
nature neuroscience

https://doi.org/10.1038/s41593-024-01731-2Technical Report

Dissociative and prioritized modeling of
behaviorally relevant neural dynamics using
recurrent neural networks

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s41593-024-01731-2

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Information

Contents

• Supplementary Figures: Supplementary Figs. 1-9

• Supplementary Notes: Supplementary Notes 1-4 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)

Note: please refer to the main text and Methods for equations (1)-(14).

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Figures

Supplementary Fig. 1 | Detailed computation graph for the two-section RNN model in DPAD and all the four
connected optimization steps for learning the model parameters.

a, The computation graph is shown as unfolded111 in time to make the relation between the time indices of the latent

states, neural data, and neural and behavioral predictions clearer. Learning consists of 4 connected numerical

optimization problems (Methods): 1) Learn 𝐴𝐴′(1), 𝐾𝐾(1), and 𝐶𝐶𝑧𝑧
(1) by fitting an RNN that minimizes the negative log-

likelihood (NLL) of behavior given the RNN states 𝑥𝑥𝑘𝑘
(1); 2) Learn 𝐶𝐶𝑦𝑦

(1) by fitting a feed-forward neural network that

minimizes the NLL of neural activity given the extracted 𝑥𝑥𝑘𝑘
(1); 3) Learn 𝐴𝐴′(2), 𝐾𝐾(2), and 𝐶𝐶𝑦𝑦

(2) by fitting an RNN that as

input takes neural activity and the states extracted from the first optimization step, i.e., 𝑥𝑥𝑘𝑘
(1); this RNN minimizes the

aggregate NLL of neural activity given its states 𝑥𝑥𝑘𝑘
(2) and the first set of states 𝑥𝑥𝑘𝑘

(1) (note that 𝑥𝑥𝑘𝑘
(1) is computed in

optimization step 1 and has known values when solving subsequent optimization steps); and 4) Learn 𝐶𝐶𝑧𝑧
(2) by fitting

a feed-forward neural network that minimizes the aggregate NLL of behavior given the states extracted in

optimization step 3, i.e., 𝑥𝑥𝑘𝑘
(2). Step 4 has the option of alternatively learning a more general aggregate 𝐶𝐶𝑧𝑧 that takes

both sets of states as input and replaces both 𝐶𝐶𝑧𝑧
(1) and 𝐶𝐶𝑧𝑧

(2), to support non-additive combination of the latent states

in predicting behavior (Methods). The first two optimization steps learn to extract the behaviorally relevant latent

states 𝑥𝑥𝑘𝑘
(1) from past neural activity and learn their mapping to future neural-behavioral data. The last two

optimization steps, which are optional, learn to extract additional latent states 𝑥𝑥𝑘𝑘
(2) from past neural activity and learn

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

their mapping to any residual future neural-behavioral dynamics not already predicted by 𝑥𝑥𝑘𝑘
(1). The dimension of

𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) are hyperparameters that need to be determined by the user. If only learning of behaviorally relevant

neural dynamics is of interest, the dimension of 𝑥𝑥𝑘𝑘
(2) can be set to zero, removing the second section of the RNN

and the need for optimization steps 3-4. Conversely, if prioritized learning of neural dynamics relevant to behavior

is not of interest (i.e., as in NDM), the dimension of 𝑥𝑥𝑘𝑘
(1) can be set to zero, removing the first section of the RNN

and the need for optimization steps 1-2. The architecture of the feed-forward neural network that constructs each

model parameter (see b,c) can be determined by the user as part of the “nonlinearity setting” as illustrated in Fig.
1c. Manual specification of nonlinearity settings is useful for example for using linear DPAD and for hypothesis

testing with individual nonlinearities in Fig. 6. Alternatively, as illustrated in Fig. 1d, the “nonlinearity setting” can be

automatically selected among a range of architectures using an inner-cross-validation within the training data, which

we refer to as flexible nonlinearity (e.g., Fig. 3 and 5). For Gaussian-distributed data, assuming isotropic residuals

(Methods), the NLL in the optimization objectives is proportional to the sum of squared errors. For non-Gaussian

data distributions (e.g., categorical behavior), in addition to using the appropriate (e.g., categorical) NLL to form the

optimization objective, we also change the associated readout architecture to form that NLL. For example, we add

one output per class and a Softmax normalization to 𝐶𝐶𝑧𝑧
(1) and 𝐶𝐶𝑧𝑧

(2) when behavior 𝑧𝑧𝑘𝑘 has a categorical distribution

(Methods). Moreover, in the non-Gaussian case, NLLs from steps 1-2 are again incorporated as preexisting NLLs

into optimization steps 3-4 so that the latter optimization steps complement the predictions from steps 1-2

(Methods). b,c, Any one or all of the model parameters from a can be either a linear matrix (b), or in general an

arbitrary multilayer feed-forward neural network (c). The example feed-forward network in c has one hidden layer

with ℎ units and uses a rectified linear unit (ReLU) activation function for the hidden layer. The recursion parameter

𝐴𝐴′ can also implement an LSTM recursion as one option for nonlinearity (Methods).

