowComplexity/CHM13_AllTandemRepeatsandHomopolymers_
slop5.bed.gz

In line with our expectations, switch error rates were highest for unrelated samples, i.e.,
samples not part of any of the 1kGP trios, lower for parent samples and lowest for the
children (Supplementary Fig. 36). Results for CHM13-syntenic regions were almost
identical to the overall error rates (orange and blue line, Supplementary Figure 36).
Overall, the best results were observed for the “CHM13-easy” regions.

The overall switch error rates for unrelated samples (all regions) were between 1.16 and
1.50 when comparing to the MC panel VCF, and 1.16-1.55 when comparing to the Illumina
phased calls (Supplementary Fig. 36). For parent samples, we observed switch error rates
between 0.50-0.79 when comparing to the MC panel and 0.39-1.18 when comparing to the
Illumina phased calls. For children, switch error rates were below 0.42 and 0.19 for the MC
panel and the Illumina phased calls, respectively. We also performed a multiway comparison
of all three sets using WhatsHap’s compare function 132. Briefly, it reports the number of
times the different sets agreed or disagreed on the phasing of variant sites. While the
phasings of the MC panel and the Illumina calls largely agree, we observed slightly higher
rates of disagreements between our and the other two sets (Supplementary Fig. 37),
especially for the unrelated samples.

Personal genome reconstruction
We generated consensus haplotype sequences for all 1kGP samples based on the phasing
results. For each haplotype of each sample, we implanted the variants present on that
haplotype into the CHM13 reference genome (chromosomes 1-22 and chromosome X). In
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order to evaluate the quality of the resulting haplotype sequences, we computed QVs and
completeness for a subset of 60 haplotypes (30 samples) by comparing k-mers of each
haplotype to the k-mers seen in short-read sequencing data of the respective sample (k-mer
size used: 21 bp). This was done analogously to how these statistics are computed in
Merqury29. We furthermore restricted our QV and completeness calculations to certain
regions. Given a BED file, we masked all sequences outside of the desired BED intervals
with Ns and implanted variants only in the non-masked regions. The Ns were later removed
and assembly statistics computed only for the remaining sequence. As a baseline estimate,
we additionally computed QV and completeness statistics by flipping sample labels, i.e., by
comparing the consensus haplotype for one sample to reads of another sample. In addition
to generating consensus haplotypes from our phased genotypes, we also generated
consensus haplotypes from the GRCh38-based high-coverage 1kGP set5, which contains
phased genotypes for SNPs, indels and SVs across all 3,202 samples, called from Illumina
data and phased using SHAPEIT. The QV and completeness values we observed across all
60 evaluated haplotypes are shown in Supplementary Fig. 38.

The pipeline used for phasing and the generation of consensus haplotypes, as well as
instructions to replicate the results can be found here:
https://github.com/eblerjana/hgsvc3/tree/main/experiments/phasing/

Targeted genotyping using Locityper
We used Locityper v0.15.1133 to genotype 3,202 samples from the 1kGP cohort5. Target loci
were selected based on 268 challenging medically relevant genes129 (5 genes not present in
the CHM13 reference genome were discarded), extended by genes and pseudogenes from
six polymorphic gene families: CFH, CYP2, HLA, KCNK, KIR, MUC and a hyperpolymorphic
LPA gene. Short genes were extended to both sides to up to 10 kbp, and genes within 1 kbp
of each other were combined together. Finally, reference panels were constructed based on
the CHM13-based HPRC/HGSVC3 Minigraph-Cactus VCF file, while simultaneously
extending locus boundaries if they overlap a pangenomic bubble (variant in the VCF file).
Loci that needed to be extended by >300 kbp to one of the sides were discarded, producing
a final set of 347 target loci. 61 samples with short read data and HGSVC assemblies were
genotyped with two additional reference panels: leave-one-out panel, corresponding to the
full panel without the actual sample assemblies; and HPRC-only panel, consisting of the
reference genomes and HPRC assemblies. Assembled haplotypes from two individuals
(HG00733 and HG02818) were mislabeled as HPRC assemblies, resulting in a bigger
HPRC-only panel, which may have diminished the genotyping improvement achieved by
switching from the HPRC to the HPRC/HGSVC3 LOO reference panel.

In order to compare actual and predicted haplotypes, we used Locityper align module, which
uses largest common k-mer subsequence between two haplotypes, and completes the gaps
using wavefront alignment algorithm134. We then calculated sequence divergence between
haplotypes by dividing edit distance by the alignment length, and used Phred-like33

transformation to convert sequence divergences into QV scores.

Haplotype availability analysis does not require sequencing data and only depends on the
assembly sequences. Specifically, for a given sample haplotype we searched for an
unrelated haplotype from a limited reference panel that would produce maximal QV score.
To evaluate genotyping accuracy, we computed QV scores between predicted and actual
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haplotypes. All examined loci were diploid, correspondingly, we permuted predicted and
actual haplotype pairs to achieve the lowest sequence divergence. Genotypes were marked
as low quality and discarded if either weighted distance to other highly probable genotypes
was over 30, or there were over 1000 and over 20% unexplained reads 133. When evaluating
trio concordance, we compared predicted child haplotypes against predicted parent
haplotypes, and reported corresponding QVs. Similarly to genotyping, we permuted against
possible haplotype configurations to achieve the lowest sequence divergence.

Major Histocompatibility Complex
Contributing authors: Peter A. Audano, Christine R. Beck, Chen-Shan Chin, Alexander T.
Dilthey, Peter Ebert, Lisbeth A. Guethlein, Miriam K. Konkel, Heng Li, Mark Loftus, Tobias
Marschall, Paul J. Norman, Nicholas R. Pollock, Timofey Prodanov, Stephan Scholz, Arda
Söylev, Ying Zhou

Methods

HLA-DRB and RCCX Visualization
Visualization of DR subregion haplotypes and RCCX modules was performed using a
custom Python script, the pyGenomeViz library [https://github.com/moshi4/pyGenomeViz],
and the DNA Features Viewer library
[https://edinburgh-genome-foundry.github.io/DnaFeaturesViewer/].

Visual inspection of HLA-DRB haplotypes and solitary exon analysis
To search for structural variation in the DRB gene region, HGSVC MHC haplotypes were cut
from [start of DRA] to [end of DRB1 + 20 kbp]. The coordinates were obtained using
MHC-annotation 0.1 (https://github.com/DiltheyLab/MHC-annotation). Based on their
DRB1-allele as determined by Immunoannot, the sequences were grouped into DR groups.
Within each group, every sequence was aligned with nucmer 3.1 (-nosimplify -maxmatch) to
the same sequence (arbitrarily selected as the sequence with the alphanumerically smallest
id) and plotted with a custom gnuplot script based on mummerplots output. Sequences
where annotated as follows:

1. Repeat elements were masked with RepeatMasker (v4.1.2)

2. Full DRB genes and pseudogenes were searched for with minimap (v2.26)
(--secondary=no -c -x --asm10 -s100) by aligning the sequence from (1) against all
DRB alleles from IMGT and the larger DRB9 sequence Z80362.1; results were
highlighted and masked for the next step

3. DRB exons were searched for with BLASTN (v2.14.1) by aligning all DRB exons from
IMGT to the sequence and filtering for highest matches; results where highlighted
and masked for the next step

4. As step 3 but with introns
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Comparison with 1000 Genomes HLA types
Immunoanot-based HLA types were compared in two-field resolution to the typing published
earlier and obtained with PolyPheMe135

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HLA_types/20181129_HLA_type
s_full_1000_Genomes_Project_panel.txt). 58 out of the 130 haplotypes are not in the
PolyPheMe dataset and were excluded.

MHC haplotype gene content analysis
In addition to Immuannot, haplotypes were annotated using MHC-annotation (v0.1). Cases
of overlapping genes were resolved after inspection by removing superfluous annotations.
Reported gene counts for HLA genes and C4 annotation were based on Immuannot.

SV analysis
Separately for each HGSVC MHC haplotype, structural variants were called with PAV4

against 8 completely resolved MHC reference haplotypes136,137. To determine which SVs in
the HGSVC haplotypes were not present in any of the 8 reference haplotypes, for each
HGSVC haplotype, the “query” coordinates (i.e., the coordinates of the calls relative to the
analyzed HGSVC haplotype) of the PAV calls were padded with 50 bp on each side and
the intersection of SV calls (based on the padded “query” coordinates, across the 8 MHC
reference sequences) was computed. Only variants longer than 50 bp were included for
further analysis and the smallest variant relative to any of the 8 MHC references was
reported. The sequences of the calls so-defined were annotated with RepeatMasker56.
Variants were grouped by starting position on their closest MHC reference sequence and, in
case of insertions, repeat content was averaged.

Pangenome analysis for the MHC class II region with PGR-TK
The MHC class II region (MHC delta block) exhibits very high diversity. It is unclear whether
standard alignment and variant methodologies (small & structural) can be applied to this
region. For instance, when attempting to align assembled contigs to the CHM13 reference,
most alignments are fragmented, even with parameters that tolerate more differences. For
example, using minimap2 for assembly-to-assembly alignment with up to 5% difference
allowed (parameters: -x asm20 -r 10000,100000 -z 100000,100000), it generated 282
fragmented alignments out of the 111 haplotypes (HGSVC batch1 + batch2+ CHM13), and
167 of them had a soft or hard clip greater than 100 kbp on the 5-prime region
(Supplementary Fig. 60).

We can evaluate the similarity/difference between the haplotypes using a k-mer-based,
alignment-free method. We count all 25-mers from all haplotype sequences. As shown in the
plot below, the peak at 111 indicates conserved k-mers across the haplotype sequences.
However, there are many significant non-conserved k-mers, reflecting the high diversity of
the MHC class II region in the human population. There are 60.9% (857,179 out of
1,407,809) 25-mers shown in less than 50% of the haplotype sequences (Supplementary
Fig. 61).

In our PGR-TK haplotype cluster analysis, we only select bundles longer than 6 kbp to
generate the pangnome graph such that it is more comprehensible. The haplotype
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sequences in the bundle share a set of sparse minimizers, which can be aligned to each
other through a sparse dynamic programming algorithm. At the sequence level, they are
typically highly similar to each other. The plot below compares the k-mer Jaccard (with k =
25) distribution of different haplotypes of the entire MHC class II region (~CHM13,
chr6:32,168,394-32,812,380) to each other and those haplotype sequences within each
bundle (Supplementary Fig. 62).

Results

MHC and HLA-DRB
The Major Histocompatibility Complex (MHC), a region of approximately 5 Mbp on the short
arm of chromosome 6 (Fig. 4a), is the most gene-rich, polymorphic, and disease-associated
region of the human genome138–140. Due to a combination of extensive structural variation in
the HLA-DR and RCCX regions (Fig. 4a), long-range linkage disequilibrium141, and
difficulties in obtaining full sequence resolution from short reads142, however, the majority of
MHC disease association signals--for example in the class II region for multiple
sclerosis143--have not been fine-mapped144. Based on the 128 complete and 2 near-complete
MHC haplotypes in our assemblies, representing the largest resource of complete MHC
haplotypes so far, we characterized the fine-scale structure of genetic variation in the MHC
region, providing the basis for more accurate mapping of MHC association signals and
addressing key open questions about the relationship between different MHC haplotypes.

Our comparison of our MHC haplotypes with available MHC reference haplotypes136,137 show
a high concordance with respect to the number of annotated137,145 genes [27-33 Human
Leukocyte Antigen (HLA) and 140-146 non-HLA genes and pseudogenes per haplotype] as
well as to the overall haplotype repeat content (Supplementary Table 49). Our HLA
haplotypes were in excellent agreement with classical HLA typing results135, with concordant
results observed for 357 out of 360 compared alleles; Supplementary Table 50). A total of
826 HLA allele sequences not present yet at full-length resolution in the IPD-IMGT/HLA
reference database were submitted 146 (Supplementary Table 52), including 112 sequences
from the HLA-DRB locus, expression variants of which are associated with vaccine
response147. The linkage between the allelic states and presence/absence patterns of HLA
genes were in agreement with known MHC class I and MHC class II haplotype structures
around HLA-H, -K, -T, -U, HLA-Y and -OLI148, as well as in the HLA-DR region
(Supplemental Fig. 63). While the HGSVC3 MHC sequences did not contain any major
novel HLA gene-defined haplotype structures, we did observe a previously unknown copy
number variant, deletion of HLA-DPA2 on one haplotype (HG03807.1), as well as
low-frequency gene-level structural variants, such as deletion of MICA on one haplotype149, a
gene associated with histocompatibility150. A total of 170 SVs not present in previously
available reference haplotypes136,137 were detected (Supplementary Table 53); the majority
of these (64%) had a repeat element content ≥70%, and 30 of the remaining ones were
larger than 1 kbp. Taken together, while not indicating any major novel haplotype structures,
these results further confirm the high accuracy of the HGSVC3 assemblies in a region as
complex as the MHC and inform fine-mapping of HLA-related association signals.
Additionally, we used Locityper133 to genotype 61 of our samples using Illumina datasets
across 19 protein coding genes and 14 pseudogenes from the MHC locus and compared
predicted gene alleles against assembly-based gene annotation, constructed using
Immuannot145. Across all 33 loci, Locityper fully predicted gene alleles in 81.0% cases using
a limited HPRC-only reference panel. Adding HGSVC3 assemblies to the reference panel
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allowed Locityper to accurately predict gene alleles in 86.3% (leave-one-out panel) and
97.1% cases (full panel). When evaluating predicted protein product, Locityper achieved
88.3%, 90.6% and 97.8% accuracy with HPRC-only, leave-one-out and full reference panels,
respectively.

We next carried out in-depth analyses at the nucleotide level of the two major structurally
variable regions of the MHC, the HLA-DR and RCCX (Figure 4a). We classified the HLA-DR
haplotypes of the HGSVC3 assemblies using the established DR group system, which
groups HLA-DR haplotypes according to their HLA-DRB1 allele and gene/pseudogene
content (Figure 4b, Supplementary Table 54, Supplementary Fig. 64). Our MHC
assemblies contained representatives of all known DR groups, with counts ranging from 9
(DR1) to 25 (for each of DR5 and DR6); no haplotype configurations incompatible with the
established DR group system were found. Based on visual inspection of pairwise
alignments, with the exceptions of two small (~3.7 and 4.4 kbp) structural variants that
contained solitary HLA-DRB exon sequences (see paragraph “Solitary HLA-DRB exon
sequences […]” below), no large SVs distinguishing between DR haplotypes within the same
DR group were identified. DR5, DR8 and DR9 were absent from previous analyses of fully
resolved MHC haplotypes136,137; in addition, the relationship between the two contracted DR
haplotypes DR1 and DR8, which carry only one functional HLA-DRB gene (DRB1; Fig. 4a),
and other HLA-DR haplotypes has not been investigated at the nucleotide level.

For DR5 and DR9, pairwise sequence alignments (Supplementary Fig. 41) showed that
these haplotype share their large-scale structure with DR3/DR7 and DR4/9, respectively, the
other haplotype groups with the same DRB3- and DRB5-carrying gene configuration (Fig.
4c). For DR8, pairwise alignments suggested the highest degree of relatedness to either
DR1 or DR3/5/6 (Supplementary Fig. 41). Leveraging the fully resolved nature of our MHC
assemblies, we constructed high-resolution maps of repeat elements and gene/pseudogene
exons within the assembled DR haplotypes (Supplementary Fig. 39; Methods). Shared
repetitive element architecture encompassing the HLA-DRB1 gene within DR8 to those
found flanking the HLA-DRB3 and HLA-DRB1 genes in the DR3/5/6 haplotypes (Fig. 4c)
indicated that, consistent with earlier analyses of DR8 based on only HLA allele
sequences151,152, a sequence contraction event between the HLA-DRB1 and HLA-DRB3
genes of a DR3/5/6-class haplotype may have given rise to the DR8 haplotype, which could
be fine-mapped to lie within the proximity of exon 4 in HLA-DRB1*08 (Supplementary Fig.
40). The putative breakpoint showed a short length (<150 bp) of homology between
HLA-DRB1 and HLA-DRB3 on DR3/5/6 spanning exon 4 and the surrounding downstream
sequence (intron 3) in some DR8 haplotypes suggesting that homology-mediated double
strand DNA break repair may be a more likely explanation than nonallelic homologous
recombination (NAHR). For DR1, a haplotype structure that had previously been suggested
to have arisen from a contraction event within an ancestral HLA-DRB5 carrying DR2-like
haplotype153, high-resolution repeat mapping suggested that DR1 is most likely derived from
a recombination event between DR2 and DR4/7/9. DR1 can be split into two segments (Fig.
4d), the 5′ segment of which exhibits the highest degree of repeat architecture similarity to
the 5′ region of the HLA-DRB4-carrying haplotype groups (DR4/7/9), and the 3′ segment of
which shows the highest degree of similarity to a region found in DR2. Breakpoint analysis
identified homologous LINE/L1 elements at the putative breakpoints in DR1, DR/4/7/9 (L1
located between HLA-DRB9 and HLA-DRB4 within DR4/7/9), and DR2 (L1 located between
HLA-DRB5 and HLA-DRB6) (Supplementary Fig. 42).
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Solitary HLA-DRB exon sequences have been hypothesized to represent remnants of
ancestral nonhomologous recombination events, possibly mediated by the presence of
LINE1 and Alu in HLA-DRB intron 1 sequences154,155; in previous analyses of incompletely
resolved MHC haplotypes, they were found in the 3′ region of HLA-DRB9154. Based on the
set of completely resolved HGSVC haplotypes, we created a comprehensive catalog of the
locations of HLA-DRB intron and exon sequences across DR groups (Fig. 4b). For the
region around HLA-DRB9, we refined previously available estimates of the copy number of
solitary intron and exon sequences, e.g., observing a copy number of 3 instead of 1 for
solitary HLA-DRB exon 1 sequences in the HLA-DRB9 region of DR1. Solitary exon 1 (DR1
group haplotypes) and intron 1 (for all DR groups but DR8) sequences were also found
approximately 10 kbp 3′ of HLA-DRB1, i.e., at a locus not previously associated with the
presence of solitary intron or exons (Fig. 4b). Furthermore, the presence of solitary exon 1
sequence in the HLA-DRB1 region of DR1 and in the DRB9 region of DR3, DR5, DR6, and
DR8, was variable even within haplotypes of the same DR group (Fig. 4b); the underlying
two structural variants (corresponding to the solitary exon-polymorphism in the DRB1 and
DRB9 regions, respectively) were identified during the structural analysis of MHC haplotypes
(see paragraph “We next carried out in-depth analyses [...]” above) and carried HLA-DRB
intron 1 and exon 1 sequences as well as repeat elements (Supplementary Fig. 65).

Last, we asked whether the established DR group nomenclature could be recapitulated
using unbiased and data-driven analysis. To this end, we analyzed a subset of the HGSVC3
MHC haplotypes (n=55) as well as T2T-CHM1323 using PGR-TK, a pangenomic multiscale
analysis method156 (Fig. 4e). We examined conserved blocks in 111 haplotypes (110 HGSVC
haplotypes + CHM13) greater than 6 kbp, identified by PGR-TK. Multiscale hierarchical
clustering of the haplotypes perfectly recovered the traditional DR group system in the region
around HLA-DRB1 (Fig. 4e); at the same time, the identified additional diversified subgroups
could serve as the basis for a more fine-grained future classification of HLA-DR haplotypes
or be used in the context of genome-wide association studies.