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 2 | DPAD’s localization of nonlinearities is accurate in numerical simulations.

a-d, Same as Extended Data Fig. 2 (with pluses and whiskers defined in the same way), showing accurate

localization of nonlinearities in a different set of 20 simulated systems with both behaviorally relevant and irrelevant

latent states such that all optimization steps are used in the modeling (N = 20 random models in all panels)

(Methods). Similar to Extended Data Fig. 2, the multi-step optimization learning approach in DPAD accurately

localizes the nonlinearities regardless of their true location in these simulations.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 3 | Example behavioral trajectories and nonlinear versus linear decoding using each
neural modality.

a, The 3D reach task. b, Example true and predicted behavior trajectories in the test data for multiple joints, using

nonlinear and linear DPAD models from Fig. 2. For behavior decoding statistics across all data see Fig. 2. c, Same

as b for behavior decoding using raw LFP activity. d, Same as b for behavior decoding using LFP band power

activity. e-h, Same as a-d for the second dataset, with saccadic eye movements. i-j, Same as a-d for the third

dataset, with sequential cursor reaches controlled via a 2D manipulandum. k-n, Same as a-d for the fourth dataset,

with random grid virtual reality cursor reaches controlled via fingertip position.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 4 | DPAD remains on the best performance frontier for predicting neural-behavioral
dynamics, even when performances are evaluated with coefficient of determination (R2) instead of
correlation coefficient (CC).

a-h, Figure content is parallel to Fig. 3 (with pluses and whiskers defined in the same way), but shows the R2 for

performances for the same models instead of showing their CC (N = 35 session-folds in b,d,h and N = 15 session-

folds in f).

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 5 | DPAD can also be used for multi-step-ahead forecasting of neural data.

a-h, Similar to Extended Data Fig. 4, but showing the multi-step-ahead neural self-prediction accuracy for DPAD

and its comparison with that of a baseline Naïve predictor, which predicts future neural activity as the current

activity. A Naïve predictor represents the self-prediction performance expected simply due to the autocorrelations

and smoothness of neural data even without a model. Solid lines and shaded areas are defined as in Fig. 5b (N =

35 session-folds in b,d,h and N = 15 session-folds in f). Importantly, these results are again obtained without any

retraining or finetuning, with 𝑚𝑚-step-ahead forecasting done by repeatedly (𝑚𝑚− 1 times) passing the neural

predictions of the model as its neural observation in the next time step (Methods). Across the number of steps

ahead, the statistical significance of a one-sided pairwise comparison between nonlinear DPAD vs Naïve is

shown with the blue top horizontal line with p-value indicated by asterisks next to the line as defined in Fig. 2b.

Similar pairwise comparison between nonlinear DPAD vs LDS modeling is shown with the purple top horizontal

line. DPAD consistently achieved significantly higher self-prediction accuracy than a Naïve predictor, suggesting

that it is learning temporal dynamics beyond simply the smoothness in data.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 6 | In hypothesis testing for raw LFP and LFP band power activity, DPAD again provides
evidence that nonlinearities can be largely captured by the behavior readout of the model across datasets.

a-i, Figure content is parallel to Fig. 6 (with pluses and whiskers defined in the same way), but now shown for raw

LFP (b,e,h) and LFP band power (d,f,i) activity (N = 35 session-folds in all panels). The behavior readout

nonlinearity does better than every other individual nonlinearity and comparable to when nonlinearity is flexibly

chosen to be in all or any combination of parameters. As in Fig. 6, hypothesis testing is done by considering both

behavior decoding (vertical axis) and neural self-prediction (horizontal axis), that is, in terms of being on the best

performance frontier (Methods). This result provides evidence that nonlinear behavior readout is largely sufficient

for predicting neural-behavioral data from past neural activity for both LFP modalities across all datasets.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 7 | DPAD with its flexible nonlinearity automatically finds an appropriate subset of
parameters to make nonlinear to predict the training data well — but this procedure is not sufficient for
localization, in which finding a minimal subset of parameters that can summarize all nonlinearities is of
interest (Fig. 6).

a, The 3D reach task. b, The percentage of session-folds (out of N = 35 session-folds) that had a specific parameter

set automatically selected as nonlinear, when using DPAD with flexible selection of nonlinearity based on self-

prediction. The cross-validated performances for the same selected models are shown in Fig. 3. The label of each

bar indicates the nonlinear set. LSTM indicates that an LSTM was used for recurrence (replaces 𝐴𝐴’, Methods). As

is the case here, in DPAD, unless otherwise noted, we use a flexible nonlinearity whereby we build models with

nonlinearities in different parameters and select one model among them that achieves the best neural self-prediction

(or decoding) in the training data (Methods). We note, however, that this operation is not sufficient for localizing the

nonlinearity (Fig. 6) because the inclusion of a parameter as part of the nonlinearity does not indicate whether or

not nonlinearity in that parameter is indispensable; instead, as long as the nonlinearity of a parameter does not hurt

the criteria, it may be set to be nonlinear even if its nonlinearity is not necessary. Thus, to localize the nonlinearity,

we explore whether nonlinearities can be isolated in individual parameters in Fig. 6. Nevertheless, here we show

the statistics for automatic selection of nonlinearities just to show their interesting consistency with our localization

results. c, The data in b shown in a different way to demonstrate i) what percentage of final flexible models had

nonlinearity in each model parameter regardless of whether other parameters were linear or nonlinear, ii) what

percentage used an LSTM, and iii) what percentage was fully linear. d-f, Same as a-c for the second dataset, with

saccadic eye movements (N = 35 session-folds). g-i, Same as a-c for the third dataset, with sequential cursor

reaches controlled via a 2D manipulandum (N = 15 session-folds). j-l, Same as a-c for the fourth dataset, with

random grid virtual reality cursor reaches controlled via fingertip position (N = 35 session-folds). The first 16 latent

state dimensions in DPAD are learned using the first two optimization steps and the remaining dimensions are

learned using the last two optimization steps (i.e., n1 = 16).

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 8 | DPAD accurately learns behavioral and neural dynamics in numerical simulations
even if behavioral samples are intermittently available in the training data.

a-d, Figure content is parallel to Extended Data Fig. 1 but shows the prediction performance for linear DPAD and

linear NDM models that were trained with an intermittently sampled version of the behavior time series. To generate

the training data in each case, the behavior time series was subsampled by keeping each sample based on a

random draw, for example to keep 10% of samples for training, each time sample of behavior data was kept with a

10% probability. The other unkept behavior samples in the training data were treated as unmeasured data,

emulating a scenario where behavior is only intermittently sampled. In all panels, solid lines and shaded areas are

defined as in Fig. 5b (N = 100 random models). Even when as little as 10% of behavior samples are “measured”

during the training, linear DPAD reaches toward ideal behavior and neural prediction performance (the performance

achieved by the true model). a and b show the normalized behavior decoding for high and low latent state

dimensions, respectively. c and d show the normalized neural self-prediction for high and low latent state

dimensions, respectively. As in Extended Data Fig. 1, b shows that DPAD reaches ideal behavior prediction even

with low-dimensional latent states, due to its prioritized learning of behaviorally relevant neural dynamics, as

opposed to aiming to explain the most neural variance. Moreover, as in Extended Data Fig. 1, c shows that given

enough latent state dimensions (same as the true model), using its last two optimization steps (Supplementary
Fig. 1a), DPAD learns to predict the overall neural dynamics as accurately as NDM, converging toward ideal neural

self-prediction at the same pace.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Fig. 9 | DPAD can also model non-smoothed spike counts.

a, Result of modeling non-smoothed spike counts and behavior in the third dataset, with sequential cursor reaches

controlled via a 2D manipulandum. Cross-validated neural self-prediction accuracy achieved by each method shown

on the horizontal axis versus the corresponding behavior decoding accuracy on the vertical axis. Latent state

dimension for each method in each session and fold is chosen (among powers of 2 up to 128) as the smallest that

reaches peak neural self-prediction in training data or reaches peak decoding in training data, whichever is larger

(Methods). Pluses and whiskers are defined as in Fig. 3 (N = 15 session-folds). Note that the behavior decoding

and neural self-prediction in DPAD are causal and only use past neural data. For comparison, we also show results

for two non-causal sequential auto-encoder methods: 1) LFADS16, and 2) a subsequent work related to LFADS

termed Targeted Neural Dynamical Modeling (TNDM)18, which was concurrently developed with our work44,56 and

models non-smoothed spike count data along with a continuous behavior. We used the python library‡ published

alongside ref. 18 to run both methods. We sweep the total LFADS/TNDM factor dimension in the same range as

the total state dimension for DPAD (among powers of 2 up to 128). For all DPAD variations, the first 16 latent state

dimensions are learned using the first two optimization steps to be behaviorally relevant, and the remaining

dimensions are learned using the last two optimization steps (i.e., n1 = 16). Similarly, for TNDM, the factors for

decoding behavior are set to be 16-dimensional. To allow for the best possible behavior decoding from these factor

dimensions in TNDM, we use the version of TNDM that fits a different dedicated non-causal regression for each

different time point during a trial: this non-causal regression goes from the factors during the whole trial to predict

the behavior at each time point during the trial. Finally, given that LFADS and TNDM can only process fixed-length

data, we pass the data to LFADS/TNDM in non-overlapping 1s segments as done previously for similar sequential

variational autoencoders95. b, Cross-validated decoding accuracy of each method at the dimension for which DPAD

(with best nonlinearity for decoding) reaches within 5% of its peak decoding accuracy in training data across all

latent state dimensions. Bars, whiskers, dots, and asterisks are defined as in Fig. 2b (N = 15 session-folds). DPAD

achieves more accurate decoding than LFADS/TNDM using low-dimensional latent states. These results highlight

that the strength of DPAD for prioritized and nonlinear dynamical dimensionality reduction (use-case 3) and for

modeling the overall neural-behavioral data (use-case 1) extend to non-smoothed spike counts. Note that TNDM

does not achieve multiple use-cases of DPAD including dynamic transformation of raw LFP (use-case 2),

hypothesis testing regarding the origin of nonlinearity (use-case 4), and application to categorical or intermittent

behaviors (use-case 5), so cannot be compared in these use-cases.