RCCX
The RCCX region in the class III region of the MHC is characterized by a modular pattern of
copy number variation. Each module encodes one copy of the Complement component 4
(C4) gene (“C”) as well as one functional or nonfunctional/degenerate copy of
Serine/threonine kinase 19 (“R”), Steroid 21-hydroxylase (“C”), and Tenascin XB protein
(“X”), referred to as STK19, CYP21A2, and TNXB (functional forms) and STK19B,
CYP21A1P, and TNXA (pseudogene / degenerate forms), respectively.

RCCX varies in module copy number, commonly ranging from 1-3 modules per haplotype,
although rare four module haplotypes have been observed previously157,158. Duplications and
deletions of RCCX modules as discrete genetic units are commonly observed as the region
is prone to NAHR158–160. Typically, when the RCCX is present as a mono-module, all four
genes within the unit are functional, barring any mutation/recombination. However, when the
RCCX contains multiple units (bi/tri-module), C4 is the sole gene that retains its functional
capacity across all discrete RCCX modules, while the additional copies of the other three
genes (STK19, CYP21A2, and TNXB) often are present as nonfunctional pseudogenes
(STK19B, CYP21A1P, and TNXA)
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The C4 gene is composed of 41 exons that together encode for an inactive 1744 amino acid
long gylcoprotein. This inactive form contains three polypeptide chains (alpha, beta, and
gamma) and becomes activated through enzymatic cleavage. The C4 gene exists in four
allelic variants, distinguished by four amino acid residues in exon 26 (positions p1120-1125,
C4 alpha chain), referred to as “A” (PCPVLD) and “B” (LSPVIH) variants of C4 161,162 as well
as by the presence or absence of a ~6.36 kbp human endogenous retrovirus (HERV)
insertion within intron 9, referred to as “short” (S) and “long” (L) versions of C4.

For RCCX, we carried out a comprehensive investigation of the region’s modular structure of
genetic variation (Supplementary Fig. 43). RCCX haplotypes consist of 1 - 4 RCCX
modules157,163,164, each module typically encoding one functional variant of the C4 gene
(C4AS, C4AL, C4BS, C4BL) and three additional genes in their functional (STK19,
CYP21A2, and TNXB) or pseudogenic (STK19B, CYP21A1P, and TNXA) forms
(Supplementary Fig. 43); determining the phase and relative order of variants in the region
from short-read sequencing or other molecular typing techniques157,165 is challenging due to
extensive sequence homologies. Consistent with prior reports159,166, RCCX bi-modules were,
at 74.6% (n=97), observed most frequently in the HGSVC3 MHC haplotypes, followed by
13.1% (n=17) for mono-modules and 12.3% (n=16) for tri-modules (Supplemental Fig. 43).
We were able to detect and completely resolve rare RCCX haplotype configurations and
characterize likely gene conversion events, which play an important role in RCCX
evolution160,167,168. For example, we observed two sample haplotypes with tri-modular RCCX
structures containing two functional CYP21A2 copies, likely generated by gene conversion
turning the CYP21A1P pseudogene into its functional counterpart; one mono-modular and
one bi-modular haplotype with no functional CYP21A2 genes; and one tri-modular haplotype
exhibiting the unique configuration of C4B preceding C4A and carrying two copies of
CYP21A2, one of which was nonfunctional (Fig. 4d). The latter haplotype was likely
generated by the introduction of one nonsense mutation and two gene conversion events,
turning CYP21A1P into CYP21A2 and C4A into a C4B that unusually encoded the Rodgers
(Rg) blood group epitope. An in-depth analysis of C4 copy numbers (Supplementary Fig.
44) and allelic states (Methods) revealed seven novel amino acid variants, four residing
within the beta-chain (283R->C, 530S->L, 566A->G, 614K->Q), and three within the
gamma-chain (1477K->N, 1722R->C, 1724R->W) (Supplementary Fig. 45). In addition to
providing a more complete catalog of allelic variation, our results thus provide the basis for
assessing the differential effects of allelic, copy number and structural variation in
RCCX-associated autoimmune phenotypes169.

C4 copy number analysis
Of a total of 259 C4 copies, 53.3% (n=138) were identified as C4A and 46.7% (n=121) as
C4B. Most individuals (56.9%) harbored four C4 gene copies, ranging from a minimum of
two C4 copies (15.4%) per individual to a maximum of six C4 copies (3.1%); C4A gene
copies ranged from 1-3 copies and C4B from 0-4 copies per genome. Most genomes
contained at least two C4A (72.3%) copies, and/or two copies of C4B (61.5%).

Most (66.4%, n=172) C4 copies were seen in the long form, C4L, and ranged from 1-5
copies within a genome; while the short form C4S constituted 33.7% (n=87) of all C4 copies
and ranged from 0-3 copies within a genome. Interestingly, an absence of the short C4 form,
C4S, was more common in non-African samples as we identified only one African sample
(HG02769) containing zero C4S, consistent with165.
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Manual curation of HG00514.hap2
STK19 and TNXB were found to be present and functional within all assemblies except
HG00514.hap2. This sample haplotype contained a nonsense mutation within TNXB caused
by an indel. Analysis of the parents showed functional TNXB gene copies in all four
assembled haplotypes. Further inspection of the sequence revealed that the indel occurred
within a homopolymeric stretch, a region where long-read PacBio sequencing may have a
reduce accuracy170–173. The combination of indel in homopolymeric sequence combined with
intact genes in both parents suggests that this variant may be more likely the result of a
sequencing artifact; TNXB was therefore treated as functional in this haplotype.

Complex structural polymorphisms
Contributing authors: Peter A. Audano, Christine R. Beck, Evan E. Eichler, Miriam K. Konkel,
Charles Lee, Mark Loftus, David Porubsky, Feyza Yilmaz

Methods

Complex Variant Discovery
Complex variants (CSVs) were identified with a development version of PAV174 (Methods).
Briefly, the method uses assemblies trimmed in query space, identifies candidate variant
anchor pairs, and scores variants between each candidate anchor pair. A graph is
constructed where nodes are scored alignment records (positive values) and edges are
scored variant calls (negative values) between alignment records. The score from root to a
node is the sum of all alignment record scores and variant scores along the path. Because
PAV traces through increasing assembly coordinates without overlaps due to alignment
trimming, the graph is a directed acyclic graph (DAG), and the optimal path through the
graph can be found in O(N + E) time with the Bellman-Ford algorithm175 where N is the
number of nodes and E is the number of edges. Variants on the optimal path are accepted
into the callset. For each variant call, PAV computes the reference context (i.e., DEL, DUP,
INV, etc) and the query context (template switches, templated insertions, and untemplated
insertions), which are summarized in the manuscript.

Similar to the main callset, CSVs intersecting centromeric repeats were eliminated. Complex
variants were merged into a nonredundant callset with SV-Pop by 50% reciprocal-overlap
and 80% sequence identity (SV-Pop merge parameter “nr::ro(0.5):match(0.8)”).

SMN analysis
We start by extracting the FASTA sequence across all phased genome assemblies from this
study as well as from previously published studies (HPRC and T2T-primate). For this we
aligned each assembly to the reference genome T2T-CHM13 using minimap224 (v2.24).
Then we use rustybam (v0.1.33, 10.5281/zenodo.8106233) ‘liftover’ function to subset
alignments in PAF format to a desired region (chr5:70300000-72100000). Then we used
query coordinates in each subsetted PAF file to extract the query FASTA sequence from
each assembly. Next, in order to evaluate the copy number of each multicopy gene
(SMN1/2, SERF1A/B and GTF2H2/C), we extract the sequence of each gene from
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T2T-CHM13 based on the available gene annotation
(https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=T2T/CHM13/
assemblies/annotation/chm13v2.0_RefSeq_Liftoff_v5.1.gff3.gz). Then, we align the full gene
sequence as well as exonic sequence only to each of the extracted FASTA files. Next we on
each FASTA we run DupMasker176 (v4.1.2-p1) annotation to define ancestral duplicons in
each sequence for visualization purposes.

To assign a specific SMN copy to each haplotype, we extracted FASTA sequence from SMN
exon regions for each haplotype (n=101) and concatenated them into a single sequence. We
constructed multiple sequence alignment using the R package DECIPHER177 (v2.28.0). We
then calculated the distance among all haplotypes and constructed an UPGMA tree using R
package ape178 (v5.7-1) and phangorn179 (v2.11.1). We set the orangutan sequence as an
outgroup. Finally, we split all human haplotypes into two groups representing SMN1 and
SMN2 gene copies.

Additionally, we constructed a custom RepeatMasker56 (v4.1.2) library containing the
canonical exon sequences of GTF2H2 (ENSG00000145736.15), NAIP
(ENSG00000249437.8), SERF1A (ENSG00000172058.16), and SMN1
(ENSG00000172062.17). Exon sequences were sourced from the Ensembl genome
browser81 (release 111). Utilizing RepeatMasker and this custom library, we identified all low
divergence (<5%) gene exon hits within our sample haplotype assemblies. Exon sequences
were retrieved using SAMtools45 (v1.15.1), then stitched together to form the full gene exonic
sequence. SMN gene copies were manually curated as either SMN1 or SMN2 based on
carriage of either the C or T nucleotide in exon 7.

Finally, we utilized Illumina short read data from the 1000 Genomes Project for the same
individuals, and processed it with Parascopy180 (v1.16.0) and SMNCopyNumberCaller181

(v1.1.2) to independently obtain SMN1/2 copy numbers. Illumina-based and assembly-based
copy number predictions matched perfectly across all 31 examined individuals.

Amylase haplotype detection using Verkko and optical genome mapping
assemblies
We characterized the amylase locus, a ~212.5 kbp region on chromosome 1 (GRCh38;
chr1:103,554,220–103,766,732), in 65 samples (Supplementary Tables 3,57). To resolve
haplotype structures at this locus, we compared Verkko and optical genome mapping (OGM)
datasets, as described previously182,183. Fragmented OGM assemblies (HG00268, HG01596,
HG02011, HG02018, HG03456, and NA19983) were reprocessed using a local de novo
assembly approach. The step-by-step process of this approach involves: 1-collecting
unaligned molecules and molecules which aligned to amylase locus; 2-running de novo
assembly using the molecules from step 1 and aligning the assembly to GRCh38p.12:

python2.7 Solve3.5.1_01142020/Pipeline/1.0/pipelineCL.py -T 64 -U
-j 64 -jp 64 -N 6 -f 0.25 -i 5 -w -c 3 \

-y \

-b ${bionano_bnx} \

-l ${output_dir} \

-t Solve3.5.1_01142020/RefAligner/1.0/ \
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-a
Solve3.5.1_01142020/RefAligner/1.0/optArguments_haplotype_DLE1_sap
hyr_human.xml \

-r ${reference_genome}

To compare the Verkko amylase locus haplotype structures to OGM,
we first converted fasta files of Verkko assemblies to in silico
maps using fa2cmap_multi_color.pl (Bionano SolveTM v3.5.1). The
resulting in silico maps and de novo assemblies of OGMs were
aligned to the GRCh38p.12 reference assembly in silico map using
the refAligner tool (Bionano SolveTM v3.5.1).

Solve3.5.1_01142020/RefAligner/1.0/RefAligner

-ref ${referenceFile} \ -maxthreads ${threads} \

-i ${inputfile} \

-o ${outputdir}EXP_REFINEFINAL1

Next, OGM contigs that aligned to amylase locus were pairwise aligned to Verkko contigs
using the same alignment tool, refAligner [Bionano SolveTM (v3.5.1)]. Pairwise alignment was
performed between Verkko hap1 and hap2, and OGM hap1 and hap2 contigs using
refAligner alignment results. This process generated two separate alignment files for each
sample. The variant files and alignment confidence scores produced by these alignments
were used to determine which Verkko haplotype matched with which OGM contig. Matching
pairs were validated by visual inspection using the Bionano Access™ software. Amylase
haplotypes were characterized from these visualizations using amylase segments and in
silico map labeling patterns as a guide. The amylase segments were determined as
described previously183,184. Segments depicted by colored arrows were determined based on
the labeling pattern from the Bionano Genomics optical genome mapping data and the
sequence similarity between segments using blastn (BLASTN v2.9.0+)185. First, using optical
genome mapping in silico map labeling patterns of GRCh38p.12 reference assembly,
amylase segments were identified using pairwise alignments between smaller duplicons
within segmental duplications. Then, to obtain accurate coordinates of segments, the
GRCh38p.12 fasta sequence of the locus was aligned against itself using blastn (BLASTN
2.9.0+). The alignments with less than 99% sequence similarity and 60% coverage were
filtered out and coordinates of all reference segments were finalized. We identified one copy
of AMY2B (purple; 45.7 kbp), two copies of Intergenic1 (green; 5.3 kbp), one copy of
AMY2A.1 (red; 12.4 kbp), two copies of AMY2A.2 (orange; 14.1 kbp), three copies of
Intergenic2 (maroon; 4.3 kbp), and three copies of AMY1 (pink; 26.3 kbp) segments within
the GRCh38p.12 amylase locus. Next, the GRCh38p.12 segment sequences were used as
a guide to detect amylase segments from each sample included in this study using blastn.
Same sequence similarity (> 99%) and coverage thresholds (> 60%) were used to obtain the
amylase segment coordinates from each sample. Finally, all amylase haplotypes were
visualized using pygenomeviz (https://github.com/moshi4/pyGenomeViz) to confirm
haplotype structures and haplotypes were clustered using pgr-tk156 (v0.5.1).
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Results
There are ~60 genomic disorders associated with neurodevelopmental delay, autism,
epilepsy and intellectual disability where recurrent CNVs are associated with large complex
regions of segmental duplications. The organization and orientation of the SDs is a critical
risk factor in predisposing to NAHR that predispose and/or protect from CNV risk13,186–188.
These SD rich regions have also been a hotspot for nonallelic gene conversion that plays an
important role in evolution of many multi-copy genes189. Here, we focus on a biomedically
relevant and structurally complex region containing SMN1 and SMN2 gene copies. SMN1 is
the primary gene associated with spinal muscular atrophy (SMA) and its duplicated copy,
SMN2, which modifies SMA severity and is a target of one of the most successful
ASO-mediated gene therapies. The genes are embedded in a very large SD region (~1.5
Mbp) that has been almost impossible to fully sequence and assemble over the last two
decades4,28,38,190 (Supplementary Fig. 46). In addition to recently released HPRC
assemblies, we were able to fully assemble the SMN1/2 region in approximately two-thirds
of the haplotypes in this study, providing us a unique opportunity to investigate the structural
complexity of this region (Fig. 5b). We characterized this combined set of 101 complete
human assemblies of this region that allows us to map copy number (full or partial gene
alignments) of SMN1/2 genes and detailed structure of this region. Focusing on multi-copy
genes SMN1/2, SERF1A/B and GTF2H2/C we find that about half (n=48) of all haplotypes
carry exactly two copies (aligned to two distinct regions in a single haplotype) of each of
these genes. On the other hand NAIP gene is present mostly in a single copy (gene
alignment per haplotype). (Fig. 5c). We highlight 11 human haplotypes including orangutan
that carry distinct gene copy numbers and are organized into structurally diverse duplicon
structures composed of multiple palindromic regions (Fig. 5d). We further defined functional
SMN1 copy and duplicated SMN2 copy in each haplotype using orangutan ancestral SMN1
copy as an outgroup (Supplementary Fig. 47). For samples where both haplotypes are fully
assembled (n=31) we report 100% concordance with the short-read based genotyping
methods (Supplementary Fig. 48). We have assigned 98 haplotypes to carry ancestral
SMN1 copy and 3 haplotypes that do not (Fig. 5e, Supplementary Fig. 49). We speculated
that such haplotypes are likely to occur via gene conversion. Evaluation of an extent of
directly oriented and highly identical repeats we define 2 haplotypes that are likely
predisposed to CNVs via NAHR.

The amylase locus in the human genome spans approximately 212.5 kilobase pairs (kbp)
and is located on chromosome 1 (GRCh38; chr1:103,554,220–103,766,732). This locus
contains the AMY2B, AMY2A, AMY1A, AMY1B, and AMY1C genes (Supplementary Fig.
50). We constructed haplotype-resolved diploid assemblies for 65 individuals, resulting in a
total of 130 sampled alleles (haploid sample size; Supplementary Table 57). By analyzing
copy number and orientation of the amylase segments, we identified 35 distinct amylase
haplotypes (Supplementary Fig. 50, Supplementary Table 57). These haplotypes were
supported by both Verkko and optical genome mapping de novo assemblies. To classify
these haplotypes, we adhered to the established nomenclature184. The notation HXAYBZ
represents the copy number of AMY1, AMY2A, and AMY2B genes, respectively, with
superscript “a'' indicating ancestral and superscript “r” indicating reference haplotypes
(Supplementary Fig. 50). Notably, this study described the largest number of base-pair
resolution amylase haplotypes described to date. The length of these amylase haplotypes
varies, ranging from 111 kbp (H1a.1 and H1a.2) to 582 kbp (H11.1) (Supplementary Fig. 50),
capturing those that are structurally identical to the GRCh38 (H3r.1) and the T2T-chm13
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(H7.3) assemblies. Among the identified haplotypes, four common ones, H1a.1 (n = 14),
H3r.1 (n = 13), H3r.2 (n = 19), and H3r.4 (n = 22), constitute approximately 57% of all
amylase haplotypes. Notably, 23 out of 35 distinct amylase haplotypes are singletons.
Furthermore, this study provides base-pair level resolution for nine haplotypes that were
previously supported only by optical genome mapping data. Finally, we introduce a novel
haplotype, H11. 1, which also has base-pair level resolution.

Centromeres
Contributing authors: Evan E. Eichler, Miriam K. Konkel, Mark Loftus, Glennis A. Logsdon,
Keisuke K. Oshima

Methods

Centromere identification and annotation
To identify the centromeric regions within each Verkko and hifiasm genome assembly, we
first aligned the whole-genome assemblies to the T2T-CHM13 (v2.0) reference genome23

using minimap224 (v2.24) with the following parameters: -ax asm20 --secondary=no -s 25000
-K 15G --eqx --cs. We filtered the alignments to only those contigs that traversed each
human centromere, from the p- to the q-arm, using BEDTools intersect (v2.29.0)54. Then, we
ran dna-brnn (v0.1; https://pubmed.ncbi.nlm.nih.gov/30989183/) on each centromeric contig
to identify regions containing α-satellite sequences, as indicated by a “2”. Once we had
identified the regions containing α-satellite sequences, we ran RepeatMasker56 (v4.1.0) to
identify all repeat elements and their organization within the centromeric region, and we also
ran Hum-AS-HMMER (https://github.com/fedorrik/HumAS-HMMER_for_AnVIL) to identify
α-satellite higher-order repeat (HOR) sequence composition and their organization. We used
the resulting RepeatMasker and HumAS-AMMER stv_row.bed file to visualize the
organization of the α-satellite HOR arrays with R191 (v1.1.383) and the ggplot2 package192.

Validation of centromeric regions
We validated the construction of each centromeric region by first aligning native PacBio HiFi
and ONT data from the same genome to each relevant whole-genome assembly using
pbmm2 (v1.1.0; https://github.com/PacificBiosciences/pbmm2; for PacBio HiFi data) or
minimap224 (v2.28; for ONT data). We, then, assessed the assemblies for uniform read
depth across the centromeric regions via IGV95 and NucFreq27. Centromeres that were found
to have a collapse in sequence, false duplication of sequence, and/or misjoin were flagged
and removed from our analysis.