‡ https://github.com/HennigLab/tndm

https://github.com/HennigLab/tndm

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Notes

Supplementary Note 1: Predictor form of dynamical system models

The model used by DPAD is provided in equation (1). DPAD is not an extension of any existing linear

modeling method. However, DPAD’s model formulation supports linear models as a special case by setting

all parameters to be linear (Methods). Note that even in the special linear case, DPAD learns the model

based on numerical optimization methods rooted in deep learning and thus is fully distinct from prior linear

modeling methods such as PSID6 as expanded on in the main text.

Here, we expand on the motivation and intuition behind DPAD’s RNN model formulation, which is in

predictor form. To make understanding the predictor form simpler, we first present the predictor form of a

linear dynamical system. As a general linear dynamical system, neural activity 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 and behavior 𝑧𝑧𝑘𝑘 ∈

ℝ𝑛𝑛𝑧𝑧 can be jointly modeled as

 �
𝑥𝑥𝑘𝑘+1′ = 𝐴𝐴 𝑥𝑥𝑘𝑘′ + 𝑤𝑤𝑘𝑘′

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘′ + 𝑣𝑣𝑘𝑘′

 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘′ + 𝜖𝜖𝑘𝑘′
 (15)

where 𝑥𝑥𝑘𝑘′ ∈ ℝ𝑛𝑛𝑥𝑥 is a latent variable, 𝑤𝑤𝑘𝑘′ and 𝑣𝑣𝑘𝑘′ are Gaussian white noises, and 𝜖𝜖𝑘𝑘′ is a general random

process that is independent of neural activity and represents any behavior dynamics that are not encoded

in neural activity6. Given the above linear model, the latent states can be estimated from the neural activity

𝑦𝑦𝑘𝑘 using a Kalman filter

 𝑥𝑥�𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾 �𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑦𝑦 𝑥𝑥�𝑘𝑘|𝑘𝑘−1� (16)

where 𝐾𝐾 is the steady-state Kalman gain67,68 and 𝑥𝑥�𝑘𝑘+1|𝑘𝑘 is the predicted state at time 𝑘𝑘 + 1 based on past

neural activity up to time 𝑘𝑘. Equation (15) can be equivalently67,68 written in terms of the steady-state

Kalman estimated states 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 as

 �
𝑥𝑥𝑘𝑘+1 = 𝐴𝐴 𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑒𝑒𝑘𝑘

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘
 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝜖𝜖𝑘𝑘

 (17)

where 𝑥𝑥𝑘𝑘 ≜ 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 and 𝑒𝑒𝑘𝑘 and 𝜖𝜖𝑘𝑘 are respectively the parts of neural and behavior signals that cannot be

predicted from past neural activity (i.e., {𝑦𝑦𝑘𝑘′ ∈ ℝ𝑛𝑛𝑦𝑦: 0 ≤ 𝑘𝑘′ < 𝑘𝑘}). Equivalently, by replacing 𝑒𝑒𝑘𝑘 from the first

line with its value from the second line, we can also write equation (17) as

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

 �
𝑥𝑥𝑘𝑘+1 = 𝐴𝐴′ 𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑦𝑦𝑘𝑘
 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘
 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝜖𝜖𝑘𝑘

 (18)

where 𝐴𝐴′ ≜ 𝐴𝐴 − 𝐾𝐾𝐶𝐶𝑦𝑦. Equations (15) and (18) are different latent descriptions that realize the same second

order statistics for the stationary observation time series 𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘, and thus are equivalent67,68. In the

terminology of ref. 68, equations (15) and (18) are different internal descriptions that have the same

external description, that is, their differences are only in properties that are not measurable and are thus not

distinguishable (e.g., the exact value of the latent state). These two formulations are referred to as the

stochastic and predictor forms, respectively67,68.

Note that since equation (18) is based on the steady-state Kalman filter, it would give different values for

the latent state compared with a non-steady-state Kalman filter (with a non-steady-state gain). When the

Kalman filter converges to steady-state, the aforementioned latent state difference would be minimal (for all

data points except for those prior to convergence, which are points very close to the beginning of a given

time series). Also, note that equations (15) and (18) have the same second order statistics in their

observations 𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘 as explained in textbook refs. 67,68.