Estimation of α-satellite HOR array length
To estimate the length of the α-satellite HOR arrays for each human centromere, we first ran
Hum-AS-HMMER (https://github.com/fedorrik/HumAS-HMMER_for_AnVIL) on the
centromeric regions using the hmmer-run.sh script and the
AS-HORs-hmmer3.0-170921.hmmHidden Markov Model. Then, we used the stv_row.bed
file to calculate the length of the α-satellite HOR arrays by taking the minimum and maximum
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coordinate of the “live” α-satellite HOR arrays, marked by an “L”, and plotting their lengths
with Graphpad Prism (v9).

Pairwise sequence identity heatmaps
To generate pairwise sequence identity heatmaps of each centromeric region, we ran
StainedGlass193 (v6.7.0) with the following parameters: window=5000, mm_f=30000, and
mm_s=1000. We normalized the color scale across the StainedGlass plots by binning the %
sequence identities equally and recoloring the data points according to the binning.

CpG methylation analysis
To determine the CpG methylation status of each centromere, we aligned ONT reads >30
kbp in length from the same source genome to the relevant whole-genome assembly via
minimap224 (v2.28) and then assessed the CpG methylation status of the centromeric
regions with Epi2me modbam2bed (https://github.com/epi2me-labs/modbam2bed; v0.10.0)
and the following parameters: -e -m 5mC --cpg. We converted the resulting BED file to a
bigWig using the bedGraphToBigWig tool
(https://www.encodeproject.org/software/bedgraphtobigwig/) and then visualized the file in
IGV. To determine the length of the hypomethylated region (termed “centromere dip region”,
or CDR194,195 in each centromere, we used CDR-Finder
(https://github.com/EichlerLab/CDR-Finder_smk). This tool first bins the assembly into 5 kbp
windows, computes the median CpG methylation frequency within windows containing
α-satellite (as determined by RepeatMasker56 (v4.1.0), selects bins that have a lower CpG
methylation frequency than the median frequency in the region, merges consecutive bins
into a larger bin, filters for merged bins that are >50 kbp, and reports the location of these
bins.

64

https://paperpile.com/c/ELVyBO/B8Wp
https://paperpile.com/c/ELVyBO/NaTd
https://paperpile.com/c/ELVyBO/6km4+erQL
https://github.com/EichlerLab/CDR-Finder_smk
https://paperpile.com/c/ELVyBO/q2NQ


Supplementary Figures

Fig. 1

Supplementary Figure 1. Closed HPRC gaps. Bar chart depicting the percentage of
closed HPRC gaps (vertical axis) 38 at increasingly stringent thresholds for the percentage of
haploid assemblies closing the gap (horizontal axis). Highlights are shown for gaps that are
never closed (red bar, n=5, ~0.8%), for gaps that are closed in more than 50% of all haploid
assemblies (left blue bar, n=543, ~91.7%) and for gaps that are closed in at least 75% of all
haploid assemblies (right blue bar, n=504, ~85.1%). For this summary, the error rate of the
contigs closing the gap was set to less than 1% (“err < 1%”).
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Fig. 2

Supplementary Figure 2. Size distribution of HPRC gaps. Boxplots of gap lengths
(vertical axis, log10) stratified by chromosome (horizontal axis) and status [closed (blue)
and, if applicable, open (purple)] of previously reported HPRC gaps38. In this summary, gaps
were counted as “closed” at an error rate of <1% (Methods) if they were labeled as closed in
more than 50% of all haploid assemblies and “open” otherwise. Boxplot whiskers depict
1.5*(interquartile range); outliers beyond that range appear as gray points; the horizontal line
indicates the median.
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Fig. 3

Supplementary Figure 3. Verkko assemblies quality evaluation with HiFi raw reads.
Boxplot representation of each evaluated parameters for 65 samples with two haplotypes
from Verkko assembler. Evaluation was performed using Inspector v1.237 with HiFi raw
reads. Results were grouped in superpopulation. The boxplot whiskers depict 1.5*
interquartile reange, outliers beyond that range appear as grey circles; the horizontal line
indicates the median.
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Fig. 4

Supplementary Figure 4. Verkko assemblies quality evaluation with ONT raw reads.
Boxplot representation of each evaluated parameters for 65 samples with two haplotypes
from Verkko assembler. Evaluation was performed using Inspector v1.237 with ONT raw
reads. Results were grouped in superpopulation. The boxplot whiskers depict 1.5*
interquartile reange, outliers beyond that range appear as grey circles; the horizontal line
indicates the median.
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Fig. 5

Supplementary Figure 5. HiFi read coverage dropout over Chromosome X in
sample HG00732. Summary of mean HiFi read fold coverage stratified by
sequencing batch/year (horizontal axis) over main reference chromosomes
(acrocentric chromosomes and chromosome Y excluded). The mean read depth for
chromosome X is highlighted as single red “x” per batch/year. The relative difference
of the X-chromosomal read depth compared to all other chromosomes is stated in
the legend. SQ-II: PacBio Sequel-II platform; RV: PacBio Revio platform.
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Fig. 6

Supplementary Figure 6. Hifiasm assemblies quality evaluation with HiFi raw reads.
Boxplot representation of each evaluated parameters for 65 samples with two haplotypes
from Hifiasm assembler. Evaluation was performed using Inspector v1.2 37 with HiFi raw
reads. Results were grouped in superpopulation. The boxplot whiskers depict 1.5*
interquartile reange, outliers beyond that range appear as grey circles; the horizontal line
indicates the median.
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Fig. 7

Supplementary Figure 7. Hifiasm assemblies quality evaluation with ONT raw reads.
Boxplot representation of each evaluated parameters for 65 samples with two haplotypes
from Hifiasm assembler. Evaluation was performed using Inspector v1.2 37 with ONT raw
reads. The boxplot whiskers depict 1.5* interquartile reange, outliers beyond that range
appear as grey circles; the horizontal line indicates the median.
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Fig. 8

Supplementary Figure 8. T2T-CHM13 MEI Merged Callset. a) An upset plot showing the
intersection of mobile element insertion (MEI) calls across the two individual MEI callsets
built against the T2T-CHM13 reference genome. Most (90.6%) of the 13,216 MEIs were
identified by both callers (PALMER2 and L1ME-AID). b) A bar graph displaying the total Alu,
L1, SVA, HERV-K, and snRNA insertion calls within the merged callset. c) Three histograms
displaying the length distribution of Alu elements (yellow), L1s (blue), and SVAs (red) within
the merged callset.
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Fig. 9

Supplementary Figure 9. GRCh38 MEI Merged Callset. a) An upset plot showing the
intersection of mobile element insertion (MEI) calls across the two individual MEI callsets
built against the GRCh38 reference genome. Most (91.8%) of the 13,001 MEIs were
identified by both callers (PALMER2 and L1ME-AID). b) A bar graph displaying the total Alu,
L1, SVA, HERV-K, and snRNA insertion calls within the merged callset. c) Three histograms
displaying the length distribution of Alu elements (yellow), L1s (blue), and SVAs (red) within
the merged callset.
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Fig. 10

Supplementary Figure 10. Sample Mobile Element Insertion Counts. Two heatmaps
(GRCh38 (left) and T2T-CHM13 (right)) showing the total unique sample-specific and
reference-specific mobile element insertions per sample. Both heatmaps show samples from
African descent containing a greater total number of sample-specific MEIs.
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Fig. 11

Supplementary Figure 11. Inversion Dotplot Analysis. Representative dot plots
illustrating the categorization of inversions in different inversion classes in our dataset. The
y-axis represents the specified genomic location in one of the inversion carrier samples,
while the x-axis represents the corresponding region in the CHM13 reference genome. Each
candidate inversion locus was manually examined through dot plot analysis, facilitating the
validation of candidate inversion locations and their classification into one of the five distinct
categories showcased in the graph.
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Fig. 12

Supplementary Figure 12. Inversion Classes. The bar plot represents the count of
instances for each inversion class identified in the manual dotplot analysis.
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Fig. 13

Supplementary Figure 13. Comparison of segmental duplication content to the HPRC
draft genomes. Total SD content is compared across this study (HGSVC3) and the HPRC
draft genomes28 (HPRC). Three horizontal lines in the violin indicate the first quartile, median
and the third quartile. Significance shown on the top indicates two-tailed Wilcox ranked sum
test.

Fig. 14

Supplementary Figure 14. Inter- and intra-SD content. Distribution pairwise identity
among inter/intra-chromosomal segmental duplication pairs in the HGSVC genomes (n=126
haplotypes).
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Fig. 15

Supplementary Figure 15. Non-redundant SD content. Nonredundant bases of
inter/intra-chromosomal segmental duplications and those that overlap with flagged regions
via Flagger/NucFreq.

Fig. 16

Supplementary Figure 16. African vs. non-African SD content.
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Fig. 17

Supplementary Figure 17. Proportion of segmental duplications successfully
projected onto T2T space.
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FIg. 18

Supplementary Figure 18. New SD content. New segmental duplication content of
HGSVC3 genomes compared to the segmental duplications of 170 haplotypes 71. In the
respective plots, the left shows SDs with content changes, expansion, and whether they are
new (based on location/synteny), while flagging those that are singleton. On the right
quantifies the number of complete (100% coverage), and partial overlaps (>50% coverage)
with protein-coding genes.
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Fig. 19

Supplemental Figure 19. Top 50 CNV genes. A comparison of the top-50 CNV genes in
the HGSVC3 (violet) and HPRC (green) assemblies. (top-left) CNV genes with equal
average copy number in HGSVC3 as CHM13. (top-right) CNV genes with greater average
copy number in HGSVC3 versus CHM31. (bottom) Genes with lower average copy number
than CHM13.
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Fig. 20

Supplemental Figure 20. CNV gene contiguity. Contiguity analysis of CNV genes in
HGSVC3 and HPRC assemblies. Each point reflects a gene that is duplicated in both
assemblies. The x and y coordinates reflect the closest distance to an assembly break
defined by the end of a contig or an unassigned base (“N”). Points above the diagonal reflect
greater contiguity in HGSVC3 assemblies.
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Fig. 21

Supplementary Figure 21. Phylogenetic relationships of 32 Y chromosomes. Split
times as estimated according to the BEAST analysis are shown with 95% HPD interval in
brackets. Sample ID is followed by population designation, full Y haplogroup label according
to ISOGG v15.73 and terminal marker ID. Population abbreviations: ACB - African
Caribbean in Barbados; ASW - African Ancestry in SW USA; BEB - Bengali in Bangladesh;
CHB - Han Chinese in Beijing, China; CHS - Han Chinese South; CLM - Colombian in
Medellín, Colombia; ESN - Esan in Nigeria; FIN - Finnish in Finland; GBR - British From
England and Scotland; GWD - Gambian in Western Division – Mandinka; IBS - Iberian
Populations in Spain; ITU - Indian Telugu in the U.K.; JPT - Japanese in Tokyo, Japan; KHV
- Kinh in Ho Chi Minh City, Vietnam; LWK - Luhya in Webuye, Kenya; MSL - Mende in Sierra
Leone; MXL - Mexican Ancestry in Los Angeles CA USA; PEL - Peruvian in Lima Peru; PJL
- Punjabi in Lahore, Pakistan; PUR - Puerto Rican in Puerto Rico; TSI - Toscani in Italia; YRI
- Yoruba in Ibadan, Nigeria. Four novel contiguously assembled Y chromosomes (note -
HG03456 has an assembly break in pseudoautosomal region 1) are shown in bold italics
and previously reported contiguous Y chromosomes8,39 in bold.
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Fig. 22

Supplementary Figure 22. Assembly contiguity of the Y chromosomes. a. Human Y
chromosome structure based on the GRCh38 reference sequence. b. Dated Y phylogeny
(left) and assembly completeness of Y-chromosomal subregions comparing Verkko and
hifiasm (right). The color of sample ID corresponds to superpopulation designation (Fig. 1a).
A Y-chromosomal subregion was considered to be contiguous if it was assembled
contiguously from the subclass on the left to the subclass on the right. PAR1 and PAR2
regions were considered contiguously assembled if they contained the telomeric repeat
sequence. kya - thousand years ago. c. The proportion of contiguously assembled Y
subregions across 30 males comparing Verkko and hifiasm. See panel a for subregion
labels.
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Fig. 23
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Supplementary Figure 23. Pairwise comparison of the eight contiguously assembled
Y chromosomes. Four novel contiguous Y assemblies, representing E1b1a, R2a and
R1b1a Y lineages (three assembled telomere-to-telomere and one, HG03456, with a break
in PAR1 region) are underlined. Six chrY assemblies were generated here using Verkko
(v1.4.1) and two (T2T Y and HG00358) were included from 8,39.
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Fig. 24

Supplementary Figure 24. Yq12 heterochromatic region. a) Repeat composition of the
contiguously assembled Yq12 heterochromatic regions across 16 samples. Distribution of
the four reported8 Alu insertions across the Yq12 (labeled A1-A4) are shown as filled
triangles. Based on their phylogenetic distribution, the insertion of Alu elements A1 and A2
occurred prior to the split of studied Y chromosomes, while A3 insertion is present only in the
A0b lineage and A4 shared occurred in the common ancestor of Q and R lineages. Samples
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included were assembled using Verkko (this study, n=9), hifiasm (this study, n=4, indicated
by an asterisk). Yq12 sequences for two samples (indicated by double asterisks) were
included from Ref. 8 and the T2T Y chromosome sequence from Ref. 39. Novel, previously
unpublished Yq12 sequences (n=9) are shown in bold text. The total length of the Yq12
region is indicated on the right. ka, thousand years ago. b) Dotplots of the Yq12 regions of
two closely related chrY pairs (haplogroup E1b1a: HG02011 and HG03456 and R1b1a:
HG00731 and NA19650) using window size = 5,000 bp and showing evidence of two (left)
and one (right) large insertion/deletion events.
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Fig. 25

Supplementary Figure 25. Differential expression analysis. a,b) Volcano plots of
differentially expressed genes with (a) insertions and (b) deletions located <50 kbp from the
gene TSS without overlapping the gene. Differential expression was calculated by
comparing groups of 2-10 individuals who carried the SV vs. the remainder of individuals
without the SV. The x-axis is the log2-fold-change of read counts, and the y-axis is –log10

p-values (adjusted with Benjamini-Hochberg correction). The significant expression
increases and decreases are defined as points with adjusted p-value < 0.05 and
log2-fold-change > 0.5 or < -0.5. The numbers indicate counts of SV-gene pairs considered
significant. c,d) Volcano plots of outlier expression genes with (c) insertions and (d) deletions
located <50 kbp from the gene TSS without overlapping the gene. Outlier expression was
calculated by comparing individual samples with or without an SV vs. the remaining 11
samples, with P-values derived from Z-scores (see Methods section “Differential gene
expression and outliers” above). e) Enrichment of proportions of genes with differential
expression occurring near SVs per genomic distance, compared with the proportion of genes
near SVs averaged across 1000 permutation tests. The decreasing trend indicates that SVs
closer to TSSs are more likely to affect expression.
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Fig. 26

Supplementary Figure 26. SV intersects with functional elements. a) Number of
intergenic and overlapping SVs. Over 40% of SVs in the human genome were intergenic,
indicating that these SVs did not overlap with annotated protein-coding genes, long
noncoding RNAs (lncRNAs), or pseudogenes (including processed, unprocessed, and
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unitary types). For the SVs that did overlap with genes, we categorized the genes into
different biotypes based on GENCODE v45 annotations. Insertions outnumbered deletions
across all gene biotypes, except for processed pseudogenes. b) Normalized counts of
deletions and insertions. The X-axis represents the number of deletions, while the Y-axis
represents the number of insertions. Number of SV overlaps were counted per gene and per
genomic element, and we normalized the counts by dividing them by the length of the
genomic elements for a given gene and multiplying by a scaling factor of 1,000. Overall,
pseudogenes tended to have more deletions within both exons and introns, while
protein-coding genes exhibited a balance between insertions and deletions within coding
sequences (CDSs), exons, and introns. c) Proportion of different genomic elements affected
by SVs. At the transcript level, we calculated the overlapping length of SVs per genomic or
transcript element (i.e., intron or exon). The proportion was defined by dividing the
overlapping length by the total length in the genome. As expected, a higher proportion was
consistently observed for both insertions and deletions within introns compared to exons
across different transcript biotypes. Notably, protein-coding transcripts exhibited a
significantly reduced proportion for insertions and deletions within CDSs, exons, start
codons, stop codons, and untranslated regions (UTRs) compared to introns.
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Fig. 27

Supplementary Figure 27. Overview of the graph constructing, genotyping and
phasing pipelines. Step 1: graph construction. A pangenome graph is constructed from
haplotype-resolved assemblies of 107 samples (65 HGSVC3, 42 HPRC). A VCF
representation of the bubbles with phased genotypes for all assembly samples is generated.
Step 2: genotyping. The bubbles are genotyped across all 3,202 1kGP samples with
PanGenie using the panel VCF generated in step 1 as input, as well as Illumina reads for all
samples. Bubbles are decomposed into variant alleles and bubble genotypes are translated
to variant genotypes. Finally, genotypes are filtered using a machine-learning approach.
Step 3: phasing. The filtered genotypes are combined with additional rare variant calls
produced from short reads across all 3,202 samples and the combined set is phased with
SHAPEIT5. Based on the resulting phased genotypes, consensus haplotypes are generated
for all 3,202 samples by implanting variants located on each haplotype into the reference
genome.
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Fig. 28

Supplementary Figure 28. PanGenie Leave-one-out validation for deletions. We
conducted a leave-one-out experiment by repeatedly removing one sample from the
MC-based panel VCF and genotyping it with PanGenie. The left out sample was used as a
ground truth for evaluation based on the weighted genotype concordance127. The plots show
concordances of variants falling within certain regions: all biallelic bubble regions of the
graph (blue), multiallelic bubble regions (orange), segmental duplications (green), regions of
gaps in the HPRC assemblies28 (pink) and within challenging medically relevant genes129

(yellow).
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Fig. 29

Supplementary Figure 29. PanGenie Leave-one-out validation for insertions. We
conducted a leave-one-out experiment by repeatedly removing one sample from the
MC-based panel VCF and genotyping it with PanGenie. The left out sample was used as a
ground truth for evaluation based on the weighted genotype concordance127. The plots show
concordances of variants falling within certain regions: all biallelic bubble regions of the
graph (blue), multiallelic bubble regions (orange), segmental duplications (green), regions of
gaps in the HPRC assemblies28 (pink) and within challenging medically relevant genes129

(yellow).
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Fig. 30

Supplementary Figure 30. PanGenie Leave-one-out validation for other variants. We
conducted a leave-one-out experiment by repeatedly removing one sample from the
MC-based panel VCF and genotyping it with PanGenie. The left out sample was used as a
ground truth for evaluation based on the weighted genotype concordance127. The plots show
concordances of variants falling within certain regions: all biallelic bubble regions of the
graph (blue), multiallelic bubble regions (orange), segmental duplications (green), regions of
gaps in the HPRC assemblies28 (pink) and within challenging medically relevant genes129

(yellow).
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Fig. 31

Supplementary Figure 31. Comparison of allele frequencies by discovery and
genotyping. Shown is a comparison of allele frequencies for SV alleles across the assembly
samples in the panel VCF (n=107) and corresponding allele frequencies after genotyping
these variants across n=2,590 unrelated 1kGP samples.
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Fig. 32

Supplementary Figure 32. Hardy-Weinberg Equilibrium for PanGenie genotypes.
Shown is a comparison of heterozygosities and allele frequencies after genotyping n=2,590
unrelated 1kGP samples.
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Fig. 33

Supplementary Figure 33. PAV vs graph genotypes. Comparison of SVs in
Minigraph-Cactus panel VCF (“MC-panel”), PanGenie filtered genotypes (“PanGenie”), PAV
unfiltered (“PAV-unfiltered”) and PAV (“PAV”) callsets. Variant types and counts in
intersections correspond to the MC / PanGenie sets; the numbers in brackets give the
number of unique PAV calls matched (only for “ALL”).
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Fig. 34

Supplementary Figure 34. Comparison of PanGenie genotype frequencies. We show
the number of SV alleles present (0/1 or 1/1) in each sample (n=3,202) of each callset.
Compared were our filtered genotyped set (blue), the HPRC genotyped set (grey) and the
Illumina-based NYGC SV callset (orange). The boxes inside the violins represent the first
and third quartiles of the data, white dots represent the medians, and black lines mark
minima and maxima of the data.