Finally, note that while the first line of the predictor form formulation in equation (18) does not show an

explicit noise term in the latent dynamics, these latent dynamics are written as a function of the neural

observation of the previous time step (i.e., 𝑦𝑦𝑘𝑘), which itself is stochastic and has added noise 𝑒𝑒𝑘𝑘 as can be

seen in second line of equation (18). In fact, as noted earlier, stochastic and predictor form formulations of

equations (15) and (18) are equivalent67,68. However, the stochastic form (equation (15)) has redundancy,

meaning that there are infinitely many formulations (even beyond similarity transforms, defined in equation

(21)) for the same linear dynamical system (see Faurre’s theorem in ref. 67). In contrast, the predictor form

(equation (18)) for a given observation statistic is unique (within a similarity transform)6,67,68. Moreover, the

state equation in the predictor form directly describes how information from observations 𝑦𝑦𝑘𝑘 should be

combined with the current states (𝑥𝑥𝑘𝑘) to get the states in the next time step, i.e., as in the first line of

equation (18). While for linear models the associated predictor form can be directly computed from the

stochastic form (based on the Kalman filter as we did here to derive equation (18)), this is not possible for

nonlinear models in general. As such, it can be desirable to directly learn nonlinear models in predictor

form, such that the learned models can be directly used for prediction of latent states from observations. As

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

we show here, this predictor form learning can be done since the predictor form can be thought of as an

RNN, and thus can be learned from data using numerical optimization tools that are commonly used in

deep learning.

To see how DPAD’s RNN-based model formulates a dynamical system in predictor form – albeit a

nonlinear predictor form – we can look at equation (18). We can then replace each multiplication between a

model parameter and a vector (e.g., 𝐴𝐴′𝑥𝑥𝑘𝑘) in equation (18) with a multi-input-multi-output function applied to

an input vector (e.g., function 𝐴𝐴′(⋅), applied to 𝑥𝑥𝑘𝑘). Rewriting all matrix multiplications as multi-input-multi-

output functions we get

 �
𝑥𝑥𝑘𝑘+1 = 𝐴𝐴′(𝑥𝑥𝑘𝑘) + 𝐾𝐾(𝑦𝑦𝑘𝑘)
 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦(𝑥𝑥𝑘𝑘) + 𝑒𝑒𝑘𝑘
 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧(𝑥𝑥𝑘𝑘) + 𝜖𝜖𝑘𝑘

 (19)

where each function (e.g., 𝐴𝐴′(⋅)) is a parameter to be learned. We can now allow any subset of the

parameters in this model to be general nonlinear functions, implemented in the form of arbitrary multilayer

neural networks. This gives the predictor model form for the DPAD model in equation (1), which captures

nonlinearity unlike linear dynamical models. Also, DPAD learns these nonlinear parameters through the

multi-step learning approach that we developed, which in each step leverages the numerical optimization

tools commonly used in deep learning (Supplementary Fig. 1a, Supplementary Note 2, Methods); this is

distinct from analytical methods used in linear modeling6.

Given that the DPAD model in equation (1) is constructed in the predictor form, even when parameters

are nonlinear, the model can still be readily used to estimate the latent states 𝑥𝑥𝑘𝑘 given the neural

observations 𝑦𝑦𝑘𝑘, and to decode behavior 𝑧𝑧𝑘𝑘. To do this, we run the first line of equation (1) to estimate the

latent state and then pass this state through the learned 𝐶𝐶𝑦𝑦 or 𝐶𝐶𝑧𝑧 functions in the second or the third line to

predict neural activity or decode behavior, respectively. All this can be done causally, only using past neural

activity.

Supplementary Note 2: The four-step optimization formulation for learning in DPAD

In this note, we formulate the DPAD model such that the behaviorally relevant latent states are

dissociated from the other states as shown in equation (2), which allows the model to be learned with the

four-step numerical optimization approach outlined in Methods (Supplementary Fig. 1a). The behaviorally

relevant latent states, denoted by 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1, are defined as those that influence behavior. Thus, observing

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

behavior would be informative of such behaviorally relevant latent states, a concept that is known as

observability68.

To make the exposition simpler, here, we start by showing how the special case of a fully linear

dynamical system can be written in the form of equation (2) with the model parameters taken to be the

special case of linear matrix multiplications (see equation (24) below). Subsequently, we make the

functions in equation (2) general nonlinear neural networks, and by doing so we enable nonlinear modeling

in DPAD (Methods).

For the special case of a linear dynamical system as in equation (18), we can compute the number of

behaviorally relevant latent state dimensions 𝑛𝑛1 based on the concept of observability, as the rank of the

observability matrix associated with matrices (𝐴𝐴′,𝐶𝐶𝑧𝑧)6. Based on this concept, we can also dissociate the

parts of the latent state 𝑥𝑥𝑘𝑘 that are observable versus unobservable through behavior (without loss of

generality) as

⎩
⎪
⎨

⎪
⎧�
𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2) � = �

𝐴𝐴11′ 0
𝐴𝐴21′ 𝐴𝐴22′

� �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ �𝐾𝐾

(1)𝑦𝑦𝑘𝑘
𝐾𝐾′(2)𝑦𝑦𝑘𝑘

�

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦
(1)𝑥𝑥𝑘𝑘

(1) + 𝐶𝐶𝑦𝑦
(2)𝑥𝑥𝑘𝑘

(2) + 𝑒𝑒𝑘𝑘
 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧

(1)𝑥𝑥𝑘𝑘
(1) + 𝜖𝜖𝑘𝑘

. (20)

by applying theorem 3.8 from ref. 68 to the first and third lines of equation (18). More specifically, the

mentioned theorem states that a nonsingular square matrix 𝐸𝐸 exists that would give the latent states and

the model parameters of equation (20) from those of equation (18) via the following transformation