Fig. 35

Supplementary Figure 35. Comparison of PanGenie frequencies for heterozygous
genotypes. We show the number of heterozygous SV alleles present (genotype 0/1) in each
sample (n=3,202) of each callset. Compared were our filtered genotyped set (blue), the
HPRC genotyped set (grey) and the Illumina-based NYGC SV callset (orange). The boxes
inside the violins represent the first and third quartiles of the data, white dots represent the
medians, and black lines mark minima and maxima of the data.
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Fig. 36

Supplementary Figure 36. Genotype switch error rate. Comparison of our phased
genotypes to the phasing of the assembly samples in the MC VCF used as input for
genotyping (top), as well as to a CHM13-based phased set of Illumina-based SNP and indel
calls (bottom). The plots show switch error rates computed for all regions, as well as inside
of CHM13-syntenic regions (regions shared between GRCh38 and CHM13), inside of low
mappability and segmental duplication regions (“CHM13-lowmap-segdup”), tandem repeats
(“CHM13-tandem-repeat”) and “easy” regions (“CHM13-easy”), i.e., regions outside of other
difficult regions such as tandem repeats, homopolymers, difficult to map regions, segmental
duplications and high/low GC content.
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Fig. 37

Supplementary Figure 37. Three-way comparison of phased callsets. Multiway
comparison of three phased sets (all CHM13-based): our phased genotypes
(“PanGenie-SHAPEIT”), the 1kGP Illumina-based phased calls and the MC panel VCF (input
used for genotyping). The plots report the number of times different sets agreed / disagreed
on the phasing of variant sites, i.e., the yellow line shows the number of cases in which our
phasing and the MC panel phasing agreed, but the 1kGP phasing was different.
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Fig. 38

Supplementary Figure 38. Phasing QV statistics. a) QV statistics computed for the
assemblies (pink), consensus haplotypes produced from the CHM13-based
PanGenie-SHAPEIT phased genotypes for all regions (orange), for PanGenie-SHAPEIT
within syntenic regions (regions shared between GRCh38 and CHM13) shown in green and
consensus haplotypes produced from the GRCh38-based NYGC phased Illumina-calls
(blue). In addition, we computed QVs for the two phased sets by switching sample labels
(“randomized”), i.e., by using reads and phasings for different samples (in purple, brown,
red). b) Completeness statistics computed for the consensus haplotypes produced from the
CHM13-based PanGenie-SHAPEIT phased genotypes for all regions (yellow), for
PanGenie-SHAPEIT within syntenic regions (regions shared between GRCh38 and CHM13)
shown in green and consensus haplotypes produced from the GRCh38-based NYGC
phased Illumina-calls (blue). In addition, we computed completeness for the two phased sets
by switching sample labels (“randomized”), i.e., by using reads and phasings for different
samples (in purple, brown, red).
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Fig. 39

Supplementary Figure 39. DRB Exon and repeat visualization. Shows the repetitive
element and gene/pseudogene exon distribution within all 128 sample haplotypes analyzed
(2/130 sample haplotypes contained a stretch of Ns in the assembly and were not analyzed).
Repetitive elements, gene exons, and pseudogene exons are uniquely colored. Lines that
are oriented above the midline represent sense orientation, while those below the midline
are in the antisense orientation. The first exons of each gene/pseudogene are denoted by an
arrow with the name of the gene/pseudogene. The direction of the arrow also denotes the
orientation of transcription of the gene compared to the region. Some haplotypes contain
additional low divergent copies of the first DRB exon (denoted as a second DRB9 first exon).
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Fig. 40

Supplementary Figure 40. DR8 recombination. This figure shows the results of a multiple
sequence alignment of all sample haplotypes containing DR3/5/6 (HLA-DRB3 and
HLA-DRB1 genes) and DR8 (DRB1). DR8 haplotypes are highlighted in purple and
individual exons were placed in the alignment to assist the viewer. The top panel shows the
alignment upstream of the identified breakpoint region. In this panel DR8 clearly shares
more sequence similarity (more SNVs) with the DRB3 gene of DR3/5/6 then it does to the
DRB1 gene. The middle panel shows the breakpoint region around exon 4/intron 3. Multiple
sample haplotypes contain DRB3 and DRB1 genes which share perfect homology while
others display shorter stretches of sequence homology. After exon 4 is where the DRB1
gene in DR8 starts to share SNVs with the DRB1 gene of DR3/5/6. The bottom panel shows
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the sequence immediately downstream of the middle panel and how the SNV pattern has
switched from that position onward. The putative breakpoint showed a short length (<150bp)
of homology between HLA-DRB1 and HLA-DRB3 on DR3/5/6 spanning exon 4 and the
surrounding downstream sequence (intron 3) in some DR8 haplotypes suggesting that
homology-mediated double strand DNA break repair may be a more likely explanation than
NAHR. However, due to the putative ages of these haplotypes 152, as well as due to a subset
of sample DR8 haplotypes displaying longer stretches (>200bp) of sequence homology,
NAHR cannot be entirely discounted.
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Fig. 41

Supplementary Figure 41. Comparison of DR group haplotypes. Representative
examples of pairwise alignments between DR group haplotypes DR5 and DRB3/6 (panel A);
DR8 and DR1 (panel B); DR8 and DR3/6 (panel C); DR9 and DR4/7 (panel D) respectively.
Red shading indicates the positions of HLA-DRB genes, blue/green shading matches to the
identified HLA-DR small structural variants carrying solitary HLA-DRB exons.
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Fig. 42

Supplementary Figure 42. DR1 recombination. This figure shows the results of a multiple
sequence alignment around the identified breakpoint region (+/- 500bp) within all sample
haplotypes containing DR4, DR1, and DR2. The top panel starts with an Alu insertion only
present in DR2, followed by the LINE/L1 element. Within the LINE/L1 element we can see
the shared sequence homology between DR4 and DR1 vs the SNVs within DR2. The middle
panel is further within the LINE/L1 element where we start to see a switch in the SNV pattern
to where DR1 and DR2 are sharing more SNVs with one another. This marks the +/- 500
base pair region where the breakpoint is believed to have occurred. The bottom panel is
downstream this region showing how DR1 and DR2 continue to share SNVs as well as a
short expansion/INDELs.
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Fig. 43

108



Supplementary Figure 43. RCCX Architecture. This schematic displays all unique RCCX
mono/bi/tri module architectures found across the 130 sample haplotypes. Protein coding
genes are STK19, C4, CYP21A2, and TNXB. Pseudogenes are CYP21A1P, TNXA, and
STK19B. All C4 copies are functional. CYP21A2:NF represents a CYP21A2 gene copy that
is no longer functional due to coding for a premature stop codon. The long (L) or short (S)
C4 designation represents if a HERV-K insertion within intron 9 is present. An asterisk (*)
denotes the RCCX structure present within the CHM13 reference genome. The most
frequently observed representatives of each haplotype configuration carried one functional
copy of the STK19, CYP21A2 and TNXB genes, as well as C4AL, C4BS and one copy of the
pseudogenes STK19B, CYP21A1P, and TNXA (for n = 61 out of a total of 97 bi-modulesar
modules); C4AL and no pseudogenes (for n = 11 out of a total of 17 mono-modules); and
C4AL, 2 copies of C4BS, and two copies of the pseudogenes STK19B, CYP21A1P, and
TNXA (for n = 4 out of a total of 16 tri-modules).
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Fig. 44

Supplementary Figure 44. Sample C4 Statistics. a) Shows six bar graphs displaying the
C4 genome diploid combination sample frequency (i.e., diplotype), total C4 gene sample
frequency, total C4L sample frequency, total C4S sample frequency, total C4A sample
frequency and total C4B sample frequency. b) A heatmap showing the total counts of C4,
C4L, C4S, C4A, and C4B within each sample. The heatmap cells are shaded by the total
diploid count (black = zero, white = six copies). Sample names are colored based on their
continental group/populations.
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Fig. 45

Supplementary Figure 45. C4 Novel Variants. Heatmap showing the variable amino acid
positions within our 259 C4 gene copies (across 130 sample haplotypes). The x-axis is the
specific amino acid position while the y-axis are amino acids represented by a single letter.
The seven novel amino acids found in our dataset are outlined in yellow. Each of these
variants were only identified in a single C4 copy.
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Fig. 46

Supplementary Figure 46. SMN region overview. An overview of the SMN region that is
highlighted on the chromosome 5 ideogram as a blue rectangle. Below we plot the extent of
segmental duplications in this region color by the sequence identity (sd.categ). Further below
we plot the gene model of protein-coding genes in this region.
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Fig. 47

Supplementary Figure 47. Distinguishing SMN1 and SMN2 gene copies. A visualization
of a multiple sequence alignment between exonic sequences for all SMN gene copies
across all 101 human haplotypes. We used orangutan (PPY) as an outgroup to mark
ancestral (green) and derived alleles (yellow). We cluster all haplotypes into two clustered
mostly distinguished based on 3 ancestral alleles present in cluster 1. We mark cluster 1 as
SMN1 gene copy while cluster 2 is marked as SMN2 gene copy.
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Fig. 48

Supplementary Figure 48: Genotyping of SMN genes. Comparison of predicted SMN1
and SMN2 gene copy numbers defined by assemblies (dark blue) in comparison to
short-read based genotyping methods (Parascopy - brown, SMNCopyNumberCaller - pink).
We could compare results only for 31 samples which have fully assembled both haplotypes
and could be compared to diploid copy number reported by unphased short-reads.