�
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)� = 𝐸𝐸𝑥𝑥𝑘𝑘 , �

𝐴𝐴11′ 0
𝐴𝐴21′ 𝐴𝐴22′

� = 𝐸𝐸𝐴𝐴′𝐸𝐸−1, �𝐾𝐾
(1)

𝐾𝐾′(2)� = 𝐸𝐸𝐾𝐾,

�𝐶𝐶𝑦𝑦
(1) 𝐶𝐶𝑦𝑦

(2)� = 𝐶𝐶𝑦𝑦𝐸𝐸−1, �𝐶𝐶𝑧𝑧
(1) 0� = 𝐶𝐶𝑧𝑧𝐸𝐸−1.

(21)

Note that the above transformation, which is known as a similarity transform68, gives an equivalent model

and thus equation (20) is still general and describes the same second order statistics for the observed time

series 𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘 as equations (15) and (18) do.

Equation (20) can also be written in a form similar to equation (2) in Methods. To see this, note that by

rearranging the first line of equation (20) to move 𝐴𝐴21′ 𝑥𝑥𝑘𝑘
(1) to second term we get

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

 �
𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2) � = �

𝐴𝐴11′ 0
0 𝐴𝐴22′

� �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ �

𝐾𝐾(1)𝑦𝑦𝑘𝑘
𝐾𝐾′(2)𝑦𝑦𝑘𝑘 + 𝐴𝐴21′ 𝑥𝑥𝑘𝑘

(1)�. (22)

Here, 𝐾𝐾′(2) and 𝐴𝐴21′ can be thought of as one function applied to the concatenation of 𝑦𝑦𝑘𝑘 and 𝑥𝑥𝑘𝑘
(1).

Equivalently, to get the computation graph depicted in Supplementary Fig. 1a, we can rewrite the

formulation to have the lower block of the last term (i.e., 𝐾𝐾′(2)𝑦𝑦𝑘𝑘 + 𝐴𝐴21′ 𝑥𝑥𝑘𝑘
(1)) as a function of 𝑦𝑦𝑘𝑘 and 𝑥𝑥𝑘𝑘+1

(1) , the

latter of which is the output of the first line of equation (22). To do so, we rearrange the terms as

𝐾𝐾′(2)𝑦𝑦𝑘𝑘 + 𝐴𝐴21′ 𝑥𝑥𝑘𝑘
(1) = 𝐾𝐾′(2)𝑦𝑦𝑘𝑘 + 𝐴𝐴21′ 𝐴𝐴11′

−1𝐴𝐴11′ 𝑥𝑥𝑘𝑘
(1) + 𝐴𝐴21′ 𝐴𝐴11′

−1�𝐾𝐾(1)𝑦𝑦𝑘𝑘 − 𝐾𝐾(1)𝑦𝑦𝑘𝑘�

= 𝐾𝐾′(2)𝑦𝑦𝑘𝑘 + 𝐴𝐴21′ 𝐴𝐴11′
−1 �𝐴𝐴11′ 𝑥𝑥𝑘𝑘

(1) + 𝐾𝐾(1)𝑦𝑦𝑘𝑘� − 𝐴𝐴21′ 𝐴𝐴11′
−1𝐾𝐾(1)𝑦𝑦𝑘𝑘

= �𝐾𝐾′(2) − 𝐴𝐴21′ 𝐴𝐴11′
−1𝐾𝐾(1)�𝑦𝑦𝑘𝑘 + 𝐴𝐴21′ 𝐴𝐴11′

−1𝑥𝑥𝑘𝑘+1
(1) ≜ 𝐾𝐾(2) �

𝑦𝑦𝑘𝑘
𝑥𝑥𝑘𝑘+1

(1) �

(23)

where we assume that all behaviorally relevant states have associated dynamics in 𝐴𝐴11′ so that 𝐴𝐴11′ is

nonsingular and we define 𝐾𝐾(2) ≜ ��𝐾𝐾′(2) − 𝐴𝐴21′ 𝐴𝐴11′
−1𝐾𝐾(1)� 𝐴𝐴21′ 𝐴𝐴11′

−1�. Substituting equation (23) into equation

(22) and writing it together with the second and third lines of equation (20) gives

⎩
⎪
⎨

⎪
⎧
�
𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2) � = �

𝐴𝐴11′ 𝑥𝑥𝑘𝑘
(1)

𝐴𝐴22′ 𝑥𝑥𝑘𝑘
(2)�+ �

𝐾𝐾(1)𝑦𝑦𝑘𝑘

𝐾𝐾(2) �
𝑦𝑦𝑘𝑘
𝑥𝑥𝑘𝑘+1

(1) �
�

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦
(1)𝑥𝑥𝑘𝑘

(1) + 𝐶𝐶𝑦𝑦
(2)𝑥𝑥𝑘𝑘

(2) + 𝑒𝑒𝑘𝑘
 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧

(1)𝑥𝑥𝑘𝑘
(1) + 𝜖𝜖𝑘𝑘

. (24)

We can next add 𝐶𝐶𝑧𝑧
(2)𝑥𝑥𝑘𝑘

(2) to the third line of equation (24) for completeness to support the case of 𝑛𝑛1 being

smaller than the dimension required to cover all behaviorally relevant latent states (for example, the special

case of 𝑛𝑛1 = 0, which covers NDM as a special case). This provides an equivalent predictor form

description of a general linear dynamical system model. Finally, to get the nonlinear two-section RNN

model in DPAD, we can replace each parameter (e.g., 𝐾𝐾(1)) in equation (24) with a general nonlinear

function (e.g., 𝐾𝐾(1)(⋅)) to get equation (2) from Methods. These nonlinear functions/parameters can be

implemented in the form of arbitrary multilayer neural networks (Methods). These nonlinear general

parameters formulate a two-section RNN, which are learned with the 4-step DPAD learning approach

(Supplementary Fig. 1a).

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary Note 3: Distinction of multi-step optimization with a single optimization of a
mixed objective

One way to encourage latent states to be behavior predictive within one optimization step is to form a

mixed objective for neural and behavior data as

 𝐿𝐿 = 𝐿𝐿𝑧𝑧 + 𝜆𝜆𝐿𝐿𝑦𝑦 = ∑ 𝑁𝑁𝐿𝐿𝐿𝐿(𝑧𝑧𝑘𝑘 , �̂�𝑧𝑘𝑘)𝑘𝑘 + 𝜆𝜆∑ 𝑁𝑁𝐿𝐿𝐿𝐿(𝑦𝑦𝑘𝑘 ,𝑦𝑦�𝑘𝑘)𝑘𝑘 , (25)

where 𝑁𝑁𝐿𝐿𝐿𝐿(⋅) denotes the negative log-likelihood of a prediction, and 𝜆𝜆 is a regularization parameter that

determines how much attention is paid to each of the two terms in the objective, i.e., the behavior prediction

loss denoted by 𝐿𝐿𝑧𝑧 and the neural prediction loss denoted by 𝐿𝐿𝑦𝑦. If the goal was to maximize the total data

likelihood for both neural and behavioral data without trying to dissociate the latent states and prioritize

learning the behaviorally relevant ones, then single-step optimization of such a mixed objective with some

non-zero weight 𝜆𝜆—that needs to be selected based on the relative signal-to-noise ratio or reliability of the

neural versus behavior data—would have been appropriate. But a key goal of DPAD is to instead achieve

dissociation of behaviorally relevant versus other states, while prioritizing the learning of the former. To

enable prioritized dissociation and also accurately learn all neural dynamics, whether behaviorally relevant

or not, DPAD relies on both its architectural separation of latent states into 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) (as in equation (2)

versus equation (1)) and its multi-step optimization procedure (Supplementary Fig. 1). If the latent states

were not separated into two sections, there would be no “dissociation” since the same unified latent state

vector would be capturing both behaviorally relevant and other neural dynamics. Conversely, even if the

latent states were separated into two sections as in equation (2), but the learning only occurred in a single

optimization step, it could be difficult to guarantee that one section of the latent state (i.e., 𝑥𝑥𝑘𝑘
(1)) would

exclusively capture behaviorally relevant neural dynamics, leaving any remaining other dynamics to be

captured by the other section (i.e., 𝑥𝑥𝑘𝑘
(2)).

In DPAD, to achieve our prioritized dissociation goal explained above, in optimization step 1, we learn

𝑥𝑥𝑘𝑘
(1) by solely focusing on a behavior prediction objective to dissociate behaviorally relevant states and

prioritize their learning. The objective of this optimization can be viewed as the extreme case of equation

(25) where 𝜆𝜆 = 0 (Supplementary Fig. 1a). Then, in optimization step 3, we learn additional states 𝑥𝑥𝑘𝑘
(2) by

optimizing the prediction of any remaining neural dynamics as the objective. The objective of this

optimization thus can be viewed as the extreme case of equation (25) with 𝜆𝜆 → ∞ (Supplementary Fig.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

1a). Thus, instead of using a regularization parameter like 𝜆𝜆 to impose a tradeoff between behavior and

neural description within one set of latent states, DPAD allows the user to dedicate a subset of latent states

(𝑥𝑥𝑘𝑘
(1)) to solely focus on capturing behaviorally relevant neural dynamics (𝜆𝜆 = 0) to achieve prioritization,

while allowing the remaining latent states (𝑥𝑥𝑘𝑘
(2)) to capture any remaining neural dynamics to achieve

dissociation.