Fig.49

Supplementary Figure 49. Summary of SMN genes. Summary of SMN1 (yellow) and
SMN2 (red) gene copies genotyped in each human haplotype (n=101). Haplotype that carry
only SMN2 gene copy are highlighted by the asterisks. Superpopualtion identity of each
haplotype is marked by the colored dot on top of each bar (see legend).
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Fig. 50

Supplementary Figure 50. Amylase haplotypes identified in this study. Segmental
duplications (light to dark gray: 90-98% similarity, light to dark orange: > 99% similarity),
GENCODE V44 gene annotations, and long terminal repeats (LTRs) are represented as
tracks. The lower panel shows amylase segments (colored arrows). The AMY2B segment
overlaps the AMY2B gene, AMY2A.1 and AMY2A.2 segments overlap the AMY2A gene,
and the AMY1 segment overlaps the AMY1 gene. The GRCh38 and T2T-chm13 reference
genomes and the unique amylase haplotypes resolved in our dataset (n = 35) are
represented with in silico maps with white background displaying label positions in dark blue
and amylase segments with color-coded arrows. The vertical black line in the second AMY1
segment of H3r.3 represents the polymorphic label present in three alleles. The diagonal
stripes in the second AMY2B segment of H3B2.1 indicate that it is a partial copy of the first
AMY2B segment. Haplotype IDs describe: HX: X denotes the number of AMY1 copies; AX:
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X denotes the number of AMY2A copies; BX: X denotes the number of AMY2B copies. The
superscript “a'' denotes the ancestral amylase haplotype structure, and the superscript “r”
denotes the reference amylase haplotype structure. The number in parentheses indicates
the number of alleles. Single asterisk (*) denotes haplotypes that were resolved at the
base-pair level for the first time. Double asterisk (**) denotes novel amylase haplotype.
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Fig. 51

Supplementary Figure 51. Segmental Duplication Annotation Pipeline flowchart.
Minimap2 was used for all mapping and alignment.
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Fig. 52

Supplementary Figure 52. VNTR diversity. a: variability of TRs in HPRC and HGSVC3
genomes. b: population clustering of HPRC and HGSVC3 genomes by TRs. c: TRs from
Tandem Repeat Finder were merged and compared for the three datasets. Centromere
regions were masked.
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Fig. 53

Supplementary Figure 53. Unique TRs in HGSVC3 compared to HPRC. Distribution of
unique TRs by Tandem Repeat Finder in HGSVC3 genomes compared to HPRC genomes.
Ideograms were generated using a bin size of 1,000,000bp and centromere regions were
masked.
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Fig. 54

Supplementary Figure 54. Iso-Seq Read Phasing Breakdown. The total number of
PacBio Iso-Seq read phasing assignments to haplotype 1 (orange), haplotype2 (purple), and
unphased (unable to be phased) (navy) per sample using an ensemble alignment-based
phasing approach [methods]. Reads designated as unphased aligned to both haplotypes
equally well. On average 58.44% of reads were able to be phased to a haplotype of a
sample.
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Fig. 55

Supplementary Figure 55. Imprinted Genes According to Iso-Seq. Depiction of ten
genes (y-axis) expressed in EBV-transformed B-lymphocyte cell lines that were identified as
imprinted utilizing phased sample-specific assemblies for mapping of Iso-Seq reads.
Mono-haplotype expression was declared if sample-specific reads phased to a single
haplotype. Bar color represents the chromosome on which the gene resides. The imprinted
expression pattern observed in our study is in concordance with the previous literature 89–91.

Fig. 56

Supplementary Figure 56. Short- vs Long-Read RNA Sequencing Total Unique Genes
and Isoforms. a) Comparison of the total number of unique genes identified across 12
samples using Illumina RNA-seq vs PacBio Iso-Seq. Only genes expressing isoforms
identified in two or more samples were included in this analysis. Hue indicates the proportion
of genes that are protein coding (blue) or non-protein coding (orange). Results show that a
greater total number of unique genes were identified by the Illumina RNA-seq (29,858
unique genes) versus the PacBio Iso-Seq (11,134 unique genes) across 12 samples. b)
Comparison of the total number of unique isoforms present in at least two out of 12 samples
in Illumina RNA-seq and PacBio Iso-Seq. Hue indicates the proportion of isoforms that are
from protein-coding (blue) or non-protein-coding genes (orange). This graph indicates that a
greater total number of unique isoforms were identified in the the PacBio Iso-Seq dataset
(68,097 unique isoforms) compared to the Illumina RNA-seq callset (63,028 unique
isoforms) across the 12 samples.
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Fig. 57

Supplementary Figure 57. Average Unique Isoforms Per Unique Gene. Comparison of
the average number of unique isoforms identified (present in at least two out of twelve
samples) per unique gene represented in Illumina RNA-seq (light blue) and PacBio Iso-Seq
(green) data. On average, a greater number of unique isoforms per unique gene were found
using the Iso-Seq versus the RNA-seq datasets.
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Fig. 58

Supplementary Figure 58. Summary statistics of Hi-C data and chromatin structures.
A) Unique reads were mapped to the hg38 reference genome. The x-axis displays sample
IDs ordered from lower to higher resolution (calculated based on the GRCh38). The y-axis
shows the total number of the mapped reads. B) The number of Hi-C contacts for each
mapped sample. C) The calculated resolution (in base pair) of Hi-C contacts for each
sample. D) The number of TAD boundaries identified for each sample (filtered by the
boundary score as 0.2). The average number of TAD boundaries identified was 21,021 for
the hg38 reference genome. No significant correlation was observed between the number of
TAD boundaries and contact map resolution, underscoring the robustness of the IS
algorithm, which is not constrained by the data resolution.
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Fig. 59

Supplementary Figure 59. SNVs, INDELs, and SVs that are in high LD with GWAS
SNPs. A) Number of SNVs in high LD with GWAS SNPs. X-axis represents chromosomes
and the y-axis indicates the number of variants. Blue bars denote variants with an LD
threshold of R2 ≥ 0.8. Orange bars denote variants in the perfect LD which has R2 = 1. B)
Number of INDELs in high LD with GWAS SNPs. C) Number of SVs in high LD with GWAS
SNPs.
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Fig. 60

Supplementary Figure 60. MHC C2 alignment. The sequence alignment generated by
minimap2 of the HGSVC genomes to the CHM-13 reference. The standard alignment
process fails to alignment the high diversified regions showing as gaps and high density of
variations around the gaps.
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Fig. 61

Supplementary Figure 61. MHC C2 k-mer count histogram. All 25-mer count through the
MHC class II region of the pangenome. While the majority of the 25-mers are from
conserved (among different genomes) and uniqued (in single genome) as shown by the
peak around 25-mer count = ~111, there are abundance of less conserved k-mers ranged 1
to 50.
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Fig. 62

Supplementary Figure 62. Class II MHC vs CHM13 Jaccard index. The Jaccard index
comparison of the class II regions vs. CHM13 and within the conserved bundles.
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Fig. 63

Supplementary Figure 63. MHC gene structure. Visualization of the MHC class I (panel A)
and MHC class II (panel B) haplotype structure with respect to linkage equilibrium between
HLA gene allele classes and presence/absence patterns, based on annotation with
Immuannot 145. Blue labels in panel B indicate which DR group the shown haplotypes belong
to.
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Fig. 64

Supplementary Figure 64. DR haplotype diagram and statistics. a) A diagram showing
the typical length of the five unique DR haplotypes and the genes (HLA-DRB1, -DRB3,
-DRB4, and -DRB5) as well as the pseudogenes (-DRB2, -DRB6, -DRB7, -DRB8, and
-DRB9) which comprise them. b) A pie chart showing the frequency of DR haplogroups
within the 128 sample haplotypes (2 haplotypes contained N’s in the DRB region and were
not analyzed). DR3/5/6 was the most frequently observed DR haplotype c) A stacked bar
graph showing the proportion of sample supergroups (AFR: African, AMR: American, EAS:
East Asian, EUR: European, SAS: South Asian) found containing each DR haplotype.
Interestingly, no east asians (EAS) in our sample set contained a DR1 haplotype, though
they made up the majority of the DR8 haplotype. d) A bar graph showing the total samples
(x-axis) containing DR haplotype diploid combinations (y-axis). The diploid combination of
two DR3/5/6 haplotypes within a genome was the most frequently observed across our
sample set.
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Fig. 65

Supplementary Figure 65. HLA SV insertion visualization. Visualization of haplotype
structures and homology for two different loci in the HLA-DR region, both of which were
found to contain small (~ 3.7 kbp and 4.4 kbp) structural variants with solitary intron and
exon HLA-DRB sequences (see main text). The figure shows that the identified structural
variants as well as their surrounding sequence regions from different loci in the HLA-DR
region exhibit a high degree of homology, and that the structural variants carry solitary
HLA-DRB intron and exon sequences as well as repeat elements. Shown is a multiple
sequence alignment (MSA) of four sequences; each panel shows the same MSA, annotated
with a specific sequence feature (e.g., repeat element positions, homologies to HLA-DRB
intron and exon sequences; sequence features are shown in black, white indicates gaps
relative to the longest sequence alignment). The included four sequences comprise a) two
representative DR3 haplotypes from the region around the identified structural variant in the
HLA-DRB9 region, one carrying the insertion and one not carrying the insertion; b) two
representative DR1 haplotypes from the region around the identified structural variant in the
region 10 kbp 3′ of HLA-DRB1, one carrying the insertion and one not carrying the insertion.
The location of the identified structural variants (relative to other sequences from the same
locus) is highlighted in red in the top panel.
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