Our results across multiple datasets in this work (e.g., Figs. 3-4, Supplementary Fig. 9) suggest that the

combination of DPAD’s architectural separation of latent states (i.e., its two-section RNN model) and its

multi-step optimization leads to models that better predict neural-behavioral data compared with existing

alternative approaches. It would be interesting for future work to study whether and, if so, how enforcing

dissociation of learned dynamics across the two sections of DPAD’s model can also be done with a

different learning approach, such as a single-step optimization.

Supplementary Note 4: extended caption for Extended Data Table 1

We provide an extended explanation for some columns of Extended Data Table 1 below.

Input samples used to infer latent 𝒙𝒙𝒌𝒌: The subset of the input neural time series {𝑦𝑦1,𝑦𝑦2, … } that are

used to estimate the latent variable 𝑥𝑥𝑘𝑘 associated with time sample 𝑘𝑘. Some methods (e.g., LFADS, TNDM,

TAME-GP) aggregate information non-causally over a typically fixed-length finite window/segment of data

of length 𝑇𝑇, often representing one trial: 𝑥𝑥𝑘𝑘|𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑇𝑇. Recursive dynamic models (e.g., DPAD, NDM)

causally aggregate information over all past neural samples: 𝑥𝑥𝑘𝑘|𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑘𝑘−1. Static or semi-static

methods extract 𝑥𝑥𝑘𝑘 using one input sample 𝑥𝑥𝑘𝑘|𝑦𝑦𝑘𝑘 (e.g., dPCA), or a fixed small window of input samples

(e.g., 𝑥𝑥𝑘𝑘|𝑦𝑦𝑘𝑘−5 … 𝑦𝑦𝑘𝑘+4 for CEBRA).

Dynamic or static: Dynamic models have an explicit description of the temporal structure in data, which

allows them to aggregate information over time. Recursive dynamic models including DPAD learn an

explicit recursive description for the evolution of the latent dynamics. Sequential auto-encoders encode a

fixed-length data window (e.g., a trial) into an initial condition, from which a dynamical system is initialized

and generates the latent time series. Gaussian process models impose a model on temporal cross-

correlation of latent states at different delays, without describing the evolution of latents recursively. In

contrast to these, static models consider each given data sample on its own, and thus extract the same

encoding regardless of the temporal order/structure of the input sequence. Convolutional models (e.g.,

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

CEBRA) consider each small data window on its own and can’t aggregate information beyond that window,

mostly similar to static models.

Prioritize behaviorally relevant neural dynamics: Methods that can incorporate the reconstruction of

behavior from neural data as part of their learning objective, ideally with priority. Methods that consider both

neural and behavioral data, typically do so with a mixed objective by adding behavior reconstruction to the

overall objective as done in TNDM18 for example. The mixed objective approach leads to a partial

prioritization in the sense that the learned states are not guaranteed to be solely behaviorally relevant, i.e.,

focused on the behavior reconstruction (see Supplementary Note 3). DPAD in contrast ensures that

behavior reconstruction is the sole objective when extracting the behaviorally relevant latent states, which

are thus both dissociated from other neural states as well as prioritized in learning (that is, they are learned

first).

Dissociate behaviorally relevant and other neural dynamics: DPAD is the only dynamic nonlinear

method that learns both behaviorally relevant neural dynamics and other neural dynamics, and dissociates

the two into separate latent states. As noted above, methods with a mixed objective (e.g., TNDM) do not

guarantee that any subset of states are solely behaviorally relevant and do not contain other dynamics;

thus, these methods do not dissociate the two types of states (Supplementary Note 3). Other behavior

decoding methods (e.g., RNN decoders, LDA, SVM) only learn behaviorally relevant neural dynamics and

do not learn any other neural dynamics, and thus cannot dissociate the two.

Learned reconstruction models: The reconstruction models that are natively learned by the method

when extracting latents, in order to reconstruct neural or behavioral data from these learned latents. Some

methods (e.g., CEBRA, TAME-GP, pi-VAE, dPCA) indirectly prioritize behaviorally relevant neural

dynamics without learning a model to reconstruct behavior from the extracted latents. For all methods, a

post-hoc regression model can be learned to map the extracted latents to neural/behavioral data, but here

we list the reconstruction models that are natively learned by the method, i.e., learned when training the

latents.

Sani, Pesaran, Shanechi, Nature Neuroscience (2024)

Supplementary References

111. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

	SpringerNature_NatNeuro_1731_ESM.pdf
	Supplementary Information
	Contents

	Supplementary Figures
	Supplementary Notes
	Supplementary Note 1: Predictor form of dynamical system models
	Supplementary Note 2: The four-step optimization formulation for learning in DPAD
	Supplementary Note 3: Distinction of multi-step optimization with a single optimization of a mixed objective
	Supplementary Note 4: extended caption for Extended Data Table 1

	Supplementary References

